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Abstract. In the 1970s Codd introduced the relational algebra, with operators
selection, projection, union, difference and product, and showed that it is equivalent
to first-order logic. In this paper, we show that if we replace in Codd’s relational al-
gebra the product operator by the “semijoin” operator, then the resulting “semijoin
algebra” is equivalent to the guarded fragment of first-order logic. We also define a
fixed point extension of the semijoin algebra that corresponds to µGF.

1. Introduction

In the 1970s Codd introduced the relational algebra, with operators
selection, projection, union, difference and product (or join) [5]. This
algebra is well known in computer science, specifically in the field of
databases [1]. Of fundamental importance is the equivalence in expres-
sive power between the relational algebra and first-order logic, called
relational calculus in database theory [6].

In this paper, we show that if we replace in Codd’s relational algebra
the product operator by the “semijoin” operator, then the resulting
“semijoin algebra” is equivalent to the guarded fragment of first-order
logic. This fragment was introduced by Andreka, van Benthem and
Nemeti [3] to extend modal logic from Kripke structures to arbitrary
relational structures, while retaining the nice properties, such as the
finite model property. Since its introduction, the guarded fragment has
been studied extensively [15, 12, 14, 13, 18].

On the other hand, also the semijoin operator is well known in the
field of databases. While computing project-join queries in general is
NP-complete in the size of the query and the database, this can be done
in polynomial time when the database schema is acyclic [24], a property
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known to be equivalent to the existence of a semijoin program [4].
Semijoins are often used as part of a query pre-processing phase where
dangling tuples are eliminated, i.e., the database is resized to the part
that is relevant for answering the query. Another interesting property is
that the size of a relation resulting from a semijoin is always linear in the
size of the input. Therefore, a query processor will try to use semijoins
as often as possible when generating a query plan for a given query
(a technique known as “pushing projections” [9]). Also in distributed
query processing, semijoins have great importance, because when a
database is distributed across several sites, they can help avoid the
shipment of many unneeded tuples.

Interestingly, to the best of our knowledge, the semijoin algebra was
never really considered before our work.

2. Preliminaries

In this section, we recall the definition of the guarded fragment and
give a formal definition of its algebraization, which we call the semijoin
algebra.

Throughout this paper we fix a finite relational vocabulary τ . We
denote the arity of a relation symbol R in τ by arity(R). The maximal
arity of relation symbols in τ is denoted by m. In this paper, we will
work with first-order logic formulas over τ with equality. Here, we con-
sider the equality sign = as a “logical symbol”; it is always interpreted
by the identity predicate, and the sign = is not part of τ .

Proviso. When ϕ stands for a first-order formula, then ϕ(x1, . . . , xk)
indicates that all free variables of ϕ are among x1, . . . , xk.

First, we recall the definition of the guarded fragment.

DEFINITION 1 (Guarded fragment, GF).

1. All quantifier-free first-order formulas over τ are formulas of GF.

2. If ϕ and ψ are formulas of GF, then so are ¬ϕ, ϕ∨ψ, ϕ∧ψ, ϕ→ ψ

and ϕ↔ ψ.

3. Let ϕ(x̄, ȳ) be a formula of GF and let α(x̄, ȳ) be a relation atom
over τ (i.e., an atomic formula R(. . .) with R ∈ τ). If all free
variables of ϕ do actually occur in α then ∃ȳ(α(x̄, ȳ) ∧ ϕ(x̄, ȳ)) is
a formula of GF.

As the guarded fragment is a fragment of first-order logic, the semantics
of GF is that of first-order logic.
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Now, we define the semijoin algebra.

DEFINITION 2 (Semijoin algebra, SA). The syntax and semantics of
the semijoin algebra are inductively defined as follows:

1. Each relation symbol R ∈ τ is a semijoin algebra expression. Its
arity comes from τ .

2. If E1, E2 ∈ SA have arity n, then also E1 ∪ E2, E1 − E2 belong to
SA and are of arity n.

3. If E ∈ SA has arity n and i, j ∈ {1, . . . , n}, then σi=j(E) belongs
SA and is of arity n.

4. If E ∈ SA has arity n and i1, . . . , ik are distinct elements of {1, . . . , n},
then πi1,...,ik(E) belongs to SA and is of arity k.

5. If E1, E2 ∈ SA have arities n and m, and θ(x1, . . . , xn, y1, . . . , ym)
is a conjunction of equalities of the form

∧s
l=1 xil = yjl, then also

E1 nθ E2 belongs to SA and is of arity n.

Let E be an SA expression over τ and let A be a τ -structure. Then
the result of E on A, denoted E(A), is defined inductively as follows:

1. R(A) := RA, where RA is the interpretation of R in structure A.

2. E1 ∪ E2(A) := E1(A) ∪ E2(A), E1 − E2(A) := E1(A) − E2(A).

3. σi=jE(A) := {ā ∈ E(A) | ai = aj}.

4. πi1,...,ikE(A) := {(ai1 , . . . , aik) | (a1, . . . , an) ∈ E(A)}.

5. E1 nθ E2(A) := {ā ∈ E1(A) | ∃b̄ ∈ E2(A) : θ(ā, b̄)}.

3. Semijoin algebra versus guarded fragment

Before we prove that SA is subsumed by GF, we need a lemma that
says that each tuple in the result of an SA expression E on a structure
A is guarded in the following sense:

DEFINITION 3. Let A be a τ -structure with universe A.

− A set X ⊆ A is guarded in A if there exists a tuple (a1, . . . , ak) ∈
RA (for some R in τ) such that X = {a1, . . . , ak}.
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− A tuple (a1, . . . , an) ∈ An is guarded in A if {a1, . . . , an} ⊆ X

for some guarded set X in A.

LEMMA 4. For every SA expression E, for every τ -structure A and
for every tuple ā in E(A), ā is guarded.

Proof. By structural induction on expression E. 2

The set of guarded k-tuples in structures of vocabulary τ = {R1, . . . ,

Rt} can be defined by the following formula [14]:

Gk(x1, . . . , xk) :=
t

∨

i=1

∃ȳ



Riȳ ∧
k
∧

l=1

∨

j

xl = yj





Note that this formula is syntactically not in GF. Nevertheless, it can
be equivalently expressed in GF as follows. For any complete equality
type on {x1, . . . , xk} specified by a quantifier-free formula η(x̄) in the
language of just =, let x̄η be a subtuple of x̄ comprising precisely one
variable from each =-class specified by η. Let α(x̄η, ȳ) be a τ -atom in
which all variables in x̄η actually occur and the ȳ are new, i.e., disjoint
from x̄. It is clear that the formula

∨

η

∨

α

η(x̄) ∧ ∃ȳα(x̄η, ȳ)

is in GF and is equivalent to Gk(x1, . . . , xk). The following lemma is
now clear. It will also be of use in the proof of Theorem 6.

LEMMA 5. If ϕ(x̄, ȳ) is in GF, then ∃ȳ(G(x̄, ȳ)∧ϕ(x̄, ȳ)) and ∀ȳ(G(x̄, ȳ)
→ ϕ(x̄, ȳ)) can be equivalently expressed in GF.

This lemma implies that, if we regard Gm as a relation symbol, with
m the maximal arity of relation symbols in τ , each GF sentence is
equivalent to a sentence of the guarded logic where we always use Gm as
the guard. It is interesting to note that historically, GF has its roots in
relativized cylindric algebras, where we indeed relativize all operations
to a single relation [16, 22, 21].

We now prove that SA is subsumed by GF.

THEOREM 6. For every SA expression E of arity k, there exists a
GF formula ϕE(x1, . . . , xk) such that for every τ -structure A and for
every tuple ā over A, we have ā ∈ E(A) iff A |= ϕE(ā).

Proof. The proof is by structural induction on E.

− if E is R, then ϕE(x1, . . . , xk) := R(x1, . . . , xk).
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− if E is E1 ∪ E2, then

ϕE(x1, . . . , xk) := ϕE1
(x1, . . . , xk) ∨ ϕE2

(x1, . . . , xk).

− if E is E1 − E2, then

ϕE(x1, . . . , xk) := ϕE1
(x1, . . . , xk) ∧ ¬ϕE2

(x1, . . . , xk).

− if E is σi=j(E1), then ϕE(x1, . . . , xk) := ϕE1
(x1, . . . , xk) ∧ xi = xj .

− if E is πi1,...,ik(E1) with E1 of arity n, then, by induction, we have
a formula ϕE1

(z1, . . . , zn). Now replace in ϕE1
(z̄), for j = 1, . . . , k,

each occurrence of zij by xj , and replace, for l 6∈ {ij | j = 1, . . . , k},
each occurrence of zl by yl. Let the resulting formula be ψ(x̄, ȳ). By
Lemma 4, ψ(x̄, ȳ) is equivalent to the formula Gn(x̄, ȳ) ∧ ψ(x̄, ȳ).
Now, ϕE(x1, . . . , xk) is the formula

∃ȳ(Gn(x̄, ȳ) ∧ ψ(x̄, ȳ))

which can be written guarded by Lemma 5.

− if E is E1 nθE2 with θ =
∧s
l=1 xil = yjl and E2 of arity n, then, by

induction, we have formulas ϕE1
(x1, . . . , xk) and ϕE2

(z1, . . . , zn).
Now replace in ϕE2

(z̄), for l = 1, . . . , s, each occurrence of zjl by
xil , and replace, for i 6∈ {jl | l = 1, . . . , s}, each occurrence of zi by
yi. Let the resulting formula be ψ(x̄, ȳ). By Lemma 4, ψ(x̄, ȳ) is
equivalent to the formula Gn(x̄, ȳ) ∧ ψ(x̄, ȳ). Now, ϕE(x1, . . . , xk)
is the formula

ϕE1
(x1, . . . , xk) ∧ ∃ȳ(Gn(x̄, ȳ) ∧ ψ(x̄, ȳ))

which can be written guarded by Lemma 5. Note that condition θ
is enforced by repetition of variables xil . 2

Note that our translation from SA to GF is effectively computable.
Thus, any decidability result of GF carries over to SA. In particular,
by the decidability of GF [3, 12], we obtain:

COROLLARY 7. Satisfiability of SA expressions is decidable.

By the finite model property of GF [2], we obtain:

COROLLARY 8. The semijoin algebra has the finite model property.

For a fixed finite vocabulary τ , the satisfiability problem for GF is in
exptime [12]. Note that our translation from SA to GF is exponential
in general, so an exptime complexity result for SA does not directly
follow from Theorem 6. Nevertheless, we have the following:
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THEOREM 9. For every fixed finite vocabulary τ , the satisfiability
problem for SA is in exptime.

Proof. Given an SA expression E of arity k over τ , we apply the
same translation procedure as in Theorem 6, but we use a new k-ary
relation symbol Hk instead of formula Gk. From the translation it is
clear that if Gk is used, then k 6 m, where m is the maximal arity
of relation symbols in τ . The translation thus gives us a GF formula
ϕ′
E(x1, . . . , xk) over τ ′ := τ ∪{H1, . . . , Hm}. Now consider the following

sentence over τ ′:

ζ :=
m
∧

k=1

∀x̄(Gk(x̄) → Hk(x̄)) ∧
m
∧

k=1

∀x̄(Hk(x̄) → Gk(x̄))

By Lemma 5, ζ is in GF. We now prove the following: E is satisfiable
if and only if ϕ′

E(x1, . . . , xk) ∧ ζ is satisfiable.
Let ā ∈ E(A). By Theorem 6, A |= ϕE(ā). Define A′ as the τ ′-

structure with Hk(A
′) = Gk(A), for all k. On all τ -relations R, R(A)

and R(A′) coincide. It is now clear that A′ |= ϕ′
E(ā) ∧ ζ.

For the other direction, let A′ |= ϕ′
E(ā)∧ζ. From the definition of ζ,

it follows that Hk(A
′) = Gk(A

′), for all k. Therefore, A |= ϕE(ā) and
thus, by Theorem 6, ā ∈ E(A).

Note that ζ depends only on τ and is thus constant, and that ϕ′
E

is computable from E in polynomial time. We have thus reduced the
satisfiability problem for SA in polynomial time to the satisfiability
problem for GF. 2

The literal converse statement of Theorem 6 is not true, because the
guarded fragment contains all quantifier-free first-order formulas, so
that one can express arbitrary cartesian products in it, such as {(x, y) |
S1(x) ∧ S2(y)}. Cartesian products, of course, can not be expressed in
the semijoin algebra. Nevertheless, the result of any GF query restricted
to guarded k-tuples, where k 6 m, is always expressible in SA.

It is clear that for every τ -structure A, for every k 6 m, the set of
guarded k-tuples in A equals Gk(A), where Gk is the SA expression

⋃

R∈τ

{πi1,...,ikR | 1 6 i1, . . . , ik 6 arity(R)}.

We now prove

THEOREM 10. For every GF formula ϕ(x1, . . . , xk) with k 6 m, there

exists an SA expression E
(x1,...,xk)
ϕ such that for every structure A and

for every guarded tuple ā in A, we have A |= ϕ(ā) iff ā ∈ E
(x1,...,xk)
ϕ (A).

Proof. By structural induction on ϕ, we construct the desired semi-

join expression E
(x1,...,xk)
ϕ .
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− if ϕ(x1, . . . , xk) is R(xi1 , . . . , xil) then E
(x1,...,xk)
ϕ := GknθR, where

θ is (xi1 = y1) ∧ (xi2 = y2) ∧ . . . ∧ (xil = yl);

− if ϕ(x1, . . . , xk) is (xi = xj) then E
(x1,...,xk)
ϕ := σi=j(Gk);

− if ϕ(x1, . . . , xk) is ψ(x1, . . . , xk) ∨ ξ(x1, . . . , xk) then E
(x1,...,xk)
ϕ :=

E
(x1,...,xk)
ψ ∪ E

(x1,...,xk)
ξ ;

− if ϕ(x1, . . . , xk) is ¬ψ(x1, . . . , xk) then E
(x1,...,xk)
ϕ := Gk−E

(x1,...,xk)
ψ ;

− suppose ϕ(x1, . . . , xk) is ∃z1, . . . , zp(α(x̄, z̄) ∧ ψ(x̄, z̄)). First, note
that not every xi may effectively occur in α. So, let xi1 , . . . , xir be
the variables among x1, . . . , xk that effectively occur in α. By in-

duction, we have expressionsE
(xi1

,...,xir ,z1,...,zp)
α and E

(xi1
,...,xir ,z1,...,zp)

ψ .

Note that we can use the induction hypothesis on ψ(x̄, z̄), because
all variables in ψ must effectively occur in α and therefore |x̄|+|z̄| 6

m. Now, let θ1 be
∧r
i=1 xi = yi and let θ2 be

∧r
j=1 xij = yj . Then,

E
(x1,...,xk)
ϕ is

Gk nθ2 (E
(xi1

,...,xir ,z1,...,zp)
α nθ1 E

(xi1
,...,xir ,z1,...,zp)

ψ ).

2

Note that our translation from GF to SA is linear, so we can transfer
lower complexity bounds known for GF. But some care has to be
taken because we consider finite vocabularies, and Grädel’s proof of
exptime-hardness for GF [12] considers an infinite (though bounded-
arity) vocabulary. In fact, it is not hard to see that satisfiability for the
guarded fragment with only unary predicates is np-complete.

THEOREM 11. For every fixed finite vocabulary τ with at least one re-
lation symbol of arity two, the satisfiability problem for SA is exptime-
hard.

Proof. We give a sketch only. exptime-hardness of the guarded
fragment can be shown by an encoding of the local-global satisfiability
problem for modal logic K. (Given two formulas φ and ψ, is φ satisfi-
able in a Kripke model in which ψ holds in every world? [21].) Every
modal formula is locally equivalent to the guarded formula obtained
by the standard translation. Whence we obtain exptime-hardness for
vocabularies with an unbounded number of unary predicates and one
binary predicate. Using a technique described by Halpern [17] we can
reduce the number of propositional variables to just one and obtain
an equisatisfiable formula. In the equivalent guarded formula we can
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now replace the unary predicate Px by R(x, x), and again obtain an
equisatisfiable formula. Whence the result. 2

Combining Theorems 9 and 11, we obtain

THEOREM 12. For every fixed finite vocabulary τ with at least one re-
lation symbol of arity two, the satisfiability problem for SA is exptime-
complete.

4. Fixed point extensions

In this section we define the fixed point extension µSA of SA and show
that it corresponds to µGF in the same way that SA corresponds to
GF. We recall the definition of guarded fixed point logic µGF [15]. For
background on fixed point logics, we refer to Ebbinghaus and Flum [7].

DEFINITION 13 (µGF). The guarded fixed point logic µGF is ob-
tained by adding to GF the following rules for constructing fixed-point
formulae:

Let W be a k-ary relation variable and let x̄ = (x1, . . . , xk) be a
k-tuple of distinct variables. Further, let ψ(W, x̄) be a guarded formula
where W appears only positively and not in guards. Moreover we require
that all the free variables of ψ(W, x̄) are contained in x̄. For such a
formula ψ(W, x̄) we can build the formula [LFP Wx̄.ψ](x̄).

The semantics of the fixed point formulae is the usual one: Given
a structure A and a valuation χ for the free second-order variables
in ψ, other than W , the formula ψ(W, x̄) defines an operator on k-
ary relations W ⊆ Ak, namely ψA,χ := {ā ∈ Ak | A, χ |= ψ(W, ā)}.
Since W occurs only positively in ψ, this operator is monotone and
therefore has a least fixed point LFP(ψA,χ). Now, the semantics of a
least fixed point formula is defined by A, χ |= [LFP Wx̄.ψ(W, x̄)](ā) iff
ā ∈ LFP(ψA,χ).

Correspondingly, we will now define the fixed point extension µSA of
SA. We assume a relational vocabulary V disjoint from τ . The relation
names in V will be called relation variables. For each µSA expression
E, we also define the set F (E) of free relation variables in E and the
sets pos(E) and neg(E) that contain the relation variables that occur
positively and negatively in E, respectively.

DEFINITION 14 (µSA). The syntax and semantics of µSA are induc-
tively defined as follows:
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1. Each relation symbol R ∈ τ is in µSA. F (R) = ∅, pos(R) = {R}
and neg(R) = ∅. Its arity comes from τ .

2. Each relation variable X ∈ V is in µSA. F (X) = {X}, pos(X) =
{X} and neg(R) = ∅. Its arity comes from V .

3. If E1, E2 ∈ µSA have arity n, then also E := E1 ∪ E2 belongs to
µSA and is of arity n. F (E) = F (E1)∪F (E2), pos(E) = pos(E1)∪
pos(E2) and neg(E) = neg(E1) ∪ neg(E2).

4. If E1, E2 ∈ µSA have arity n, then also E := E1 − E2 belongs to
µSA and is of arity n. F (E) = F (E1)∪F (E2), pos(E) = pos(E1)∪
neg(E2) and neg(E) = neg(E1) ∪ pos(E2).

5. If E ∈ µSA has arity n, i, j ∈ {1, . . . , n}, and i1, . . . , ik are distinct
elements of {1, . . . , n}, then E′ := σi=j(E) and E′′ := πi1,...,ik(E)
belong µSA and are of arity n and k respectively. F (E′) = F (E′′) =
F (E), pos(E′) = pos(E′′) = pos(E) and neg(E′) = neg(E′′) =
neg(E).

6. If E1, E2 ∈ µSA have arities n and m, and θ(x1, . . . , xn, y1, . . . , ym)
is a conjunction of equalities of the form

∧s
l=1 xil = yjl, then also

E := E1 nθ E2 belongs to µSA and is of arity n. F (E) = F (E1) ∪
F (E2), pos(E) = pos(E1) ∪ pos(E2) and neg(E) = neg(E1) ∪
neg(E2).

7. If E is a µSA expression such that X 6∈ neg(E) and X ∈ F (E), then
also E′ := [LFP X.E] is a µSA expression. F (E′) = F (E) − {X},
pos(E′) = pos(E) − {X} and neg(E′) = neg(E).

Let E be a µSA expression and let A be a structure over τ ∪ F (E).
Then the result of E on A, denoted E(A), is defined inductively as
follows:

1. For R in τ ∪F (E), R(A) := RA where RA is the interpretation of
R in structure A.

2. E1 ∪ E2(A) := E1(A) ∪ E2(A), E1 − E2(A) := E1(A) − E2(A).

3. σi=jE(A) := {ā ∈ E(A) | ai = aj}.

4. πi1,...,ikE(A) := {(ai1 , . . . , aik) | (a1, . . . , an) ∈ E(A)}.

5. E1 nθ E2(A) := {ā ∈ E1(A) | ∃b̄ ∈ E2(A) : θ(ā, b̄)}.

Let A be a structure over τ ∪ F (E) − {X} with universe A. Let k
be the arity of X. Then [LFP X.E](A) is defined as the least fixed
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point of the operator EA on k-ary relations on A, defined as follows:
EA(r) := E(A, r). Here, by (A, r) we denote the structure A′ over
τ ∪ F (E) defined by











RA′

= RA if R ∈ τ

Y A′

= Y A if Y ∈ V, Y 6= X

XA′

= r

This least fixed point always exists because EA is monotone, as shown
in Lemma 15.

LEMMA 15. Let E be a µSA expression such that X ∈ F (E). Let A
be a structure over τ ∪ F (E) − {X}. If X 6∈ neg(E), then the operator
EA is monotone; if X 6∈ pos(E), then EA is anti-monotone.

Proof. The proof is by structural induction on E. Suppose X 6∈
neg(E). The base case where E = X is clear. Suppose the lemma is true
for E1 and E2, then the lemma also holds for σi=jE1, πi1,...,ikE1, E1∪E2

and E1 nθ E2 because selection, projection, union and semijoin are
monotone operators. If E = E1−E2 andX 6∈ neg(E), thenX 6∈ neg(E1)
and X 6∈ pos(E2), so EA

1 is monotone and EA
2 is anti-monotone by

induction. Then, clearly EA is monotone. The case where X 6∈ pos(E)
is analogous. 2

We now prove that µSA and µGF are equivalent in the same way
as the logics without fixed point extensions: µSA is subsumed by µGF,
and conversely, the result of any µGF query restricted to guarded tuples
is always expressible in µSA.

THEOREM 16. For every µSA expression E of arity k, there exists
a µGF formula ϕE(x1, . . . , xk) such that for every structure A and for
every tuple ā over A, we have ā ∈ E(A) iff A |= ϕE(ā).

Proof. The proof is by structural induction. All cases except least
fixed point are handled as in the proof of Theorem 6. In particular, if
X ∈ F (E1), then X does not appear in a guard of ϕE1

; if X 6∈ neg(E1),
then X is positive in ϕE1

. Consider now the case where E is of the form
[LFP X.E1]. Now, [LFP Xx̄.ϕE1

(x̄)](x̄) is a well-defined µGF formula
equivalent to E. 2

To go from µGF to µSA, the following lemma proved by Grädel et
al. [14] is particularly instrumental:

LEMMA 17. Any formula of µGF is logically equivalent to one in
which all fixed points are of the form [LFP Wx̄.(ψ(x̄) ∧ G(x̄))](x̄).
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THEOREM 18. For every µGF formula ϕ(x1, . . . , xk) with k 6 m,
there exists a µSA expression Eϕ such that for every structure A and
for every guarded tuple ā in A, we have A |= ϕ(ā) iff ā ∈ Eϕ(A).

Proof. The proof is by structural induction. All cases except least
fixed point are handled as in the proof of Theorem 10. Consider now
the case where ϕ(x1, . . . , xk) is of the form [LFP Wx̄.ψ(x̄)](x̄). By
Lemma 17, we may assume that ψ(x̄) is of the form χ(x̄) ∧ G(x̄). By

induction we have that [LFP X.E
(x̄)
χ ] is equivalent to ϕ(x̄). 2

Using an argument similar to that of Theorem 9, and given that
for any fixed vocabulary, satisfiability for µGF is in exptime [15],
we obtain that satisfiability for µSA is in exptime. It is actually
exptime-complete, since satisfiability for SA is already exptime-hard
(Theorem 11).

5. Generalizations of GF and SA

In Codd’s relational algebra (RA), mentioned in the Introduction, the
semijoin operator is replaced by the product operator. Syntax and
semantics of the other operators remain unchanged. The syntax and
semantics of the product operator are as follows. If E1, E2 ∈ RA have
arities n and m, then E1 × E2 belongs to RA and has arity n + m;
E1 × E2(A) := {(ā, b̄) | ā ∈ E1(A), b̄ ∈ E2(A)}. As mentioned in
the Introduction, this relational algebra is equivalent to full first-order
logic [6].

The semijoin operator can be seen as a relativized version of the
product operator; thus, SA is a relativized version of RA. Indeed, let I
be a function mapping pairs (A, k), where A is a τ -structure and k is
a natural number, to relations, such that I(A, k) is a k-ary relation on
A. Define the syntax and semantics of the relational algebra relativized
to I, as follows:

− The syntax is that of the relational algebra;

− The semantics of the selection, projection, union and difference
operator are the same as in the relational algebra. The semantics
of the product operator relativized to I is defined as follows:

E1 × E2(A) := {(ā, b̄) | ā ∈ E1(A), b̄ ∈ E2(A),

(ā, b̄) ∈ I(A, arity(ā) + arity(b̄))}

We denote RA relativized to I by RAI . Then, if we define IGF(A, k) :=

Gk(A), for all A and k, it is clear that RAIGF

is equivalent to SA (and
thus also to GF).
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In literature, generalizations of GF based on loosening the guards
have been considered [23, 11, 20]. In the packed fragment for exam-
ple [20], all quantifications are relative to the set of packed tuples. A
tuple ā is packed in a τ -structure A if each ai and aj appear together
in some tuple d̄ ∈ R(A). If we define IPF(A, k) := Pk(A), where Pk
returns all packed k-tuples in A, then it is easy to adapt our proofs of

Theorem 6 and 10 and show that RAIPF

is equivalent to the packed
fragment.

6. Evaluation complexity

For a fixed finite vocabulary τ , we can consider the evaluation problem
for SA, defined as follows:

Input: A finite τ -structure A, a SA expression E and a tuple ā ∈ A.

Decide: Is ā ∈ E(A)?

It is known that the corresponding problem for GF is decidable in
linear time on a RAM (Random Access Machine), provided a suitable
array-based representation is used to represent finite structures [10].
Actually, in that article, this linear evaluation complexity was shown
for a language called Datalog LIT, and it is an easy matter to provide
a linear translation from SA to Datalog LIT. We can thus conclude:

THEOREM 19. For every fixed finite vocabulary τ , the evaluation
problem for SA can be solved in linear time.

7. Discussion

Our characterization of the guarded fragment by using semijoins sug-
gests generalizations of GF in directions other than those considered
up to now, based on loosening the guards. Specifically, we can allow
other semijoin conditions than just conjunctions of equalities.

But, as the following example shows, such generalizations are not
innocent. For instance, let us allow nonequalities in semijoin conditions.
This variant of the semijoin algebra, denoted SA6=, is strictly more
expressive than GF. Consider for example the query that asks whether
there are at least two distinct elements in a single unary relation S.
This is expressible in SA6= as S nx1 6=y1 S, but is not expressible in GF.
Indeed, a set with a single element is “guarded bisimilar” to a set with
two elements [3].

Unfortunately, it follows from a result by Grädel that these nonequal-
ities in semijoin conditions make SA undecidable.
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THEOREM 20. Satisfiability of SA6= expressions is undecidable.
Proof. Grädel [12, Theorem 5.8] shows that GF with functionality

statements in the form of functional[D], saying that the binary relation
D is the graph of a partial function, is a conservative reduction class.
Since functional[D] is expressible in SA6= as D nx1=y1∧x2 6=y2 D = ∅, it
follows that SA6= is undecidable. 2

A generalization of guarded bisimilarity to the semijoin algebra with
arbitrary semijoin conditions has been proposed by us in a previous
paper [19].

We note that it has already been observed that boolean acyclic non-
recursive stratified datalog (NRSD) programs have the same expressive
power as GF sentences [8, 10]. Each rule in such a program is an
acyclic join query. By the well-known correspondence between acyclic
join queries and semijoin programs [4], these acyclic NRSD programs
also correspond to SA. Hence, the correspondence we have shown be-
tween SA and GF could also have been derived by combining these
previous results. Nevertheless, the equivalence proof we give is direct
and elementary.
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