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Abstract

Consumption of pork contaminated with Salmonella is an important source of human

Salmonellosis worldwide. To control and prevent Salmonellosis, Belgian pig herds with high

Salmonella infection burden are encouraged to take part in a control programme supporting

the implementation of control measures. The Belgian government decided that only the 10%

pig herds with the highest Salmonella infection burden (shortly high risk herds) can partici-

pate. To identify these herds, serological data reported as SP-ratios are collected. However,

SP-ratios have an extremely skewed distribution and are heavily subject to confounding sea-

sonal and animal age effects. Therefore, we propose to identify the 10% high risk herds using

semi-parametric quantile regression with P-splines. In particular, quantile curves of animal

SP-ratios are estimated as a function of sampling time and animal age. Then, pigs are clas-

sified into low and high risk animals with high risk animals having an SP-ratio larger then

the corresponding estimated upper quantile θ. Finally, for each herd, the number of high risk

animals is calculated as well as the beta-binomial p-value reflecting the hypothesis that the

Salmonella infection burden is higher in that herd compared to the other herds. The 10% pig

herds with the lowest p-values are then identified as high risk herds. In addition, since high

risk herds are supported to implement control measures, a risk factor analysis is conducted

using binomial Generalized Linear and Generalized Linear Mixed Models to investigate fac-

tors associated with decreased or increased Salmonella infection burden. Finally, since the

choice of a specific upper quantile is to a certain extent arbitrary, a sensitivity analysis is

conducted comparing different choices of upper quantiles θ.

Keywords: Salmonella, pigs herds, risk factors, semi-parametric quantile regression,

Generalized Linear Mixed Models
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1 Introduction

Worldwide Salmonellosis, the illness from Salmonella infection, is the most frequently occur-

ing zoonoses, which is an infectious disease directly or indirectly transmitted between animals

and humans. Thereby Salmonellosis is a major concern in most industrialized countries hav-

ing a significant economic impact (Mead et al, 1999). Global estimations vary between 14 and

120 cases of Salmonellosis per 100000 people (Thorns, 2000). Salmonellosis is characterized

by fever, stomach cramps, and diarrhea and is mostly self-limiting. However, deaths due

to Salmonella infections do occur, especially within the susceptible population of newborns,

young children, pregnant women, elderly and immunocompromised persons. The majority

of the cases of Salmonellosis is due to Salmonella Enteritidis and Salmonella Typhimurium

infections, which comprised almost 80% of the total number of Salmonella infections in Bel-

gium in 2005 (NRSS, 2005). Of the reported Salmonella infections 26 % of these are likely

to be due to transmission of the pathogen via pork.

The recent establishment of the European Centre for Disease Prevention and Control

(ECDC) has put prevention and control of zoonoses as one of its main priorities (de Jong &

Ekdahl, 2006). Salmonellosis is one of the eight zoonoses listed in the European Union (EU)

Zoonoses Monitoring Directive (2003/99/EG), for which continuous monitoring is mandatory.

In the EU Regulation on the control of salmonella and other zoonotic agents (2160/2003/EG)

it is stated that proper and effective measures are to be taken to detect and control salmonella

and other zoonotic agents at all relevant stages of the food production chain, particularly

at the level of primary production (that is, at herd level). In line with this regulation,

the Belgian Federal Agency for the Safety of Food Chain (FASFC) started with a national

Salmonella surveillance programme in professional pig herds in January 2005. Objective

of this programme is to identify pig herds with high Salmonella infection burden, which

are then (financially) encouraged to take part in a control programme supporting the im-

plementation of control measures to reduce the infection burden. Because of financial and

practical constraints, the Belgian government decided recently that only the 10% pig herds

with the highest Salmonella infection burden can participate (to appear in Belgian Royal

act on Salmonella Surveillance programme in pigs, june 2007). In the sequel, these 10% pig

herds are shortly called high risk herds for reasons of convenience.

In order to be able to quantify Salmonella infection burden in pig herds, the Belgian

FASFC collected serological data. In particular, blood samples of breeding and fattening



4

pigs are taken which are tested for Salmonella-specific sera with an indirect ELISA (Herd-

chek Swine, Idexx Laboratories). The tests are conducted following the test manufacturer’s

guidelines. This means that the optical density of the sample (ODsample) is assessed as well

as the mean optical density of the positive (ODpos.) and negative controls (ODneg.) to ensure

a valid test run was performed. The obtained optical densities are normalized as Sample

to Positive ratios (SP-ratios) being calculated as (ODsample − ODneg.)/(ODpos. − ODneg.).

SP-ratios normally cover a range between 0 and 4, but even higher values can be observed.

Furthermore, SP-ratios are extremely positively skewed. This follows since for negative sam-

ples and controls always low OD-values are observed whereas for positive samples and controls

a wide range of OD-values can be observed going from moderately high to very high.

A first main objective of the current study is the selection of 10% high risk herds using

the serological data collected by FASFC. However, it is not obvious how to use serological

data at animal level in order to identify the 10% high risk herds. Currently, identification is

based on a average SP-ratio which is calculated for each herd during consecutive sampling

rounds. But SP-ratios have an extremely skewed distribution implying that the sample mean

is not a good estimate of central tendency. Furthermore, SP-ratios are heavily subject to

confounding effects. Seasonal effects is such a well known confounder with higher expected

SP-ratios throughout the summer months. Animal age is a known confounder as well with

the older the animal, the higher the expected SP-ratio. To deal with all these issues, we

propose an alternative method to identify the 10% high risk herds. We propose to base

identification on the number of high risk animals in a herd, taking into account the total

number of pigs sampled in that herd as well as the intra-herd correlation. High risk animals

are then defined as pigs having a very high SP-ratio being a SP-ratio larger than a specific

upper quantile θ. To correct for confounding seasonal and animal age effects, quantile curves

of animal SP-ratios are estimated as a function of sampling time and animal weight (proxy

for animal age). In particular, seasonal effects are modeled in a flexible way using P-splines

whereas age (weight) effects are modeled in an additive way.

A second main objective of the current study is to investigate factors associated with an

increased or decreased Salmonella infection burden at farm level. To this end, the serological

data are linked with data from a survey on biosecurity in Belgian pig farms conducted in 2005

(Ribbens et al, 2005). A risk factor analysis is conducted using binomial Generalized Linear

Models (GLMs) and Generalized Linear Mixed Models (GLMMs) with the use of mixed

models being motivated by the presence of clustering in the data due to the sub-sampling
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of pigs within herds. The results of these analysis can then be used to motivate control

measures to be taken by high risk herds in order to reduce the Salmonella infection burden.

Finally, since the choice of a specific upper quantile θ used to identify high risk animals is to

a certain extent arbitrary, a sensitivity analysis is conducted comparing different choices of

upper quantiles θ.

The remainder of this paper is organised as follows: in Section 2, the data, both the

serological data as well as the data from the survey on biosecurity, are introduced; in Section

3, the identification of Salmonella high risk animals is discussed starting with methodological

subsections on ordinary least squares regression with P-splines and quantile regression with

P-splines; in Section 4, the identification of Salmonella high risk herds is discussed; in Section

5, the risk factor analyses are described. Finally, some concluding remarks and suggestions

for further research are given in Section 6.
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Figure 1: Serological data: animal SP-ratio by sampling time.

2 Data

Serological Data

A serological Salmonella surveillance programme, organized by the FASFC, has been in place

since January 2005 in Belgium. In particular, Salmonella-specific antibodies are determined

by an indirect ELISA in blood samples of breeding and fattening pigs. These samples are

collected within the frame of the eradication programme of pseudorabies virus (Aujeszky

disease). Veterinarians are obliged to collect 10 or 12 samples (depending on the size of the

herd) on each professional meat producing pig herd (having at least 31 pigs) from pigs of

different weight categories every 3 to 4 months per year. The results of the tests are reported

as SP-ratios. For every blood sample taken, the herd identification number, animal estimated

weight (<40kg, 40-59kg, 60-80kg and >80kg) and sampling time are recorded. For the current

analysis, only data from January 2005 to July 2006 were considered.

Survey on Biosecurity

A postal survey on biosecurity in Belgian pig herds (both professional and non-professional)

has been conducted in 2005 by Ribbens et al (2006). The objective of the survey was to

describe the degree of measures taken in Belgian pig herds to minimize the risk of introducing

infectious agents into herds (external biosecurity measures) and of spreading an infectious
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agent within herds once it has been introduced (internal biosecurity measures). To this

end, written questionnaires were sent to a sample of 609 pig herds randomly chosen from

the Belgian herd Identification & Registration (I&R) database (Sanitel-Pigs, 2005). The

sample was stratified by province using proportional allocation. In total, 436 questionnaires

were properly filled in and returned, yielding a response rate as high as 71.6 %. It was

evaluated whether statistical differences were found between responders and non-responders

based on external information available in the I&R database. The results indicated that

the mean number of pigs in the non-responding herds was significantly lower than in the

responding herds (Ribbens et al, 2005). Of the filled in questionnaires, 332 were originating

from professional meat producing pig herds, which were considered for further analysis.

Combined Dataset

The serological and the biosecurity datasets were linked by the herd identification number.

Only data on pig herds that were included in both datasets (n = 314) were retained for

the current analysis. This resulted in 14301 observations to be retained from the serological

dataset. Of these observations, 652 observations (< 5%) were not complete and were dis-

carded. Hence, 13649 observations remain, yielding an average of 43.47 observations made

per pig herd from January 2005 to July 2006. The serological data used in the current study

are graphically represented by means of a scatter plot of animal SP-ratios by sampling time

(Figure 1). By means of illustration, the observations are marked for two herds, herd A and

B. Clearly, large differences in SP-ratios between the two herds can be observed, with, in

general, much larger SP-ratios for herd B compared to herd A.

3 Salmonella high risk animals

The number of high risk animals within a herd will be used to select the 10% high risk herds.

High risk animals are defined as pigs having a SP-ratio above a specific upper quantile. To

correct for confounding seasonal and animal age effects, quantile curves of animal SP-ratios

are estimated as a function of sampling time and animal weight (proxy for animal age). In

this section, methodological discussions on ordinary least squares regression with P-splines

and quantile regression with P-splines are given first. More elaborated discussions can be

found in Eilers and Marx (1996) and Bollaerts et al (2006). Finally, quantile regression with

P-splines is applied to estimate quantile curves of animal SP-ratios as a function of sampling
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time and animal weight.

3.1 Ordinary least squares regression using P-splines

In a target article, Eilers and Marx (1996) introduced P-splines regression within an ordinary

least squares framework. This is essentially ordinary least squares regression with an excessive

number of equally spaced B-splines (De Boor, 1978; Dierckx, 1993) and an additional discrete

penalty to correct for overfitting. In simple regression using B-splines with predictor variable

x, a basis of r overlapping B-splines is constructed, which is such that

∀x :
r∑

j=1

Bj(x, q) = 1, (3.1)

with Bj(x, q) denoting a B-spline of degree q with left most knot j. In Figure 2a, one can

see an example of a basis of B-splines of the third degree, which is the most commonly used

degree in B-splines regression. Then, the B-splines of a B-splines basis act as predictors in

spline regression. With, for m observations (xi, yi),

ŷ(α)i
=

r∑

j=1

αjBj(xi, q), i=1,. . . m, (3.2)

and with αj being the coefficient of the corresponding B-spline. The vector α is commonly

estimated using the Least Squares loss function or L2-norm:

S2 =
m∑

i=1

(yi − ŷ(α)i
)2, (3.3)

with the conditional mean function being the minimand. An example of B-splines regression

using splines of degree 3 is given in Figure 2b. However, a major problem in B-splines

regression is the choice of the optimal number of B-splines. An insufficient number of B-

splines leads to underfitting, whereas too many B-splines leads to overfitting. To regularize

smoothness, Eilers and Marx (1996) proposed to use an excessive number of equally spaced

B-splines with, in order to correct for overfitting, a smoothness penalty based on differences

of the coefficients of adjacent B-splines. They called this approach P-splines regression. The

corresponding loss function based on the L2-norm equals

S2 =
m∑

i=1

(yi − ŷ(α)i
)2 + λ

r∑

j=d+1

(4dαj)2, (3.4)

with4dαj being the dth order differences, that is4dαj = 41(4d−1αj) with41αj = αj−αj−1

and with λ being a smoothness parameter. Mostly, a penalty on second order differences is
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Figure 2: Spline regression with B-splines of third degree.

used. Smoothness can be controlled for by means of λ. When λ is small, the smoothness

penalty weakly influences the fit and the fit is mainly governed by closeness to the observed

data. On the contrary, when λ is large, the smoothness penalty highly influences the fit and

the fit might be too coarse. In general, if λ → inf, then, for a regression with a smoothness

penalty on dth order differences, the fitted function will approach a polynomial of degree d−1.

In order to optimally select λ, Aikaike’s Information criterion (AIC), K-fold cross-validation

or generalized cross-validation can be used (Eilers & Marx, 1996).

3.2 Quantile regression using P-splines

Koenker and Bassett (1978) introduced quantile regression as an alternative to ordinary

least squares regression. Recently, an extended monograph on quantile regression appeared

(Koenker, 2005). In quantile regression, α is estimated by minimizing the asymmetric least

absolute deviations loss function or asymmetric L1-norm:

S1 = θ
∑

yi≥by(α)i

|yi − ŷ(α)i
|+ (1− θ)

∑

yi<by(α)i

|yi − ŷ(α)i
|. (3.5)

Clearly, positive values are weighted with a factor θ, whereas (strictly) negative values are

weighted with a factor 1−θ, yielding the θ×100% conditional quantile curve. An alternative

formulation of the L1-norm is

S1 =
m∑

i=1

ρθ(yi − ŷ(α)i
), (3.6)
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where ρθ is called the ’check function’, which is defined as

ρθ(τ) =





θτ if τ ≥ 0

(θ − 1)τ otherwise.

Then, in order to fit conditional quantile functions using P-splines, the asymmetric least

absolute deviations loss function given in (3.6) is extended as

S1 =
m∑

i=1

ρθ(yi − ŷ(α)i
) + λ

r∑

j=d+1

|4dαj |, (3.7)

where ŷ(α)i
is defined as in (3.2), where 4dαj are the dth order differences and where λ

is a smoothness parameter, which can be chosen optimally by, e.g. K-fold cross-validation

(Bollaerts et al, 2006).

Solving an L1 regression problem relies on reformulating the corresponding loss function

as a linear programming problem, which can be solved using a different types of algorithms

(Vanderbei, 2001). For the current application, we adopt the approach proposed by Portnoy

and Koenker (1997). They proposed, as an alternative to simplex based methods, interior

point optimization in combination with statistical preprocessing for L1-type of problems. The

latter approach has the advantage over simplex based methods of being computationally less

demanding, especially in large data sets. Matlab code to solve L1-type of problems using

Portnoy and Koenker’s approach as well as quantile regression sofware in R can be found on

Koenker’s home-page at the University of Illinois (http://www.econ.uiuc.edu/∼roger).

3.3 Quantile curves of SP-ratios

In order to identify high risk animals, θ × 100% quantile curves of animal SP-ratios are

estimated while accounting for confounding seasonal and animal age effects. In particular,

the following semi-parametric model is used for each pig i of herd k measured at time j

ŜP θ.ijk = h(time)ijk + I (weight)ijk, i = 1,. . . , njk; j = 1,. . . , rk; k = 1,. . . , 314, (3.8)

with h(.) being a smooth P-splines function and I being an indicator matrix. As such,

seasonal effects are modelled in a very flexible way whereas the effect of age (using animal
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weight as proxy variable) is assumed to be additive. High risk animals are defined as pigs for

which the observed SP-ratio is higher than the corresponding θ × 100% quantile or

Zijk =





1, SPijk > ŜP θ.ijk

0, SPijk ≤ ŜP θ.ijk.

(3.9)

A conservative choice is made by selecting upper quantiles for θ. In particular, the conditional

quantile functions θ = 0.85, θ = 0.90 and θ = 0.95 are investigated. All these quantile

functions are estimated by means of P-splines regression. Since the rationale behind P-splines

regression is to use an excessive number of B-splines in combination with a smoothness penalty

which ’automatically’ corrects for overfitting, we opt to use a basis of as much as 25 B-splines.

The degree of B-splines is chosen to be d = 3 being the most common used degree d because of

its good trade-off between model flexibility, model smoothness and complexity. The optimal

value for the smoothness parameter λ is determined using K-fold cross-validation, with each

subsample containing data from one specific herd (K = 314). The candidate values λ are

chosen from an approximately geometric grid. The variability of the estimated quantile

functions fθ(α̂,X ) is assessed using residual bootstrap. To maximally reflect the structure

of the data, residuals are resampled within each combination of herd and sampling time. Let

F̂njk
(u) denote the empirical distribution of the residuals corresponding to the measurements

taken at time j for herd k with j = 1, ..., rk and k = 1, ..., 314. In particular, the residuals are

defined as uijk = yijk− ŷijk with ŷijk being derived from the model given in (3.8) for θ = 0.50.

Of course, other values θ could be chosen as well to generate bootstrap samples that reflect the

structure of the data. However, the median θ = 0.50 has the best robustness properties, that

is the highest break-down point, amongst all other quantiles θ. Then, for each combination

jk, a subsample y∗jk = [y∗1jk; ...; ynjkjk∗ ] is generated by drawing residuals u∗1, ..., u
∗
njk

with

replacement from F̂njk
(u) and setting y∗ijk = ŷijk + u∗i . The different subsamples y∗jk are

combined in y∗ to generate one bootstrap sample. Then, for each bootstrap sample y∗

the model fθ is fitted or ŷ∗ = f∗θ (α̂,X ). This process is repeated B = 1000 times, yielding

B = 1000 different bootstrap estimates of α. In order to estimate the 100(1−2α)% pointwise

confidence interval for fθ(α̂,X ), percentile intervals are calculated conditional on X . The

latter are defined as [f∗θ (α̂,X )[(B+1)α]; f∗θ (α̂,X )[(B+1)(1−α)]] with f∗θ (α̂,X )[(B+1)α] being the

[(B + 1)α]th order statistic of f∗θ (α̂,X ).

The results of the K-fold cross-validation are shown in Table 1, with optimal values λ0.50 =
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Table 1 Optimal values for smoothness parameter λ based on K-fold Cross-Validation.

λ 0.1 1 5 10 50 100 500 1000 10000

θ = 0.50 7.4282 7.4212 7.4196 7.4199 7,4169 7.4155 7.4118 7.4161 7.4134

θ = 0.85 8.4026 8.3877 9.3238 8.2904 8.2697 8.2537 8.2390 8.2644 8.2517

θ = 0.90 7.1557 7.0725 7.0488 7.0192 6.9863 6.9970 6.9717 6.9931 7.0024

θ = 0.95 4.4660 4.4418 4.4322 4.4167 4.3963 4.3757 4.3832 4.390 4.3870

λ0.85 = λ0.90 = 500 and λ0.95 = 100. A graphical representation of the fitted conditional

quantile curves θ = 0.85, θ = 0.90 and θ = 0.95 are given in Figure 3. The left most

figures display the conditional quantile functions together with a scatter plot of the data.

The right most figures display the 95% residual bootstrap confidence intervals. For reasons

of comparison, in each figure, the conditional median functions are displayed as well. As can

be seen, strong seasonal effects are observed for the upper quantiles θ = 0.85, θ = 0.90 and

θ = 0.95 with higher expected values of SP-ratios during the summer months. Furthermore,

weight effects can be observed as well with, in general, the higher animal weight, the higher

the conditional quantile curve. For θ = 0.50, the 95% bootstrap confidence intervals of

the quantile curves for the four different weight categories are nicely separated. However,

this is not the case for the upper quantile functions with the quantile curves of the weight

categories 40− 59kg and 60− 79kg being virtually identical. As a consequence, these weight

categories are merged for further analysis of the upper quantiles. Furthermore, the 95%

bootstrap confidence intervals of the quantile curves for the different weight categories are

overlapping. For θ = 0.85, the overlap is small whereas the overlap is much larger for

θ = 0.90 and θ = 0.95. Finally, as indicated by the width of the confidence intervals, there

is most variability in estimating the quantile curves θ = 0.90 and θ = 0.95, less variability in

estimating the quantile curves θ = 0.85 and little variability in estimating the median curves.

This is as expected since it generally holds that the more extreme the quantile curve, the

larger the variability in estimating the curve.
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(a) θ = 0.85
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(b) θ = 0.85
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(c) θ = 0.90
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(d) θ = 0.90
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(e) θ = 0.95
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(f) θ = 0.95

Figure 3: Estimated quantile curves θ = 0.85, θ = 0.90 and θ = 0.95 = of animal SP-ratios

conditional on sampling time and animal weight + 95% confidence intervals. The results for

θ = 0.50 are given by means of comparison.
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4 Salmonella high risk herds

To identify the 10% high risk herds, the proportion of high risk animals Pk is calculated for

each herd k or

Pk =
1
nk

rk∑

j=1

njk∑

i=1

Zijk (4.1)

with nk =
∑rk

j=1 njk and with Zijk being defined as in (3.9). Then, using the beta-binomial

distribution as a natural choice for correlated binary data, it follows that, under the null

hypothesis that the Salmonella infection burden is equal in all pig herds, the number of high

risk animals Yk in herd k is beta-binomially distributed as

Yk ∼ BB(nk, 1− θ, ρ)

with nk being the total number of sampled pigs in herd k, with 1− θ the probability of being

a high risk animal and with ρ being the intra-herd correlation. The p-value corresponding to

the alternative hypothesis that Salmonella infection burden is higher in herd k compared to

the other herds is then equal to

pk = P{Yk ≥ yk|Yk ∼ BB(nk, 1− θ, ρ)}.

These p-values can then be used to select the 10% high risk herds, which are then the herds

with the lowest p-values or

Rk =





1, pk ≤ δ

0, pk > δ

(4.2)

with δ being the 0.10× 100% quantile of p-values.

We will focus discussion on θ = 0.90 meaning that high risk animals are defined as pigs

for which an SP-ratio above the 90% quantile is observed. Then, under the null hypothesis

that the Salmonella infection burden is equal in all pig herds, the number of high risk animals

Yk in herd k is beta-binomially distributed as

Yk ∼ BB(nk, 0.10, ρ).

An additional complication is that it is not clear how the intra-herd correlation ρ can be

estimated under the null hypothesis. The latter is done by fitting a beta-binomial distribution

with fixed π = 0.10 to data from herds for which the null hypothesis is most likely to hold.

These are herds having a proportion of high risk animals close to the expected proportion
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Figure 4: Proportion risk animals per herd and corresponding beta-binomial p-values.

under the null hypothesis, E(Yk/nk) = E(Pk) = 0.10. We decided to use the data from the

84 herds with 0.05 ≤ Pk ≤ 0.15. Fitting a beta-binomial with fixed π = 0.10 to the selected

data yields ρ̂ = 0.00037 (so essentially uncorrelated).

Then, for each herd, the beta-binomial p-values are calculated with fixed π = 0.10 and ρ̂ =

0.00037, which are graphically displayed in Figure 4 together with the observed proportions

of high risk animals. In this figure, herds are ordered along the X-axis following increasing

proportion of high risk animals with the ’circles’ representing the proportions and the ’squares’

the p-values. Clearly, large differences in proportion high risk animals between herds exist

with a large number of herds having a proportion high risk animals of zero whereas for one

herd, the proportion is equal to one. However, proportions are misleading since they do not

take the number of observations nk (that is, the total number of sampled pigs) into account.

Therefore, it is better to look at the beta-binomial p-values. Again, large differences between

herds can be observed with the percentage of herds for which pk < δ = 0.001 being equal

to 11.8%. Selection of exactly 10% herds with the lowest p-values corresponds to selecting

herds with pk < δ = 0.0005.

In the above mentioned analysis, θ = 0.90 is used to identify high risk animals. Of

course, other upper conditional quantile curves could be considered as well. To investigate

the effect of the choice of θ on the selection of the 10% high risk herds, a small sensitivity

analysis is conducted comparing the results for θ = 0.85, θ = 0.90 and θ = 0.95. For each of
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these values of θ, the corresponding beta-binomial p-values are calculated with the intra-herd

correlation as estimated before. Selection of the 10% pig herds having the lowest p-values

for θ = 0.85, θ = 0.90 and θ = 0.95 corresponds to selecting herds having p-values smaller

than δ.85 = 0.00007, δ.90 = 0.0005 and δ.95 = 0.0193, respectively. It is investigated whether

the same herds are identified as high risk herds using the different choices of upper quantiles

θ. By means of comparison, average SP-ratios are also used to identify high risk herds. The

results are summarized in Table 2. In total, 85.67% (resp. 5.41%) of the herds are selected

as low risk herds (resp. high risk herds) by all four methods, yielding an overall agreement of

91.08%. If we restrict attention to the selection criteria based on quantile regression, we see

that the results are similar for θ = 85 and θ = 90 whereas the results for θ = 0.95 are more

different. Out of the 22 herds for which there is no overall agreement for the three methods

under consideration, 7 (31.82%) herds are identified as high risk herds using both θ = 85 and

θ = 90 but not using θ = 95 and for 9 (40.91%) herds the inverse is true. This indicates

that, as one might expect, the choice of θ = 0.95 is too extreme, in some way also indicated

by the large threshold value δ.95. If we compare the identified high risk herds using average

SP-ratios with the ones identified using quantile regression with θ = 0.85 and θ = 0.90, we

also see differences. Out of the 17 herds for which there is no overall agreement for the three

methods under consideration, 6 (35.29%) herds are identified as high risk herds using both

θ = 85 and θ = 90 but not using average SP-ratios and for 5 (29.41%) herds the inverse is

true.

5 Risk factor analysis

So far, we discussed the selection of the 10% high risk herds. However, especially since high

risk herds are encouraged to implement control measures, it is important to know which

factors affect the probability of being a high risk herd. Therefore, a risk factor analysis is

conducted using logistic regression with

Rk ∼ Bernouilli(πk)

log
(

πk

1− πk

)
= Xkβ (5.1)

where Rk is as defined in (4.2), X is a (n× p)-dimensional matrix of known risk factors and

β is a (p× 1)-dimensional vector of regression parameters. In total, 20 potential risk factors
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Table 2 Herds identified as high risk herds using average SP-ratio and quantile regression

with θ = 85, θ = 80 and θ = 95 (0 indicates that the herd is not identified, 1 otherwise).

SP θ = 85 θ = 90 θ = 95 frequency percentage

0 0 0 0 269 85.67

0 0 0 1 6 1.91

0 0 1 0 1 0.32

0 1 0 0 1 0.32

0 1 1 0 2 0.64

0 1 1 1 4 1.27

1 0 0 0 2 0.64

1 0 0 1 3 0.96

1 0 1 0 2 0.64

1 1 0 0 1 0.32

1 1 0 1 1 0.32

1 1 1 0 5 1.59

1 1 1 1 17 5.41

tot. 31 31 31 31 314 100
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X are investigated. A list of these risk factors together with a brief description is given in

the Appendix. For more detailed information, the reader is referred to Ribbens et al (2006).

Notice the analogy of the current application with case-control studies. In case-control

studies, the marginal distribution of the response variable of interest Y is fixed by design

as in the current application. Here, the marginal probability of being a high risk herd

P (Y = 1) is a priori determined to be 0.10. As such, it is impossible to estimate the

conditional probability P (Y = y|X = x), although being of primary interest. However,

the inverse conditional probability P (X = x|Y = y) can be estimated as well as the odds

ratio. The latter follows since the odds ratio is symmetric and invariant to the selection

of X or Y as response variable. This also means that, as opposed to other binary response

models, a logistic regression model is adequate for case-control studies since its exponentiated

parameters exp(β) are to be interpreted as odds ratios.

From the sensitivity analysis described in the previous section, it was concluded that

θ = 0.85 and θ = 0.90 are equally good choices to define high risk animals. For both choices

of θ, a risk factor analysis is conducted yielding the same single significant risk factor, namely

nose contact. For θ = 0.85 (θ = 0.90), the odds of being a risk herd is estimated to be 5.39

(3.40) times larger when pigs of different pens can have nose contact as compared to when

they can not have nose contact. The corresponding 95% confidence intervals are [1.26; 23.14]

and [1.009; 11.54] for θ = 0.85 and θ = 0.90, respectively.

The identification of the 10% herds with the highest Salmonella infection burden is not

necessarily compatible with an optimal risk factor analysis. Indeed, there might be herds just

above and below the artificial 10% level, with essentially the same values for the risk factors,

and therefore obscuring the identification of discriminating risk factors. As an alternative to

the approach taken above, one can also conduct a risk factor analysis with the number of high

risk animals in a herd being the response variable of interest. However, pigs are clustered

within herds, which should be accounted for in the analysis. Different types of models that

take clustering into account exist and can be grouped in conditional, marginal and cluster-

specific models (Verbeke & Molenberghs, 2000; Molenberghs & Verbeke, 2005). The latter

approach is adopted. In particular, logistic mixed models are used with herd-specific random

intercepts. This model has an interpretation conditional on the random effects and its model
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formulation equals

Yk|uk ∼ Binomial(nk, π)

log
(

π

1− π

)
= Xβ + uk (5.2)

with Yk being the number of high risk herds in herd k and with nk being the total number

of sampled pigs. Again, X is a (n × p)-dimensional matrix of known risk factors and β is a

(p × 1)-dimensional vector of regression parameters, also called fixed effects common to all

subjects. The random intercepts uk reflect the between-herds heterogeneity in the population

with respect to Y . In addition, it is assumed that the random intercepts are sampled from a

normal distribution with mean 0 and variance σ2. The same 20 potential risk factors X are

investigated (Ribbens et al, 2006).

For both θ = 0.85 and θ = 0.90, we start building the model with inclusion of a measure-

ment of herd size since herd size is considered to be an important Salmonella risk factor with,

in general, the larger herd size, the higher the infection pressure implying higher Salmonella

infection burden. However, measuring herd size is not straightforward. Merely counting all

pigs, including piglets before weaning age, will overestimate herd size. Not counting piglets

will underestimate herd size and piglets herds will even have a nonsensical herd size of zero.

Therefore, two variables are added to the null model containing only intercepts in order to

properly reflect herd size, namely (a) the total number of pigs including piglets (N) and (b)

a binary variable indicating the presence or absence of piglets (PIGLETS = 1 if piglets are

present and 0 otherwise). Then, forward selection is used to investigate the other potential

risk factors. All main effects as well as second-order interactions are considered for inclusion.

Aikaike’s Information Criterion (AIC) is used to decide upon model selection.

The final models are summarized in Table 2. The effect of herd size (N and PIGLETS)

is as expected. First, the predicted number of high risk animals increases with the total

number of pigs N. Second, the overestimation of herd size due to counting piglets is properly

corrected with the predicted number of high risk animals being lower if piglets are present.

For θ = 0.85, the model contains three binary variables in addition to herd size. These are

systematic insect control (INSECT), nose contact between pigs of different pens (NOSE)

and systematic rodent control (RODENT). For θ = 0.90, the additional binary variables are

systematic insect control (INSECT), nose contact between pigs of different pens (NOSE) and

regularly cleaning the stables (CLEANING). For both choices of θ, systematic insect control

is a remedial measure whereas nose contact between pigs of different pens is found to be a
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Table 2 Summary of final logistic mixed models for θ = 0.85 and θ = 0.90.

θ = 0.85 θ = 0.90

Odds Ratio est. 95% CI p-value est. 95% CI p-value

N 1.0002 [1;1.0004] 0.027 1.0002 [1;1.0004] 0.026

PIGLETS 0.66 [0.42;1.020] 0.061 0.58 [0.35;0.96] 0.033

INSECT 0.39 [0.25;0.62] <0.0001 0.46 [0.28;0.74] 0.0018

NOSE 1.73 [1.067;2.81] 0.026 1.98 [1.14;3.45] 0.016

RODENT 3.12 [1.39;7.014] 0.006

CLEANING 0.3382 [0.13;0.89] 0.028

σ2(uk) 2.34 [1.82;2.87] 0.005 2.79 [2.10;3.48] 0.005

risk factor. For θ = 0.85, systematic rodent control is also found to be a risk factor. This

sounds contra-intuitive since rodent control is expected to decrease the Salmonella infection

burden. However, it might be that measures to control rodents are only taken whenever

problems with rodents occur. Furthermore, regularly cleaning the stables is found to be a

remedial measure for θ = 0.90. Finally, note that the estimates of the variance of the random

intercepts σ2(uk) are significant as well indicating substantial between-herd heterogeneity.



21

6 Concluding remarks

In the current study, an alternative method is proposed to identify pig herds with high

Salmonella infection burden based on serological data reported as SP-ratios. To deal with

confounding effects and issues of skewness, semi-parametric quantile regression with P-splines

is used. In particular, quantile curves of animal SP-ratios are estimated as a function of

sampling time and animal age. Then, pigs are classified into low and high risk animals with

high risk animals having an SP-ratio larger then the corresponding estimated upper quantile

θ. Finally, for each herd, the number of high risk animals is calculated as well as the beta-

binomial p-value reflecting the hypothesis that the Salmonella infection burden is higher in

that herd compared to the other herds with the lower the p-value the higher the infection

burden. As such, herds with high Salmonella infection burden can be identified within a

proper inferential framework.

In addition, since these herds are encouraged to implement control measures, a risk factor

analysis is conducted as well indicating that nose contact between pigs of different pens is the

most persistent Salmonella risk factor. Although the obtained response rate of the biosecurity

survey (Ribbens et al, 2005) of 71.6% is reasonably high (Thrusfield, 2005), potential bias

might result due to non-response. Analysis based on external data indicate that the non-

response herds are most likely to be small herds (Ribbens et al, 2005). Although we did not

find any indication that the relationship between potential risk factors and the Salmonella

infection burden would be different in small herds compared to large herds (no significant

interactions found between herd size and other risk factors in the risk factor analyses described

in Section 5), the possibility of bias can not be ruled out. A cautious practice would be to

generalize the findings to large herds only and avoid generalization to the whole population

of pig herds. Also from a pragmatic point of view, this would be sensible since the FASFC

Salmonella surveillance programme is restricted to professional herds only having at least 31

pigs.

The approach we presented models seasonal effects on quantile curves of animal SP-ratios

using P-splines (Eilers & Marx, 1996, Bollaerts et al, 2006). This smoothing method estimates

quantile curves in a flexible way, allowing the estimation of sudden changes and varying sea-

sonal trends. Of course, other quantile smoothing methods could be considered as well, most

of which fit within the locally polynomial or splines framework. Locally polynomial quantile

regression is explored and applied by, amongst others, Chaudhuri (1991) and Welsh (1996).
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Koenker et al (1994) introduce quantile smoothing splines, where the smoothing penalty is

a function of the first or higher order derivative of the fitted function. In the P-splines ap-

proach we adopted, the smoothness penalty is based upon finite differences of the coefficients

of adjacent B-splines. The latter approach has the advantage of being computationally less

demanding and easier to implement.

Finally, the longitudinal aspect of the data has not been investigated as such in the

current study. It would be interesting as well to investigate the dynamics of animal SP-ratios

within herds over time. This way, increasing or decreasing trends of the Salmonella infection

burden within herds could be detected and as such, the impact of the implementation of

control measures could be evaluated. However, analyzing longitudinal data poses important

new challenges for quantile regression and proper statistical methods need to be developed

further (Koenker, 2005).
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Appendix

Description of risk factors investigated in the study.

1. N = total number of pigs in the herd, including boars, sows, gilts, finishers and piglets.

2. piglets* = piglets are kept in the herd.

3. cleaning stables* = finishing stables are cleaned more than three times a year.

4. insect control* = systematic measures are taken to control insects.

5. nose contact* = finishing pigs from different pens can have nose contact.

6. disinfection baths* = use of disinfection baths at the entrance of the location.

7. hygiene entry* = facility where visitors put on herd clothing.

8. quarantine* = use of a quarantine period for animals entering the herd.

9. number of transports = number of trucks entering the herd per month

10. acid* = use of acidified feed and/or drinking water.

11. disinfect transport* = livestock trucks have been disinfected before they may enter

the herd

12. dogs and cat enter* = pet animals can enter the stables.

13. moving pigs*= finishing pigs are moved during finishing period

14. empty period* = pens stay empty for a certain time period between different rounds.

15. purchase = introduction of piglets to the herd

16. birds enter* = birds do have access to the stables.

17. rodent control* = systematic measures are taken to control rodents.

18. exclusively pigs* = besides pigs, no other animal species are commercially kept on

the herd.

19. pigs go outside* = pigs are allowed to go outside/ ’free range’ husbandry.

20. separated material* = use of separated material between different pens.

21. grid floor = % grid floor in stables

* binary variable with 0 = no and 1 = yes


