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Abstract: When data are incomplete, models are often catalogued according to one of the three mod-
elling frameworks to which they belong: selection models (SeM), pattern-mixture models (PMM) and
shared-parameter models (SPM). The missing data mechanism is conventionally classified as missing
completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR).
Under MCAR, measurement and missingness mechanism are independent, but that is not the case for
MAR. The definition of MAR is in SeM terms. Molenberghs et al. (1998) provided a characterization
for PMM. Here, MAR is characterized in the SPM framework, using an extended SPM class. A sub-
family, satisfying the MAR condition, is studied in detail. Particular implications for non-monotone
missingness as well as for longitudinal data subject to dropout are studied. It is indicated how SPM
can be constrained such that dropout at a given point in time can depend on current and past, but not
on future measurements. Although, a natural requirement, it is less easily imposed in the PMM and
SPM frameworks than in the SeM case. Some of the models proposed are illustrated using a clinical
trial in toenail dermatophyte onychomycosis.

Key words: available-case missing value restrictions; ignorability; missing at random counterpart;
missing completely at random; missing non-future-dependent restrictions; non-future dependence;
pattern-mixture model; selection model
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1 Introduction

Incomplete sets of data are common throughout all branches of empirical research.
Incomplete data have always posed problems of imbalance in the data matrix, but
more importantly incompleteness often destroys a trial’s randomization justification
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or a survey’s representativeness. The extent to which this happens depends on the
nature of the missing data mechanism. Rubin (1976) provided a formal framework
for the field of incomplete data by introducing the important taxonomy of missing
data mechanisms, consisting of missing completely at random (MCAR) missing at
random (MAR) and missing not at random (MNAR). An MCAR mechanism poten-
tially depends on observed covariates, but neither on observed nor on unobserved
outcomes. An MAR mechanism depends on the observed outcomes and perhaps
also on the covariates, but not further on unobserved measurements. Finally, when
an MNAR mechanism is operating, missingness does depend on unobserved mea-
surements, maybe in addition to dependencies on covariates and/or on observed
outcomes.

During the same era, the selection model (SeM), pattern-mixture model (PMM)
and shared-parameter model (SPM) frameworks have been established. In an SeM,
the joint distribution of the ith subject’s outcomes, denoted by Y i , and vector of
missingness indicators, written as Ri , is factored as the marginal outcome distribution
and the conditional distribution of Ri given Y i . A pattern-mixture approach starts
from the reverse factorization. In an SPM, a set of latent variables, latent classes
and/or random effects is assumed to drive both the Y i and Ri processes. An important
version of such a model further asserts that, conditional on the latent variables, Y i
and Ri exhibit no further dependence. Rubin (1976) contributed the concept of
ignorability, stating that under precise conditions, the missing data mechanism can
be ignored when interest lies in inferences about the measurement process. Combined
with regularity conditions, ignorability applies to MCAR and MAR combined, when
likelihood or Bayesian inference routes are chosen, but the stricter MCAR condition
is required for frequentist inferences to be generally valid. These conditions are
sufficient, not necessary. All these concepts will be formalized in Section 2 and
amplified with the need arising in subsequent sections.

The concept of MAR has typically been framed within the SeM framework,
while Molenberghs et al. (1998) provided a formulation in the PMM setting as well.
For the particular case of longitudinal data with dropout, these authors derived
a set of so-called identifying restrictions, to identify the model for the missing
measurements given the observed ones within a missing-data pattern, consistent
with MAR. Molenberghs et al. (2007) showed that for every MNAR model, there
is an MAR counterpart that produces exactly the same fit to the observed data.
Hence, the original model and its MAR counterpart cannot be distinguished from
one another. This can be viewed as a formalization of the ideas put
forward in Jansen et al. (2006). These authors focused on the SeM and PMM
frameworks.

In this paper, we will characterize MAR in the SPM framework as well and a
connection will be made with the MAR counterpart in the sense of Molenberghs
et al. (2007). To this end, a broad class of SPM will be defined. Implications for
both non-monotone missing data as well as longitudinal data with dropout will be
considered. In particular, in analogy with the PMM work by Kenward et al. (2003),
conditions will be derived to ensure future; unobserved measurements provide no
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information about dropout in addition to what is available from current and past
measurements.

Our results are conceptual in nature, in the sense that we take no position as to
whether either it is natural, for a particular application, to assume that missingness
is MAR, or it does not depend on future observations. Rather, we ensure that the
modeller is able to consider such mechanisms within the SPM framework, in analogy
with the SEM and PMM frameworks. That said, in many situations, one would want
to avoid missingness to further depend on future observations, given past ones.

The remainder of the paper is organized as follows. Notation and formal concepts,
used throughout the paper, are detailed in Section 2. The background results regard-
ing MAR counterparts to MNAR models, necessary in what follows, are reviewed
in Section 3. Section 4 defines a general class of SPM, within which MAR is then
characterized. A particularly appealing set of MAR-type SPM, satisfying the charac-
terization, is presented. It is also shown that there exist models of the SPM type that
do not belong to this particular family. Implications for non-monotone missingness
and longitudinal data with dropout, where time ordering is important, are the sub-
ject of Sections 5 and 6, respectively. A set of clinical trial data, is introduced and
analysed in Section 7.

2 Notation and concepts

Let the random variable Yi j denote the response of interest, for the ith study subject,
designed to be measured at occasions ti j , i = 1, . . . , N, j = 1, . . . , ni . Independence
across subjects is assumed. This setting covers both the longitudinal as well as the
multivariate settings. In the latter case, ti j = tj would merely be indicators for the
various variables studied, and typically ni ≡ n. The outcomes can conveniently be
grouped into a vector Y i = (Yi1, . . . , Yini )

′. In addition, define a vector of missingness
indicators Ri = (Ri1, . . . , Rini )

′ with Ri j = 0 if Yi j is observed and 1 otherwise. In the
specific case of dropout, Ri can usefully be replaced by the dropout indicator

Di =
ni∑
j=1

(1 − Ri j ).

Note that the concept of dropout refers to time-ordered variables, such as in lon-
gitudinal studies. For a complete sequence, Ri = 0 and/or Di = ni . It is customary
to split the vector Y i into observed (Yo

i ) and missing (Ym
i ) components, respectively.

When Ri is conditioned up, Yo
i and Ym

i explicitly refer to the observed and missing
components. In the reverse case, they refer to an arbitrary partition of the outcome
vector.

In principle, one would like to consider the density of the full data f (yi , r i |θ , ψ),
where the parameter vectors θ and ψ describe the measurement and missingness
processes, respectively. Covariates are assumed to be measured and grouped in a
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vector xi but, throughout, are suppressed from notation. Although unusual, it is in
principle possible for θ and ψ to have components in common.

This full density function can be factored in different ways, each leading to a
different framework. They were mentioned briefly in Section 1. Here, we will present
them more formally but in their standard form of appearance. In subsequent sections,
they will be tailored to our needs, in particular the SPM.

The SeM framework is based on the following factorization (Rubin, 1976; Little
and Rubin, 2002):

f (yi , r i |θ , ψ) = f (yi |θ ) f (r i |yi , ψ). (2.1)

The first factor is the marginal density of the measurement process and the second
one is the density of the missingness process, conditional on the outcomes. As an
alternative, one can consider so-called PMM (Little, 1993, 1994) using the reversed
factorization

f (yi , r i |θ , ψ) = f (yi |r i , θ ) f (r i |ψ). (2.2)

This can be seen as a mixture density over different populations, each of which is
defined by the observed pattern of missingness.

Instead of using the selection modelling or pattern-mixture modelling frameworks,
the measurement and the dropout process can be jointly modelled using an SPM (Wu
and Bailey, 1988, 1989; Wu and Carroll, 1988; Follmann and Wu, 1995; Little,
1995; TenHave et al., 1998). One then might assume that there exists a vector of
random effects bi , conditional upon which the measurement and dropout processes
are independent. This SPM is formulated by way of the following factorization:

f (yi , r i |bi , θ , ψ) = f (yi |bi , θ ) f (r i |bi , ψ), (2.3)

and hence

f (yi , r i |θ , ψ) =
∫

f (yi |bi , θ ) f (r i |bi , ψ) f (bi ) dbi . (2.4)

Here, bi are shared parameters, often considered to be random effects and following
a specific parametric distribution. There are various other forms an SPM can take,
and a more thorough discussion can be found in Section 4.

3 Every MNAR model has an MAR counterpart

In this section, based on the argument of Molenberghs et al. (2007), we restate that
for every MNAR model fitted to a set of data, there is a unique MAR counterpart
providing exactly the same fit to the data. We will sketch these results in view of their
transposition in what follows to the general SPM case. Here, the concept of model
fit should be understood as measured using such conventional methods as deviance
measures and, of course, in as far as the observed data are concerned. The following
steps are involved: (i) fitting an MNAR model to the data; (ii) reformulating the fitted
model in PMM form; (iii) replacing the density or distribution of the unobserved
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measurements given the observed ones and given a particular response pattern by
its MAR counterpart and (iv) establishing that such an MAR counterpart uniquely
exists.

In the first step, fit an MNAR model to the observed data, with likelihood

L =
∏

i

∫
f (yi

o, yi
m, r i |θ , ψ)dyi

m. (3.1)

Using hats for estimated parameters, express the full density in PMM form

f (yi
o, yi

m|r i , θ̂ , ψ̂) f (r i |θ̂ , ψ̂) = f (yi
o|r i , θ̂ , ψ̂) f (r i |θ̂ , ψ̂) f (yi

m|yi
o, r i , θ̂ , ψ̂). (3.2)

A similar reformulation can be considered for an SPM, as will be shown in the
next section. Molenberghs et al. (2007) formally show that the fit does not change
after such a substitution, which led them to state that every fit to the observed
data, obtained from fitting an MNAR model to a set of incomplete data, is exactly
reproducible from an MAR decomposition. The key computational consequence
is the need to determine h(yi

m|yi
o). This means that, for each pattern, the condi-

tional density of the unobserved measurements given the observed ones needs to
be extracted from the marginal distribution of the complete set of measurements.
Molenberghs et al. (1998) have shown that, for the case of dropout, the so-called
available-case missing value restrictions (ACMV) provide a practical computational
scheme. Molenberghs et al. (2007) discuss computational schemes and provide a
number of illustrations, with particular emphasis on contingency tables subject to
both monotone and non-monotone missingness.

When applying these ideas, computational issues will arise. There are various
options available. For example, in a pattern-mixture context, some authors have
made use of multiple imputation. The same could be envisaged for SPM. Admittedly,
there are alternatives, however, and the choice among this will often be a pragmatic
one.

4 SPM and missingness at random

SPMs are closely linked to the joint modelling of longitudinal and time-to-event data,
a class of models considered for at least three reasons. First, a time-to-event outcome
may be measured in terms of a longitudinal covariate. Such a joint model then allows,
in a natural way, for incorporation of measurement error present in the longitudinal
covariate into the model. Second, a number of researchers have used joint modelling
methods to exploit longitudinal markers as surrogates for survival (Tsiatis et al.,
1995; Henderson et al., 2000; Xu and Zeger, 2001a; Renard et al., 2002).

Third, and of most relevance here, such joint models can be used when incomplete
longitudinal data are collected. Important early references to such models are Wu and
Carroll (1988), Wu and Bailey (1988), and Wu and Bailey (1989). Wu and Bailey
(1988) proposed such a model for what they termed informative right censoring.
For a continuous response, Wu and Carroll (1988) suggested using a conventional

Statistical Modelling 2011; 11(4): 279–310

NOT FOR C
OMMERCIA

L U
SE



July 29, 2011 18:6 01-SMJ-11-4

284 An Creemers et al.

Gaussian random-coefficient model combined with an appropriate model for time to
dropout, such as proportional hazards, logistic or probit regression. The combination
of probit and Gaussian responses allows explicit solution of the integral and was used
in their application.

In a slightly different approach to modelling dropout time as a continuous variable
in the latent variable setting, Schluchter (1992) and DeGruttola and Tu (1994) pro-
posed joint multivariate Gaussian distributions for the latent variables of the response
process and a variable representing time to dropout. The correlation between these
variables induces dependence between dropout and response. Rizopoulos et al.
(2008) study the impact of random-effects misspecification in an SPM. Beunckens
et al. (2007a) combine continuous random effects with latent classes, leading to the
simultaneous use of mixture and mixed-effects models ideas. It is very natural to
handle random-coefficient models, and in particular SPM, in a Bayesian framework.
Examples in the missing value setting are provided by Best et al. (1996) and Carpen-
ter et al. (2002). Further references include Pawitan and Self (1993); Taylor et al.
(1994); Faucett and Thomas (1996); Lavalley and DeGruttola (1996); Hogan and
Laird (1997, 1998); Wulfsohn and Tsiatis (1997) and Xu and Zeger (2001b).

Models of this type handle non-monotone missingness quite conveniently through
random effects. There are many ways in which such models can be extended and
generalized. Nevertheless, these models seem to defy an easy, elegant characterization
of MAR, which is the topic of what follows.

In Section 2, the commonly used definition (2.3) of an SPM is presented. However,
the preceding review makes clear that not all authors employ the same definition.
Before passing on to the definition we will employ here, it is therefore instructive to
take a more general position, also considered by Little (1995), based on augmenting
the joint density of (yi , r i ) with a vector of random effects bi :

f (yi , r i , bi |θ , ψ, ξ ), (4.1)

where ξ is now explicitly included to parametrize the random-effects distribution.
As before, covariates are allowed to be present, perhaps taking the form of different
sets that each describe one of the three components. Again, they are suppressed from
notation. Based on (4.1), one can still consider the SeM factorization

f (yi , r i , bi |θ , ψ) = f (yi |bi , θ ) f (r i |yi , bi , ψ) f (bi |ξ ) (4.2)

and, likewise, the PMM factorization

f (yi , r i , bi |θ , ψ, ξ ) = f (yi |r i , bi , θ ) f (r i |bi , ψ) f (bi |ξ ). (4.3)

The notation is the same as in Section 2, with in addition ξ parameters describing the
random-effects distribution. Little (1995) refers to such decompositions as random-
coefficient selection and pattern-mixture models, respectively. Little (2009) and Yuan
and Little (2008) present hybrid models with meaningful, identifiable parameters.
Obviously, SeM (2.1) and PMM (2.2) follow by removing the random effects from
(4.2) and (4.3), respectively, or, at least, not having them in common between the
models for Y i and Ri .
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An important simplification, leading to the already-defined SPM (2.3), arises
when Y i and Ri are assumed to be independent, given the random effects, i.e.,
when conditional independence assumptions are made. Spelling out the model in full
produces

f (yi , r i , bi |θ , ψ, ξ ) = f (yi |bi , θ ) f (r i |bi , ψ) f (bi |ξ ). (4.4)

Model (4.4) corresponds to (2.3), but now also the distribution of the random effects
has been spelled out explicitly. This model was entertained by Follmann and Wu
(1995). Note that, when bi is assumed to be discrete, a latent-class or mixture model
follows.

We are now in a position to introduce the SPM framework needed for our pur-
poses. Note that most formulations assume that a single, common set bi drives the
entire process. While holding on to the conditional independence assumption, we
will expand bi to a set of latent structures, as in the following definition.

Definition 1 (A Generalized SPM Family). A general SPM is defined as one of the
form

f (yo
i |gi , hi , j i , �i ) f (ym

i |yo
i , gi , hi , ki , mi ) f (r i |gi , j i , ki , qi ), (4.5)

where gi , hi , j i , ki , �i , mi and qi are independent random-effects vectors (vectors of
latent variables).

In (4.5), parameters have been suppressed from notation. The same shorthand
will be used in what follows, too. For convenience, write

bi = (gi , hi , j i , ki , �i , mi , qi ). (4.6)

Several remarks are in place. First, this is the most general random-effects model that
can be considered in the sense that gi is common to all three factors in (4.5), hi , j i and
ki are shared between a pair of factors and �i , mi and qi are restricted to a single factor.
Depending on the application, one may choose to either retain all random effects or
omit some. It will then be useful to have a perspective on the implications of such
simplifications, preferably also in terms of the missing data mechanism operating.
This is why we will establish conditions under which MAR operates on the one
hand, and missingness does not depend on future, unobserved measurements in a
longitudinal context on the other hand. Second, in full generality, model (4.5) may
come across as somewhat contrived. Our objective is not to postulate (4.5) as a
model of use in every possible application of SPM, but rather as the most general
SPM from which substantively appropriate models follow as sub-classes. Related to
this, it appears that (4.5) assumes two different distributions for the outcome vector,
i.e., divorcing the observed from the missing components. This is not entirely the
case because gi and hi still tie both factors together. The impact of j i , ki , �i and mi
is to modify one’s latent process in terms of missingness. In other words, the most
general model assumes that observed and missing components are governed in part
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by common processes and partly by separate processes. Third, in principle, we could
expand (4.5) with the densities of the random effects. This is generally not necessary
for our purposes, though. Fourth, the assumption of independent random-effects
vectors is not restrictive, because association is captured through the sets common to
at least two factors. Fifth, conventional SPM formulation (4.4) follows by removing
all random effects but gi .

Definition (4.5) will allow us to derive a general characterization of MAR in the
SPM framework. It is instructive to set out by deriving an elegant set of sufficient
conditions. Thereafter, necessity will be addressed. To this end, we can start from
either the SeM-based definition or the PMM characterization of MAR.

Starting from the SeM definition, and assuming that gi , hi and ki are zero, we can
show that MAR follows:

f (r i |yo
i , ym

i ) =
f (r i , yo

i , ym
i )

f (yo
i , ym

i )

=

∫
f (yo

i | j i , �i ) f (ym
i |yo

i , mi ) f (r i | j i , qi ) f (bi ) dbi∫
f (yo

i | j i , �i ) f (ym
i |yo

i , mi ) f (bi ) dbi

=

∫
f (ym

i |yo
i , mi ) dmi ·

∫
f (yo

i | j i , �i ) f (r i | j i , qi ) f (bi ) dbi∫
f (ym

i |yo
i , mi ) dmi ·

∫
f (yo

i | j i , �i ) f (bi ) dbi

=
f (yo

i , r i )
f (yo

i )
= f (r i |yo

i ),

where integration over bi is shorthand for integration over all component vectors
making up bi , listed in (4.6), or an appropriate subset thereof. Hence, a sufficient
condition for the SPM to be MAR is that the random effects driving the observed
measurements and/or the missing-data process do not influence the missing measure-
ments, given the observed ones. In other words, all information about the missing
measurements, apart from covariates, stems from the observed measurements only.
Clearly, the random effects mi are not identifiable; they are included for completeness
only.

It is instructive to study the same set of sufficient conditions from the PMM
perspective, since it will lead us, at the end of the section, to the construction of an
MAR counterpart:

f (ym
i |yo

i , r i ) =
f (yo

i , ym
i , r i )

f (yo
i , r i )

=

∫
f (yo

i | j i , �i ) f (ym
i |yo

i , mi ) f (r i | j i , qi ) f (bi ) dbi∫ ∫
f (yo

i | j i , �i ) f (ym
i |yo

i , mi ) f (r i | j i , qi ) f (bi ) dbi dym
i
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= f (ym
i |yo

i ) ·
∫

f (yo
i | j i , �i ) f (r i | j i , qi ) f (bi ) dbi∫

f (yo
i | j i , �i ) f (r i | j i , qi ) f (bi ) dbi

= f (ym
i |yo

i ),

not surprisingly leading to the same result.
These considerations at the same time define an important sub-class, establishing

the ensuing result:

Definition 2 (A Sub-class of SPM). Define a sub-class of SPM (4.5):

f (yo
i | j i , �i ) f (ym

i |yo
i , mi ) f (r i | j i , qi ), (4.7)

where j i , �i , mi and qi are independent random-effects vectors.

In other words, Definition 2 follows as a special case from Definition 1 by omitting
the random effects gi , hi and ki . The key rationale for this definition is, of course,
the following result

Theorem 1 (A Class of MAR-based SPM). The SPM (4.7) is MAR.

We have not addressed necessity thus far. To this effect, we need to derive gen-
eral expressions for MAR in the PMM case, respectively. First, for the left-hand
side:

f (ym
i |yo

i , r i )

=

∫
f (yo

i |gi , hi , j i , �i ) f (ym
i |yo

i , gi , hi , ki , mi ) f (r i |gi , j i , ki , qi ) f (bi ) dbi∫ ∫
f (yo

i |gi , hi , j i , �i ) f (ym
i |yo

i , gi , hi , ki , mi ) f (r i |gi , j i , ki , qi ) f (bi ) dbi dym
i

=

∫
f (yo

i |gi , hi , j i , �i ) f (ym
i |yo

i , gi , hi , ki , mi ) f (r i |gi , j i , ki , qi ) f (bi ) dbi∫
f (yo

i |gi , hi , j i , �i ) f (r i |gi , j i , ki , qi ) f (bi ) dbi
. (4.8)

Second, for the right-hand side, consider:

f (ym
i |yo

i )

=

∫ ∫
f (yo

i |gi , hi , j i , �i ) f (ym
i |yo

i , gi , hi , ki , mi ) f (r i |gi , j i , ki , qi ) f (bi ) dbi dr i∫ ∫ ∫
f (yo

i |gi , hi , j i , �i ) f (ym
i |yo

i , gi , hi , ki , mi ) f (r i |gi , j i , ki , qi ) f (bi ) dbi dym
i dr i

=

∫
f (yo

i |gi , hi , j i , �i ) f (ym
i |yo

i , gi , hi , ki , mi ) f (bi ) dbi∫
f (yo

i |gi , hi , j i , �i ) f (bi ) dbi
. (4.9)
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Equating (4.8) and (4.9) and, for brevity, integrating over random effects that
occur in one component only, produces the general conditions, laid out in the next
theorem.

Theorem 2 (Characterization of MAR in the Generalized Shared-parameter Family).
A member of the general SPM family (4.5) is MAR if and only if∫

f (yo
i |gi , hi , j i ) f (ym

i |yo
i , gi , hi , ki ) f (r i |gi , j i , ki ) f (bi ) dbi∫

f (yo
i |gi , j i ) f (r i |gi , j i ) f (bi ) dbi

=

∫
f (yo

i |gi , hi ) f (ym
i |yo

i , gi , hi ) f (bi ) dbi

f (yo
i )

. (4.10)

Evidently, again assuming that gi , hi and ki cancel, reduces (4.10) to a tautological
statement, showing that (4.7) satisfies Theorem 2.

There are situations where (4.10) is satisfied, without the triplet (gi , hi , ki ) vanish-
ing, but these will necessarily be more ad hoc and less intuitively appealing than those
laid out in Theorem 1. The existence of such singular solutions is not straightforward
to establish, as is clear from the following pair of examples.

Example 1 (MAR Example in Line with Definition 1). For the purpose of the exam-
ples, drop the index i from notation. Consider a bivariate outcome (Y1, Y2), where
the first one is always observed and the second component is sometimes missing.
This necessitates a scalar missing-data variable R only, leading to full-data vector
(Y1, Y2, R). Let R = 0 if the second component is missing and 1 otherwise. For R = 1,
condition (4.10) is always fulfilled, since the key component, describing the distrib-
ution of the missing observations given the observed ones, is then empty. Therefore,
we can concentrate on R = 0.

For simplicity, assume that all random effects, describing one factor only, are
absent, i.e., remove �i , mi and qi . From the four remaining random effects, retain
only j i and ki , implying that the missing-data process is connected to both response-
related factors which, in turn, are unrelated to each other. Assume furthermore that
both outcomes, Y1 and Y2, are dichotomous, and that also both random effects are
binary. This means that (4.10) can be simplified to(∑

j

π1
y1| jπ j

)
·
(∑

j,k

π1
y1| jπ

2
y2|y1kπr=0| jkπ jπk

)

=

(∑
j,k

π1
y1| jπr=0| jkπ jπk

)
·
(∑

j,k

π1
y1| jπ

2
y2|y1kπ jπk

)
, (4.11)
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where the πs are probabilities pertaining to the variables indicated by their corre-
sponding indices. It is convenient to introduce some simplifying notation, making
use of the fact that all key variables are dichotomous: set γ = π j=0, ϕ = πk=0 and
ρ jk = πr=0| jk.

Expression (4.11) needs to be considered only for (Y1, Y2) = (0, 0) and (1, 0), since
spelling out the ones for (1, 0) and (1, 1) and summing them with their counterparts
lead to tautological statements. This implies that (4.11) produces two equations, i.e.,
there are two constraints to be satisfied. For the first equation, in (Y1, Y2) = (0, 0),
choose x = π2

0|01 as the parameter to be determined. This means that (4.11) is a

linear equation in x. Clearly, setting π2
0|00 = π2

0|01 solves the equation, based on two

observations. First, a constant factor π2
y2|y1 is common to both sides of the equation

and hence cancels. Second, the remaining factors are pairwise equal: the first factor
on the left-hand side then equals the second factor on the right-hand side; the second
factor on the left-hand side equals the first factor on the right-hand side. The argument
for (Y1, Y2) = (1, 0) is entirely symmetric, and hence the unique solution implies that
k vanishes from the distribution of Y2 given Y1, in agreement with Definition 2.

Similar manipulations can be done for the cases: (i) where only gi is present and
(ii) where only hi and j i are present. In these two cases, as well as in Example 1,
a single random effect describes π2

y2|y1
. This is crucial to ensure in accordance with

Definition 1. The next example is different in that two independent random effects
will influence the probability of the second component given the first one.

Example 2 (MAR Example Violating Definition 1). Retain the setting of Example 1,
but now with the pair of random effects hi and ki present. This particular choice
leads to a different simplification of (4.10):(∑

h

π1
y1|hπh

)
·
(∑

h,k

π1
y1|hπ

2
y2|y1hkπr=0|kπhπk

)

=

(∑
h,k

π1
y1|hπr=0|kπhπk

)
·
(∑

h,k

π1
y1|hπ

2
y2|y1hkπhπk

)
. (4.12)

We will conveniently use the following notation: η = πh=0, ϕ = πk=0 and ρk = πr=0|k.
With similar logic as in Example 1, it easily follows that we only need to consider

(4.12) for (Y1, Y2) = (0, 0) and (1, 0). Concentrating on the first of these, and singling
out π2

0|011 as the parameter to identify from the others, it follows that

π2
0|011 =

ab− de
df − ac

, (4.13)
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Table 1 Bivariate binary outcome with the first component fully observed and the
second component partially missing. The missing data mechanism is MAR. The model
belongs to general SPM family (4.5), but not to the specific MAR sub-class (4.7)

Effect Failure (0) Success (1)

Random h effect η = πh=0 0.3000 1 − η = πh=1 0.7000
Random k effect ϕ = πk=0 0.4000 1 − ϕ = πk=1 0.6000

R, given k = 0 ρ0 = π0|0 0.4500 1 − ρ0 = π1|0 0.5500
R, given k = 1 ρ1 = π0|1 0.8000 1 − ρ1 = π1|1 0.2000

Y1, given h = 0 π1
0|0 0.3000 π1

1|0 0.7000
Y1, given h = 1 π1

0|1 0.2000 π1
1|1 0.8000

Y2, given Y1 = 0, h = 0 and k = 0 π2
0|000 0.1500 φ2

1|000 0.8500
Y2, given Y1 = 0, h = 0 and k = 1 π2

0|001 0.2500 π2
1|001 0.7500

Y2, given Y1 = 0, h = 1 and k = 0 π2
0|010 0.3500 π2

1|010 0.6500
Y2, given Y1 = 0, h = 1 and k = 1 π2

0|011 0.2857 π2
1|011 0.7143

Y2, given Y1 = 1, h = 0 and k = 0 π2
0|100 0.2000 π2

1|100 0.8000
Y2, given Y1 = 1, h = 0 and k = 1 π2

0|101 0.3000 π2
1|101 0.7000

Y2, given Y1 = 1, h = 1 and k = 0 π2
0|110 0.4000 π2

1|110 0.6000
Y2, given Y1 = 1, h = 1 and k = 1 π2

0|111 0.3625 π2
1|111 0.6375

with

a = π1
0|0η + π1

0|1(1 − η),

b = π1
0|0π

2
0|000ρ0ηϕ + π1

0|0π
2
0|001ρ1η(1 − ϕ) + π1

0|1π
2
0|010ρ0(1 − η)ϕ,

c = π1
0|1ρ1(1 − η)(1 − ϕ),

d = π1
0|0ρ0ηϕ + π1

0|0ρ1η(1 − ϕ) + π1
0|1ρ0(1 − η)ϕ + π1

0|1ρ1(1 − η)(1 − ϕ),

e = π1
0|0π

2
0|000ηϕ + π1

0|0π
2
0|001η(1 − ϕ) + π1

0|1π
2
0|010(1 − η)ϕ and

f = π1
0|1(1 − η)(1 − ϕ).

The derivation for (Y1, Y2) = (1, 0) is entirely similar and leads to (4.13) with the
first conditioning argument ‘1’ rather than ‘0’. A numerical example is provided in
Table 1, establishing that the random effects hi and ki do influence the distribution
of Y2, given Y1, in the dropout pattern.

Finally, the characterization of Theorem 2 allows us to construct an MAR coun-
terpart to an arbitrary SPM of the form (4.5). It is necessary to (i) retain the fit of
the model to the observed data, while (ii) ensuring that (4.10) holds. This is eas-
ily done by a posteriori integrating the shared random effects out of the densities
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describing the unobserved measurements, given the observed ones. Here, integration
takes place over the densities of gi , hi and ki , where fitted parameters are plugged
into the densities.

Theorem 3 (An MAR Counterpart to a Generalized SPM). The MAR counterpart, to
an arbitrary general SPM of the type (4.5) is found by replacing f (ym

i |yo
i , gi , hi , ki ,

mi ) with

h(ym
i |yo

i , mi ) =
∫

gi

∫
hi

∫
ki

f (ym
i |yo

i , gi , hi , ki , mi )dgi dhi dki (4.14)

First, it is clear that this marginalization is merely describing the model-based
prediction of the unobserved outcomes, given the observed ones. Hence, the choice
for h(·) does not alter the fit. Second, observe that using h(·) in (4.10), instead of
f (ym

i |yo
i , gi , hi , ki , mi ), of Theorem 2, reduces the equation to a trivial identity, and

hence the second condition is also satisfied.
For categorical random effects, such as in Examples 1 and 2, the integral in (4.14)

becomes summation.

5 Non-monotone missing data

The characterization of MAR in the SPM family, the formulation of specific family
(4.7) and the construction of an MAR counterpart to a general SPM are all inde-
pendent of the missing-data patterns that occur in a given study. Specifically, these
results apply to monotone and non-monotone patterns alike. The same is true for
earlier work on the definition of MAR in the PMM framework (Molenberghs et al.,
1998), and the MAR counterpart to a general model in the SeM and PMM families
(Molenberghs et al., 2007), both reviewed in Section 3.

Nevertheless, it is useful to realize that the purely probabilistic concept behind
MAR, as intended by Rubin (1976), is not necessarily the same as the pragmatic
view taken by the statistical modeller. Indeed, consider the simple data setting of
Examples 1 and 2. From a modeller’s perspective, MAR might usefully mean that
missingness depends on Y1 but not on Y2, whereas from a probabilistic point of view,
it merely means that Y1 and Y2 influence missingness among the completers, although
missingness is determined by Y1 only among the incomplete observations.

This apparent discrepancy is resolved by noting that the modeller voluntarily
restricts oneself to a practically meaningful sub-class of probabilistic MAR mecha-
nisms. This notwithstanding, Molenberghs et al. (2007) provide examples of MAR
mechanisms, often as so-called MAR counterparts to MNAR models, that would
hardly be considered purely on grounds of appeal to the modeller. Also, Molen-
berghs et al. (1998) provide such an example, taking the form of a 2×2 contingency
table subject to non-monotone missingness.
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In the same spirit, for SPMs, the modeller may consider an SPM of MAR type,
i.e., a model fulfilling the characterization of Theorem 2, practically unnatural. In
this respect, the sub-class of Definition 2 may or may not be deemed a practically
more appealing choice.

When measurements are collected longitudinally, then typically time is promi-
nently present in model formulation, and most model choices will be judged in the
light of their (un)desirable time-related implications. The presence of ‘time’ also pro-
vides a vehicle to make the set of measurements that influence missingness vary from
pattern to pattern, while retaining an intuitively appealing flavour. For example,
when missingness is confined to dropout, a natural restriction is to allow only past
measurements influence dropout, an MAR mechanism. Evidently, the set of past
measurements is not static, but itself a function of the time point at which dropout
occurs.

These and other proper-time-dependence considerations are the subject of the
next section.

6 Longitudinal data with dropout: non-future dependence

When measurements are taken longitudinally, it is good practice to ensure that the
implied time dependencies are logical from a substantive standpoint. For example,
in a variety of contexts, such as growth, regression functions over time may be
constrained to non-decreasing forms.

Let us turn to the nature of the missingness mechanism. Throughout the section,
assume that missingness is confined to dropout. From a SeM perspective, one often
classifies missing data mechanisms as (Diggle and Kenward, 1994): (1) independent
of outcomes; (2) dependent on previous measurements only; (3) dependent on the
current and perhaps previous measurements only; (4) fully arbitrary, i.e., where
missingness can depend on previous, current and future measurements. Evidently, (1)
is MCAR, (2) is MAR and (4) is MNAR, without restrictions. (Diggle and Kenward,
1994), e.g., did not consider (4) but restricted MNAR to mechanism (3) only. While
this is very restrictive, it is also extremely appealing since it prevents dropout at a
given point in time to depend on future measurements; these are termed as non-future
dependent in the next section.

Clearly, the concepts of the previous paragraph are very natural by virtue of
framing them in the SeM. Kenward et al. (2003) underscored that the situation is
less clear in the PMM family and then translated the mechanisms from the SeM to
the PMM framework. We will review these in Section 6.1, and then present a similar
taxonomy for the SPM in Section 6.2.

6.1 Non-future dependence in the PMM framework

Since we are restricting attention to monotone missingness, we can easily indicate a
dropout pattern by the numbers of observations made. In this sense, pattern t collects
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all individuals with the first t measurements taken (t = 1, . . . , n). Thijs et al. (2002)
constructed a general identifying-restrictions framework in which the distribution of
the (t + 1)th measurement, given the earlier measurements, in pattern t, yt+1 say, is set
equal to a linear combination of the corresponding distributions in patterns t +1 to n.
Since this family is characterized by the use of observable distributions to identify the
unobservable ones, we term it the ‘interior’ family of identifying restrictions. Three
members of this family are studied in detail by Thijs et al. (2002): complete-case
missing value restrictions (Little, 1993), where information is borrowed from the
completers only, ACMV, equivalent to MAR (Molenberghs et al. (1998); see also
Section 5), for which a particular linear combination needs to be considered, and
neighbouring-case missing value restrictions, where information is borrowed from
the closest available pattern.

The equivalence of ACMV and MAR is important in that it enables us to make a
clear connection between the selection and pattern-mixture frameworks. By implica-
tion, the other members of the interior family are of MNAR type, while at the same
time there do exist MNAR-type restrictions that are not captured by this family.

We will now characterize missing-data mechanisms that prevent missingness from
depending on future unobserved measurements. To this effect, it is useful to consider
the SeM and PMM factorizations for the specific context of longitudinal data. Let
r = t ≤ n be the number of measurements actually observed. The SeM factorization
for this context is given by

f (y1, . . . , yn, r = t) = f (y1, . . . , yn) f (r = t|y1, . . . , yn).

PMM now take the form

f (y1, . . . , yn, r = t)
= f (y1, . . . , yn|r = t) f (r = t)
= ft(y1, . . . , yn) f (r = t)
= ft(y1, . . . , yt) ft(yt+1|y1, . . . , yt) ft(yt+2, . . . , yn|y1, . . . , yt+1) f (r = t), (6.1)

where ft(y1, . . . , yn) = f (y1, . . . , yn|r = t). The first three factors in (6.1) are referred
to as the distributions of past, present and future measurements, respectively. Only
the first and the fourth factors are identifiable from the data.

Definition 3 (Non-future Dependence (NFD)). In the SeM context, we can formulate
missing non-future dependent as

f (r = t|y1, . . . , yn) = f (r = t|y1, . . . , yt+1). (6.2)

Note that MAR is a special case of missing non-future dependent, which in turn
is a sub-class of MNAR.
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Definition 4 (Non-future-dependent Missing Value (NFMV) Restrictions). Within
the PMM framework, we define NFMV restrictions as follows:

f (yt|y1, . . . , yt−1, r = j) = f (yt|y1, . . . , yt−1, r ≥ t − 1), (6.3)

for all t ≥ 2 and all j < t − 1.

Non-future missing values is not a comprehensive set of restrictions, but rather
leaves one conditional distribution per incomplete pattern unidentified:

f (yt+1|y1, . . . , yt, r = t). (6.4)

In other words, the distribution of the ‘current’ unobserved measurement, given
the previous ones, is unconstrained. This implies that the NFMV class contains
members outside of the interior family, where every restriction takes the form of
a linear combination of observable distributions. Conversely, (6.3) excludes such
mechanisms as complete-case missing values and neighbouring-case missing val-
ues, showing that there are members of the interior family that are not of non-
future missing values type. Finally, choosing (6.4) of the same functional form as
(6.3) establishes ACMV as a member of the intersection of the interior and non-
future missing values families. The latter is particularly important since it shows,
because of the equivalence of ACMV and MAR, that MAR belongs to both
families.

The following theorem, the proof of which is to be found in Kenward et al.
(2003), establishes the equivalence between NFD and NFMV, showing that the
NFMV restrictions correspond to NFD, just as ACMV corresponds to MAR.

Theorem 4 (Equivalence between NFD and NFMV). For longitudinal data with
dropouts, missing NFD is equivalent to non-future missing values.

A consequence of using (6.3) is that the joint distribution will not typically have a
simple analytical representation. This is to be understood in the sense that covariate
effects would not necessarily be linear on an appropriate scale. However, this is not
to say that there is no analytical form. Moreover, it does not have to be a major
disadvantage, provided the resulting distribution is empirically reasonable. Such a
requirement may help guide the choice for (6.4). Kenward et al. (2003) offered a
tractable, sampling-based implementation and applied it to the analysis of a set of
data.

6.2 Non-future dependence in the SPM framework

It is now particularly easy to derive a general characterization of non-future-
dependent SPM. First, note that (6.2) in Definition 3 can be seen as a longitudinal
dropout-based definition of MAR, ‘one component shifted to the right’, i.e., where
yt+1, in spite of its missingness, is also allowed to influence missingness. Given that
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Theorem 2 was derived from the standard MAR definition, it immediately follows
that a characterization of NFD-SPM is as follows.

Theorem 5 (Non-future-dependent SPM). A member of the general SPM family (4.5)
is NFD if and only if∫

f (ypc
i |gi , hi , j i ) f (y f

i |y
pc
i , gi , hi , ki ) f (ri |gi , j i , ki ) f (bi ) dbi∫

f (ypc
i |gi , j i ) f (ri |gi , j i ) f (bi ) dbi

=

∫
f (ypc

i |gi , hi ) f (y f
i |y

pc
i , gi , hi ) f (bi ) dbi

f (ypc
i )

, (6.5)

where ypc
i = (y1, . . . , yt+1)′ and y f

i = (yt+2, . . . , yn)′.

Note that the superscript ‘pc’ refers to ‘previous and current,’ while ‘f’ refers to
‘future.’

Likewise, the sub-class (4.7) of Definition 2 can be ‘shifted’ to yield an NFD
version.

Definition 5 (A NFD Sub-class of SPM). Define a sub-class of SPM (4.5):

f (ypc
i | j i , �i ) f (y f

i |y
pc
i , mi ) f (ri | j i , qi ), (6.6)

where j i , �i , mi and qi are independent random-effects vectors.

The key assumption here is that all information about the missing data is contained
in the observed data, given which no further information is needed from neither
the missing data mechanism nor the random effects. With similar logic as before,
Definition 5 offers a class of missing-data mechanism that belongs to the NFD family.
The relationship between the various mechanisms in the three families is depicted in
Figure 1.

7 The toenail data

The data introduced in this section were obtained from a randomized, double-blind,
parallel group, multicentre study for the comparison of two oral treatments (in the
sequel coded as A and B) for toenail dermatophyte onychomycosis (TDO), described
in full detail by De Backer et al. (1996). TDO is a common toenail infection, difficult
to treat, affecting more than 2 out of 100 persons (Roberts, 1992). Anti-fungal
compounds, classically used for treatment of TDO, need to be taken until the whole
nail has grown out healthy. The development of such new compounds, however, has
reduced the treatment duration to 3 months. The aim of the present study was to
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SeM : MCAR ⊂ MAR ⊂ NFD ⊂ general MNAR

PMM : MCAR ⊂ ACMV ⊂ NFMV ⊂ general MNAR

⊃ = ⊂

interior

SPM : MCAR ⊂ Theorem 2 ⊂ Theorem 5 ⊂ general MNAR

∪ ∪

Definition 2 ⊂ Definition 5

Figure 1 Subset relationships between nested families within the SeM, pattern-mixture model (PMM) and SPM
families. The vertical two-headed arrows indicate equivalence between mechanisms across model families

compare the efficacy and safety of 12 weeks of continuous therapy with treatment A
or with treatment B.

In total, 2 × 189 patients, distributed over 36 centres, were randomized. Subjects
were followed during 12 weeks (3 months) of treatment and followed further, up to
a total of 48 weeks (12 months). Measurements were taken at baseline, every month
during treatment, and every 3 months afterwards, resulting in a maximum of seven
measurements per subject. At the first occasion, the treating physician indicates one
of the affected toenails as the target nail, the nail which will be followed over time.
We will restrict our analyses to only those patients for whom the target nail was one
of the two big toenails. This reduces our sample under consideration to 146 and 148
subjects, in group A and group B, respectively.

Figure 2 shows the observed profiles of 30 randomly selected subjects from treat-
ment group A and treatment group B, respectively.

One of the responses of interest was the unaffected nail length, measured from
the nail bed to the infected part of the nail, which is always at the free end of the
nail, expressed in millimetres. This outcome has been studied extensively by Verbeke
and Molenberghs (2000). Another important outcome in this study was the severity
of the infection, coded as 0 (not severe) or 1 (severe). The question of interest was
whether the downward evolution of severe infection differs among treatment groups.
A summary of the number of patients in the study at each time point, and the number
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Figure 2 Toenail data. Individual profiles of 30 randomly selected subjects in each of the treatment groups in
the toenail experiment

Table 2 Toenail data. Number and percentage of patients (N) with severe toenail
infection, for each treatment arm separately

Group A Group B

# Severe N % # Severe N %

Baseline 54 146 37.0 55 148 37.2
1 month 49 141 34.7 48 147 32.6
2 months 44 138 31.9 40 145 27.6
3 months 29 132 22.0 29 140 20.7
6 months 14 130 10.8 8 133 6.0
9 months 10 117 8.5 8 127 6.3
12 months 14 133 10.5 6 131 4.6

of patients with severe infections is given in Table 2. A graphical representation is
given in Figure 3. Due to a variety of reasons, the outcome has been measured at all
seven scheduled time points, for only 224 (76%) out of the 294 participants. Table 3
summarizes the number of available repeated measurements per subject, for both
treatment groups separately. We see that the occurrence of missingness is similar in
both treatment groups.

We will first analyse the entire longitudinal profile of continuous outcomes (unaf-
fected nail length), and then switch to the binary outcome (severity of infection) and
confine attention to the first and last time points.

7.1 Continuous unaffected nail length

Consider a general model of the form (4.5), with random effects confined to gi , i.e.,
common to all three components. For the measurement model, assume a linear mixed
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Toenail Data
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Figure 3 Toenail data. Evolution of the observed percentage of severe toenail infections in the two treatment
groups separately

Table 3 Toenail data. Number of available repeated measurements per subject,
for each treatment arm separately

Group A Group B

Number of observations N % N %

7 107 73.29 117 79.05
6 25 17.12 14 9.46
5 2 1.37 8 5.41
4 2 1.37 4 2.70
3 4 2.74 3 2.03
2 2 1.37 1 0.68
1 4 2.74 1 0.68

Total 146 100 148 100

model (Verbeke and Molenberghs, 2000), with general form:

Y i |gi ∼ N(Xiβ + Zi gi , �i ), (7.1)

gi ∼ N(0, D). (7.2)

Based on (7.1) and (7.2), the so-called marginal model can be derived as follows:

Y i ∼ N(Xiβ, Zi DZ′
i + �i ). (7.3)

To compute the model’s prediction for the unobserved data, given the observed
measurements, the corresponding density needs to be derived. To this end, first
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decompose the mean and variance in (7.1) as(
Yo

i
Ym

i

)∣∣∣∣ gi ∼ N

[(
Xo

i
Xm

i

)
β +

(
Zo

i
Zm

i

)
gi ,

(
�oo

i �om
i

�mo
i �mm

i

)]
.

This expression can easily be used to construct the conditional density

Ym
i |yo

i , gi ∼ N
[
(Xm

i − �mo
i {�oo

i }−1 Xo
i )β + �mo

i {�oo
i }−1 yo

i

+(Zm
i − �mo

i {�oo
i }−1 Zo

i )gi ,

�mm
i − �mo

i {�oo
i }−1

�om
i

]
. (7.4)

Now, (7.4) corresponds to the model as formulated and will typically be of the
MNAR type. To derive the MAR counterpart, we need to integrate over the random
effect. With similar logic that leads to (7.3), now applied to (7.4), we obtain

Ym
i |yo

i ∼ N
[
(Xm

i − �mo
i {�oo

i }−1 Xo
i )β + �mo

i {�oo
i }−1 yo

i ,

(Zm
i − �mo

i {�oo
i }−1 Zo

i )D(Zm
i − �mo

i {�oo
i }−1 Zo

i )′

+�mm
i − �mo

i {�oo
i }−1

�om
i

]
. (7.5)

Hence, (7.5) is the MAR counterpart to (7.4). For the unaffected nail length, we
choose for (7.1)–(7.2):

E(Yi j |gi , Ti , tj , β) = β0 + gi + β1Ti + β2tj + β3Titj , (7.6)

gi ∼ N(0, d), and �i = σ 2I7, where I7 is a 7 × 7 identity matrix. Further, Ti = 0 if
patient i received standard treatment and 1 for experimental therapy (i = 1, . . . , 298).
Finally, tj is the time at which the jth measurement is taken ( j = 1, . . . , 7).

Given these choices, (7.4) and (7.5) simplify to

Ym
i |yo

i , gi ∼ N(Xiβ + Zm
i gi , σ 2Ii ), (7.7)

Ym
i |yo

i ∼ N(Xiβ, dJi + σ 2Ii ), (7.8)

with Ii an identity matrix and Ji a matrix of ones, with dimensions equal to the
number of missing measurements for subject i . Especially owing to the conditional
independence assumption, the simplification is dramatic.

Next, let us formulate a model for the missingness mechanism in (4.5). The
sequence r i can take one of two forms in our case. Either it is a length-7 vector of
ones, for a completely observed subject, or it is a sequence of k ones followed by
a sole zero 1 ≤ k ≤ 6, for someone dropping out. Note that k is 1 at least, since
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Table 4 Toenail data. Continuous, longitudinal unaffected-nail-length outcome. Parameter
estimates (standard errors) for the model specified by (7.6) and (7.9)

Unaffected nail length Dropout

Effect Parameter Estimate (SE) Parameter Estimate (SE)

Mean structure parameters

Intercept β0 2.510 (0.247) γ0 −3.127 (0.282)
Treatment β1 0.255 (0.347) γ1 −0.538 (0.436)
Time β2 0.558 (0.023) γ2 0.035 (0.041)
Treatment-by-time β3 0.048 (0.031) γ3 0.040 (0.061)

Variance–covariance structure parameters

Residual variance σ 2 6.937(0.248)
Scale factor γ01 −0.076 (0.057)
Random intercept variance τ2 6.507 (0.630) γ 2

01τ2 0.038 (0.056)

for everyone the initial measurement has been observed. It is convenient to assume a
logistic regression of the form

logit
[
P(Ri j = 1|Ri, j−1 = 0, gi , Ti , tj , γ )

]
= γ0 + γ01gi + γ1Ti + γ2tj + γ3Titj , (7.9)

( j > 1), where γ01 is a scale factor for the shared random effect in the missingness
model; forcing the variance in the measurement and dropout indicator sequences to
be equal would make no sense. As a result, γ01gi ∼ N(0, γ 2

01d).
The model specified by (7.6) and (7.9) can easily be fitted using, e.g., the SAS

procedure NLMIXED, details about which are provided in the Appendix.
Parameter estimates and standard errors are displayed in Table 4. It is noteworthy

that the scale factor γ01 is estimated to be negative, even though it is not significant.
While we should not overly stress its importance, there is some indication that a higher
subject-specific profile of unaffected nail length corresponds with a lower dropout
probability, which is not surprising. The magnitude of the scale factor allows us to
‘translate’ the subject-specific effect from the continuous outcome scale, expressed
in millimetres, to the unitless logit scale on which the probability of missingness
is described. Note that the random-intercept variance is highly significant among
unaffected nail length outcomes; the same is not true for the dropout model, with p =
0.2487, using a 50:50 mixture of a χ2

0 and χ2
1 distribution (Verbeke and Molenberghs,

2000).
Figure 4 displays the incomplete profiles, extended beyond the time of dropout,

using prediction based on: (i) the original model (dashed lines) and (ii) the MAR coun-
terpart (solid lines). Within each of the treatment arms, three profiles are highlighted.
The MAR counterpart reduces all predictions to the same profile, whereas the MNAR
model predicts different evolutions for different subjects, implied by the presence of
the random effect. The simple MAR-based prediction structure follows directly from
the conditional independence assumption, present in (7.7). When deemed less plau-
sible, the fully general structure (7.4) can be implemented.
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Figure 4 Toenail data. Individual profiles of subjects with incomplete data, for each treatment arm, extended
using MNAR Model (7.6) (dashed lines) and using the model’s MAR counterpart (solid lines). In each group,
three subjects are highlighted

7.2 Dichotomous severity of infection

Let us turn attention to the binary severity of infection outcome, for the pair of
time points formed by the always recorded initial measurement and the sometimes
missing final point in time. The data are displayed in Table 5. By way of illustration,
we will assume a single dichotomous random effect, of the gi type. This imposes a
latent-class structure. Decompose the cell probabilities as

πgi1i2rt = πgπi1|gπi2|i1gtπr |g, (7.10)

with g = 0, 1 indicating the latent class, i1, i2 = 0, 1 non-severe versus severe infection
at the first and last occasions, respectively, r = 0, 1 referring to the dropouts versus
completers groups and t = 0, 1 denoting standard versus experimental treatment
arm. The probability factors on the right-hand side of (7.10) are modelled as

πg =
eαg

1 + eα
,

πi1|g =
e(β0+β1g)i1

1 + eβ0+β1g
, (7.11)

πi2|i1gt =
e(γ0+γ1i1+γ2g+γ3i1g+γ4t)i2

1 + eγ0+γ1i1+γ2g+γ3i1g+γ4t
, (7.12)

πr |g =
e(δ0+δ1g)r

1 + eδ0+δ1g
.
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Table 5 Toenail data. Bivariate binary severity index at first and last time points. The observed data are
shown, as well as the fit of Models ‘Bin1’ and ‘Bin2’, together with their corresponding counterparts. Both
the fit to the observed data as well as to the hypothetical complete data are shown

Standard treatment Experimental treatment

Completers Dropouts Completers Dropouts

Observed data

77 5
42 9

10
3

79 3
46 3

11
6

Fit of Model ‘Bin1’

76.85 5.66
40.60 7.99

9.04 0.34
4.62 0.90

9.38
5.52

81.21 2.43
45.62 3.63

9.36 0.15
5.19 0.41

9.51
5.60

Fit of Model ‘Bin1(MAR)’

76.85 5.66
40.60 7.99

8.77 0.61
4.62 0.91

9.38
5.52

81.21 2.43
45.62 3.63

9.24 0.26
5.18 0.41

9.51
5.59

Fit of Model ‘Bin2’≡‘Bin2(MAR)’

75.86 5.58
41.50 8.15

9.72 0.72
3.74 0.73

10.44
4.47

80.16 2.40
46.61 3.72

10.27 0.31
4.20 0.34

10.58
4.53

In Model ‘Bin1’, we will set β1 = 0 in (7.11) for reasons of identifiability. In
Model ‘Bin2’, γ2 = γ3 = 0 in (7.12). This implies that the latter model is of the
MAR type, and hence its MAR counterpart will equal the original model. Fitted
counts are presented in Table 5. For the dropout group, both the fit to the pair
of observed counts and the prediction of the underlying unobserved 2 × 2 table is
given. Note that the MAR counterpart preserves the distribution of the first outcome,
within each treatment and dropout group; the difference between original model and
MAR counterpart is confined to the distribution of the second outcome, given the
first one. The fit of the models is obtained by replacing all quantities in (7.10) by
their estimates, followed by summing over g. The MAR counterpart is obtained as
πgi1i2rt = πgπi1|gπ̃i2|i1tπr |g, where

π̃i2|i1t =
∑

g

πgπi2|i1gt.

Parameter estimation by both maximum likelihood, as well as the expectation–
maximization (EM) algorithm (Dempster et al. 1977) is particularly easy. For direct
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likelihood, the log-likelihood function takes the form

� =
∑
i1,i2,t

Zi1i2,r=1,t ln

(∑
g

πgπi1|gπi2|i1gtπr=1|g

)
+

∑
i1,t

Zi1,r=0,t ln

(∑
g

πgπi1|gπr=0|g

)
,

(7.13)

where Zi1i2,r=1,t and Zi1,r=0,t are the observed-data counts, with obvious notation.
Maximization then proceeds by feeding (7.13) to a standard numerical
optimizer.

The complete-data log-likelihood, needed for the EM algorithm, takes the form

�∗ =
∑

g,i1,i2,r,t

Z∗
gi1i2rt ln

(
πgπi1|gπi2|i1gtπr |g

)
=

∑
g

Z∗
g++++ ln

(
πg

)
+

∑
g,i1

Z∗
gi1+++ ln

(
πi1|g

)
+

∑
g,i1,i2,t

Z∗
gi1i2+t ln

(
πi2|i1gt

)
+

∑
g,r

Z∗
g++r+ ln

(
πr |g

)
. (7.14)

Here, Z∗
gi1i2rt is the (hypothetical) count in bivariate severity category (i1, i2), in

missingness group r , treatment arm t, and allocated to latent class g. A plus in
lieu of a subscript indicates summation over the corresponding index. To proceed,
the expected values of the complete-data sufficient statistics need to be computed.
Thanks to the multinomial structure of �∗, this is straightforward and hence the
E-step consists of

E
(
Z∗

g++++

)
= πg Z++++,

E
(
Z∗

gi1+++

)
= πgπi1|g Zi1+++

E
(
Z∗

gi1i2+t

)
= πg Zi1i2,r=1,t + πgπi2|i1gt Zi1+,r=0,t,

E
(
Z∗

g++r+

)
= πgπr |g Z++r+.

Finally, the M-step takes the form of four separate logistic regressions, in the α, β, γ
and δ parameters, respectively, i.e., for each of the four terms in (7.14).

8 Concluding remarks

Incomplete data are governed by a number of taxonomies and classification sys-
tems, two of which were of relevance here. The first one is concerned with the type
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of missing data mechanism (MCAR, MAR and MNAR), whereas the second one
classifies joint models for the outcome and missing data processes as belonging to the
SeM, PMM and SPM families. Since MCAR merely comes down to independence
between both processes, perhaps conditional on fixed covariates, it takes a trivial
form regardless of the model family. Whereas MAR has been defined in an SeM
fashion, it has been characterized in a PMM way and studied further for the specific
context of longitudinal data by Molenberghs et al. (1998). Characterizing MAR in
the SPM family is less straightforward and, to our knowledge, had not formally
been done before. As a first result, we have provided such a characterization in this
paper, after defining a very general class of SPM that encompasses many earlier,
specific instances. Since the characterization, in its full generality, may be somewhat
awkward to work with, a more restrictive but appealing sub-class of SPM, satisfying
MAR, has been proposed too.

Molenberghs et al. (2007) established that every MNAR model fitted to a particu-
lar set of data can be replaced by a unique MAR counterpart, i.e., a model producing
exactly the same fit to the observed data but where the prediction of the unobserved
outcomes given the observed ones is of the MAR type. While their result is general,
they focused on the SeM and PMM frameworks. As a second result, we present a
generic format of this counterpart for the SPM family.

Apart from considerations on the basis of taxonomy, particular design aspects
may be used to further focus one’s model choices. For example, in a longitudinal
study subject to dropout, one will often cast missingness mechanisms in terms of
previous, current and future measurements, rather than simply in terms of observed
and unobserved measurements. There is a subtle distinction. While previous and
observed measurements are synonymous in such a case, the unobserved measure-
ments are further subdivided into current and future measurements. Substantively,
it is usually conceivable to assume that dropout is driven by the current, perhaps
unobserved measurement, but it will not always be sensible to let dropout depend
on future measurements. Constraining a SeM to this effect is particularly straightfor-
ward, but this is less trivial for the other two families. While Kenward et al. (2003)
translated this requirement to the PMM family, this had not yet been done for the
SPM. As a third result, we characterize so-called non-future-dependent mechanisms
within the SPM family.

While our results are predominantly of a conceptual nature, a number of them
have been illustrated, for enhanced insight, using both a continuous and a binary
outcome from a two-armed clinical trial in TDO. In the continuous case, a linear
mixed model was combined with logistic regression contributions for dropout. In the
binary case, a dichotomous random effect was assumed, i.e., a latent class, reducing
the analysis to one of incompletely observed contingency tables. Evidently, within
each of the analyses done, a wider variety of model specifications can be entertained.
Moreover, the ideas developed in this paper are generic and one could consider
generalized linear mixed models for the entire binary profile, etc. (Molenberghs and
Verbeke, 2005).
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It might appear counterintuitive that the issues arising from incompleteness are
further compounded by allowing for a whole collection of random effects. While this
adds a great deal of flexibility, thereby enabling proper characterization of MAR,
it needs to be limited. In practice, substantive considerations would be critical in
reducing the number of these, leaving a more manageable set which would form the
basis for sensitivity analyses.

Finally, the results of this paper open avenues for sensitivity analysis regarding sub-
stantive conclusions with respect to missingness (Molenberghs and Kenward, 2007;
Creemers et al., 2009). Thanks to the results in this paper and previous papers,
and the ensuing classification of model families versus missing data mechanisms
(Figure 1). One could, e.g., select an insightful set models across families and mech-
anisms, perhaps supplementing MNAR models with their MAR counterparts, and
then assess formally or informally how key conclusions change when ranging over
models.
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Appendix: SAS Implementation

Assume that we have a dataset, ‘toenailc02’, with variables ‘idnum’ an indicator
for subject, ‘treat’ a (binary) indicator for treatment (‘0’ for standard arm, ‘1’ for
the experimental arm) and ‘time’ time in months (0, 1, 2, 3, 6, 9 and 12 months).
Further, the actual outcome, unaffected nail length, and the dropout indicators are
stacked into a single variable ‘respons’, with ‘resptype’ indicating whether the
outcome listed is of the former (‘1’) or the latter (‘0’) kind. It is sometimes convenient
to dispose of character variables indicating the outcome distribution, ‘dist’, and the
link function chosen ‘link’, respectively. The need for these two variables arises when
one makes use of, e.g., the SAS procedure GLIMMIX, but they are superfluous with
NLMIXED, the procedure used here.

Data for three typical subjects are as follows:

idnum treat time respons resptype dist link

2 0 0 4 1 GAUS IDEN
2 0 1 6 1 GAUS IDEN
2 0 2 7 1 GAUS IDEN
2 0 3 9 1 GAUS IDEN
2 0 6 13 1 GAUS IDEN
2 0 9 0 1 GAUS IDEN
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2 0 12 . 1 GAUS IDEN

2 0 0 0 0 BINA LOGI
2 0 1 0 0 BINA LOGI
2 0 2 0 0 BINA LOGI
2 0 3 0 0 BINA LOGI
2 0 6 0 0 BINA LOGI
2 0 9 0 0 BINA LOGI
2 0 12 1 0 BINA LOGI

3 0 0 0 1 GAUS IDEN
3 0 1 1 1 GAUS IDEN
3 0 2 2 1 GAUS IDEN
3 0 3 3 1 GAUS IDEN
3 0 6 9 1 GAUS IDEN
3 0 9 4 1 GAUS IDEN
3 0 12 2 1 GAUS IDEN

3 0 0 0 0 BINA LOGI
3 0 1 0 0 BINA LOGI
3 0 2 0 0 BINA LOGI
3 0 3 0 0 BINA LOGI
3 0 6 0 0 BINA LOGI
3 0 9 0 0 BINA LOGI
3 0 12 0 0 BINA LOGI

18 0 0 0 1 GAUS IDEN
18 0 1 0 1 GAUS IDEN
18 0 2 0 1 GAUS IDEN
18 0 3 . 1 GAUS IDEN
18 0 6 . 1 GAUS IDEN
18 0 9 . 1 GAUS IDEN
18 0 12 . 1 GAUS IDEN

18 0 0 0 0 BINA LOGI
18 0 1 0 0 BINA LOGI
18 0 2 0 0 BINA LOGI
18 0 3 1 0 BINA LOGI

Subject #2 drops out at the last occasion, #3 completes the study and #18 drops out
at the third month.

Since all subjects are observed at the baseline occasion (month 0), it is best to
remove the corresponding line from the dataset:

data help;
set m.toenailc02;
if (resptype=0 and time=0) then respons=.;
run;
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The NLMIXED procedure can then be invoked for parameter estimation and for
prediction of unobserved measurements:

proc nlmixed data=help qpoints=20 maxiter=500;
parms beta0=3 beta1=-0.25 beta2=0.5 beta3=0.05

gamma0=-3.5 gamma01=1 gamma1=0 gamma2=0 gamma3=0
sigma=2.5 tau=2;

if resptype=1 then do;
mean = beta0 + b + beta1*treat + beta2*time + beta3*treat*time;
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(respons-mean)**2/(sigma**2);
ll = dens;

end;
else if resptype=0 then do;

eta = gamma0 + b*gamma01 + gamma1*treat + gamma2*time
+ gamma3*treat*time;

p = exp(eta)/(1+exp(eta));
ll = respons*log(p) + (1-respons)*log(1-p);

end;
model respons ˜ general(ll);
random b ˜ normal(0,tau*tau) subject=idnum;
estimate ’tauˆ2’ tau*tau;
estimate ’gamma01ˆ2*tauˆ2’ gamma01*gamma01*tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
predict (beta0 + b + beta1*treat + beta2*time + beta3*treat*time)

out=m.toenailc2mnar;
predict (beta0 + beta1*treat + beta2*time + beta3*treat*time)

out=m.toenailc2mar;
run;

The actual model consists, of course, of two parts. Using branching statements, a
Gaussian likelihood contribution is calculated for unaffected nail length, whereas
a Bernoulli contribution is calculated for the dropout indicators. Thanks to the
‘general’ likelihood feature in the MODEL statement, the user has a very large
amount of freedom in model specification. Additional ESTIMATE statements lead to
the direct determination of parameter estimates and standard errors for the variance
components.

Finally, the two PREDICT statements determine the prediction of the unobserved
measurements given the observed ones, using the model as it is, based on (7.7), or
using the MAR counterpart, as in (7.8). Note that this is relatively simple, given
the conditional independence assumption, as discussed in Section 7.1. Given that
these predictions range over the entire measurement sequence and not only over the
missing ones, we need to bring together the observed measurements until the time
of dropout, and then switch to the predictions thereafter. Using the following code,
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this is done for the original MNAR model and for the MAR counterparts. These two
output datasets are then merged into a single one.

data m.toenailc2mnar;
set m.toenailc2mnar;
mnar=respons;
if resptype=0 then mnar=.;
if (respons=. and resptype=1) then mnar=pred;
run;

data m.toenailc2mar;
set m.toenailc2mar;
mar=respons;
if resptype=0 then mar=.;
if (respons=. and resptype=1) then mar=pred;
run;

data m.toenailc2m;
merge m.toenailc2mnar m.toenailc2mar;
if resptype=0 then delete;
keep idnum treat time respons mnar mar;
run;

The final dataset can now be used as a basis to construct, e.g., Figure 4.
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