
Acta Informatica manuscript No.
(will be inserted by the editor)

On the complexity of deciding typability in the
relational algebra

Stijn Vansummeren?

Limburgs Universitair Centrum, Diepenbeek, Belgium
e-mail:stijn.vansummeren@luc.ac.be

The date of receipt and acceptance will be inserted by the editor

Abstract. We investigate the complexity of the typability problem for the
relational algebra. This problem consists of deciding, for a given relational
algebra expression, whether there exists an assignment of types to variables
occurring in the expression such that the expression is well-typed under the
assignment. We obtain that the problem is NP-complete in general. In par-
ticular, we show that the problem becomes NP-hard due to (1) the cartesian
product operator; (2) the selection operator on arbitrary sets of typed predi-
cates; and (3) the selection operator on “well-behaved” sets of typed predi-
cates together with join and projection or renaming. However, the problem
is in P when (1) we only allow union, difference, join and selection on
“well-behaved” sets of typed predicates; or (2) we allow all operators ex-
cept cartesian product, where the set of selection predicates can mention at
most one base type. Most of these results follow from a close connection of
the typability problem to non-uniform constraint satisfaction.

1 Introduction

The relational algebra is the basis of all relational query languages [1,2].
For a relational algebra expression to be well-defined, its relation variables
must satisfy certain requirements. For example, in order for the expression
σA=5(r) to have any meaning, relationr needs to have an integer-valuedA
attribute. In the theory of programming languages [5], such requirements
are recorded intypesand type systemsare used to discern ill-defined ex-
pressions from well-defined ones. In particular, well-defined expressions

? Research Assistant of the Fund for Scientific Research - Flanders (Belgium)

2 Stijn Vansummeren

are those expressions that can be assigned a type in the system. Recently,
Van den Bussche and Waller [7] considered a type system for the relational
algebra. This system consists of a set oftype rulesallowing to derive the
output type of a program given types for its relation variables. If such an
output type can be derived for a given type assignment, the expression is
calledwell-typedunder the assignment. Van den Bussche and Waller devel-
oped atype inferencealgorithm capable of determining theprincipal type
formula of a given expression. This formula describes all assignments of
types to relation names, under which a given relational algebra expression
is well-typed, as well as the output type that expression will have under
each of these assignments.

For general motivations for studying type inference for the relational
algebra, we refer to Van den Bussche and Waller [7]. In this paper, we will
focus ontypability: deciding whether a given expression can ever be well-
defined; that is, does there exist a type assignment for which the expression
is well-typed? Traditional type inference algorithms also check typability
(i.e. they returnfalseinstead of a principal type formula when an expression
is not typable). By studying the complexity of the typability problem, we
hence get an insight into the complexity of the corresponding type inference
problem.

Van den Bussche and Waller showed that typability for the relational al-
gebra is decidable in non-deterministic polynomial time. The precise com-
plexity remained open. In this paper we obtain that the problem is NP-
complete in general. In particular, we show that the problem becomes NP-
hard due to (1) the cartesian product operator; (2) the selection operator on
arbitrary sets of typed predicates; and (3) the selection operator on “well-
behaved” sets of typed predicates together with join and projection or re-
naming. However, the problem is in P when (1) we only allow union, dif-
ference, join and selection on “well-behaved” sets of typed predicates; or
(2) we allow all operators except cartesian product, where the set of selec-
tion predicates can mention at most one base type. Most of these results
follow from a close connection of the typability problem to non-uniform
constraint satisfaction.

This paper is further organized as follows. We introduce the type sys-
tem of Van den Bussche and Waller in Section 2, including the notions of
well-typedness and typability. We then show that the typability problem is
NP-complete in its most general setting in Section 3. In Section 4 we il-
lustrate the close connection between the typability problem and constraint
satisfaction problems, which allows us to obtain most of the results men-
tioned above. We summarize our results in Section 5.

On the complexity of deciding typability in the relational algebra 3

2 Preliminaries

The type system of Van den Bussche and Waller [7] considers an expres-
sion ill-defined if the schema of some subexpression is required to have
an attribute present and absent at the same time. Practical query languages
also consider an expression ill-defined if attributes are not used consistently
with regard to their base types. For instance, the relational algebra expres-
sionσA=5(σA=true(R)) would be considered correct in the framework of
Van den Bussche and Waller. The corresponding SQL expression would
be considered incorrect however, since an attribute cannot have base type
bool andint at the same time. In this section, we therefore augment the
type system of Van den Bussche and Waller [7] with the ability to deal with
types on the attribute value level.

We assume given sufficiently large sets ofrelation variablesand at-
tribute names. Relation variables will be denoted by lowercase letters from
the end of the alphabet, whereas attribute names will be denoted by upper-
case letters from the beginning of the alphabet.

We also assume to be given a finite, non-empty set ofbase types(such as
int , string , bool , . . .) and a sufficiently large set ofpredicates(such
as=,≤, . . .). Every predicateθ has anarity |θ|, which is a natural number,
and asignatureς(θ), which is a non-empty,|θ|-ary relation over the set of
base types. An example of a signature for the binary predicatehas length is
{(string , int)}, while an example of a signature for the binary predicate
= is

{(int , int), (bool , bool), (string , string)}.

Base types will be denoted byβ, possibly subscripted. Predicates will be
denoted byθ, possibly subscripted. Finite sets of predicates will be denoted
by Θ. The set of all base types mentioned in signatures of predicates inΘ
will be denoted byβ(Θ).

The relational algebra with selection predicates inΘ, denoted byRΘ,
is the set of all expressions generated by the following grammar:

e → r

| (e ∪ e) | (e− e) | (e on e) | (e× e)
| σθ(A1,...,An)(e) | πA1,...,An(e) | ρA/B(e)

Heree denotes an expression,r denotes a relation variable,θ denotes a se-
lection predicate inΘ of arity n, andA, B, andAi denote attribute names.
If V is a set of operators, thenRΘ

V denotes the subset of expressions in
RΘ using only operators inV . The semantics of relational algebra is the
well-known one [1,2] and will actually not concern us in the present pa-
per. The set of all relation variables occurring in expressione is denoted

4 Stijn Vansummeren

Γ (r) = τ

Γ ` r : τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ∪ e2 : τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 − e2 : τ

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 ∼ τ2

Γ ` e1 on e2 : τ1 ∪ τ2

Γ ` e1 : τ1 Γ ` e2 : τ2

dom(τ1) ∩ dom(τ2) = ∅
Γ ` e1 × e2 : τ1 ∪ τ2

Γ ` e : τ A1, . . . , An ∈ dom(τ)
(τ(A1), . . . , τ(An)) ∈ ς(θ)

Γ ` σθ(A1,...,An)(e) : τ

Γ ` e : τ A1, . . . , An ∈ dom(τ)

Γ ` πA1,...,An(e) : {A1, . . . , An}

Γ ` e : τ A ∈ dom(τ) B 6∈ dom(τ)

Γ ` ρA/B(e) : ρA/B(τ)

Fig. 1 The typing relation

by Relvars(e) and the set of all attributes occurring ine is denoted by
Specattrs(e).

A type τ is a function from a finite set of attribute namesdom(τ) to
the set of base types. Two types arecompatible, denoted byτ1 ∼ τ2, if
τ1(A) = τ2(A) for eachA in dom(τ1)∩dom(τ2). Clearly, the union of two
compatible types is defined, and is again a type. Ifτ is a type, thenρA/B(τ)
is the type with domaindom(τ)−{A}∪{B} such thatρA/B(τ)(B) = τ(A)
andρA/B(τ)(C) = τ(C) for everyC ∈ dom(τ)− {A,B}. A schemais a
finite setS of relation variables. Atype assignmenton S is a mappingΓ
onS, assigning to eachr ∈ S a typeΓ (r).

Let e be an expression inRΘ, S a schema withRelvars(e) ⊆ S, andΓ
a type assignment onS. Then the relationΓ ` e : τ , indicating thate has
typeτ underΓ , is defined by the rules in Figure 1. IfA ∈ dom(τ), then
we say thatA is presentin e underΓ . We say thatA is absentin e under
Γ otherwise. Note thate has at most one type underΓ , which can easily be
derived fromΓ by applying the rules in an order determined by the syntax
of expressione.

The central notion of this paper is given by the following definition:

Definition 1. Let e be an expression inRΘ and letΓ be a type assignment
on Relvars(e). If there exists a typeτ such thatΓ ` e : τ , we say thate
is well-typedunderΓ . Expressione is called typableif there exists a type
assignmentΓ on Relvars(e) such thate is well-typed underΓ .

Let V be a subset of the relational algebra operators. We denote the
set of all typable expressions inRΘ

V by T (RΘ
V). Deciding membership of

T (RΘ
V) is called thetypability problem.

On the complexity of deciding typability in the relational algebra 5

3 Deciding typability

Van den Bussche and Waller noted that the typability problem can be solved
in non-deterministic polynomial time [7]. We reiterate their result here for
completeness’ sake. Ifτ is a type andA is a set of attribute names, then we
write τ |A for the type defined byτ |A(A) := τ(A) for everyA in dom(τ)∩
A. If Γ is a type assignment, then we writeΓ |A for the type assignment
defined byΓ |A(r) := Γ (r)|A.

Lemma 2 (Van den Bussche and Waller).If Γ ` e : τ and Specattrs(e) ⊆
A, thenΓ |A ` e : τ |A.

The proof is straightforward. As a consequence, in order to decide whether
there exists a type assignment under whiche is well-typed, it suffices to
consider type assignmentsΓ with the property that

dom(Γ (r)) ⊆ Specattrs(e),

for everyr ∈ Relvars(e). It follows immediately that typability is in NP.
This upper bound is tight, as the following theorem shows.

Theorem 3.T (RΘ) is NP-complete for any predicate-setΘ.

Proof. We give a LOGSPACE reduction from POSITIVE ONE-IN-THREE

3SAT, which is known to be NP-hard [3]. The POSITIVE ONE-IN-THREE

3SAT problem consists of deciding for a given 3CNF formula with only
positive clauses of the form(x∨ y∨ z), whether there exists a truth assign-
ment that makes exactly one literal per clause true.

Let φ = (x1∨ y1∨ z1)∧ · · ·∧ (xn∨ yn∨ zn) be a 3CNF formula where
every clause is positive. LetX be the set of all variables occurring inφ.
We construct the expressioneφ usingX as relation variables, such thatφ is
one-in-three satisfiable if, and only if,eφ is typable:

eφ :=
n⋃

i=1

πA(xi × yi × zi).

It is clear thateφ can be constructed fromφ in logarithmic space.
Supposeφ is one-in-three satisfiable. Then there exists a truth assign-

mentw onX such that for everyi exactly one ofw(xi), w(yi), andw(zi) is
true. To show thateφ is typable, we construct the type assignmentΓ onX
as follows. Letτ be a type with domain{A}. We defineΓ (x) := τ if w(x)
is true, andΓ (x) := ∅ otherwise. Since exactly one ofw(xi), w(yi) and
w(zi) is true for everyi, we have by construction that exactly one ofΓ (xi),
Γ (yi), andΓ (zi) is τ , the others being∅. Since the domains ofΓ (xi), Γ (yi)

6 Stijn Vansummeren

andΓ (zi) are then disjoint and sinceΓ (xi) ∪ Γ (yi) ∪ Γ (zi) = τ , the ex-
pressionsxi × yi × zi have typeτ underΓ . Then everyπA(xi × yi × zi)
also has typeτ underΓ . Therefore every operand of the union operator has
typeτ , and thuseφ is well-typed underΓ .

Conversely, supposeeφ is typable. Then there exists a type assignment
Γ on X such that every subexpression ofe (includinge) is well-typed un-
der Γ . To show thatφ is satisfiable, we construct the truth assignmentw
on X such thatw(u) is true if, and only if,A ∈ dom(Γ (u)). Since ev-
ery πA(xi × yi × zi) is well-typed underΓ , the type ofxi × yi × zi must
be defined onA. Because of the typing rule for×, this means that at ex-
actly one ofΓ (xi), Γ (yi), andΓ (zi) is defined onA. Hence, exactly one of
w(xi), w(yi), or w(zi) is true for everyi, andφ is one-in-three satisfiable.
ut

The following natural question now arises: for which operators of the
relational algebra can typability be decided in polynomial time? We note
that expressions inRΘ

∪,−,on,× are always typable, henceT (RΘ
∪,−,on,×) is

trivially in P. However, addingπ, ρ, orσ to the set of operators immediately
makes the problem NP-complete. This is clear forπ from the reduction
above. Also, the reduction still works if we defineeφ as

eφ :=
n
×
i=1

ρA/Bi
(xi × yi × zi).

Here theBi are auxiliary attribute names used to make sure that the various
operands of× have a disjoint domain. Finally, ifθ ∈ Θ, then we can define
eφ as:

eφ :=
n⋃

i=1

σθ(A1,...,Ak)(xi × yi × zi).

Indeed, ifφ is one-in-three satisfiable, then we can show typability ofeφ

simply by takingτ in the reasoning above to be a type for which

(τ(A1), . . . , τ(Ak)) ∈ ς(θ).

Conversely, ifeφ is typable, we can show one-in-three satisfiability ofφ
by takingw in the reasoning above such thatw(u) is true if, and only if,
A1 ∈ dom(Γ (u)).

Hence, deciding typability for restrictions of the relational algebra con-
taining{−,×, π}, {−,×, σ}, {∪,×, σ}, or {×, ρ} as a subset of operators
remains NP-complete for any (non-empty) predicate-setΘ.

On the complexity of deciding typability in the relational algebra 7

4 Typability and constraint satisfaction

The results of Section 3 seem to imply that the cartesian product operator is
the main reason why the typability problem is NP-hard. Consider expres-
sions of the following form however:

σθ1(A1,...,Ak) . . . σθn(B1,...,Bl)(R).

In order to decide typability of such expressions, we need to make sure that
there are no base-type clashes between the various uses of an attribute. It is
not hard to see that this is another potential source of intractability.

We will formalize this intuition by showing that typability inRΘ
σ is a

disguised form of thenon-uniform constraint satisfaction problem, which
is known to be NP-complete in general.

A relational structureis a tuple(C,R1, . . . , Rn) whereC is a finite
set andR1, . . . , Rn are relations overC. Let A = (C,R1, . . . , Rn) and
B = (D,S1, . . . , Sn) be two relational structures where the arity ofRi

equals the arity ofSi for every1 ≤ i ≤ n. A homomorphismfrom A to B
is a functionh from C to D such that for1 ≤ i ≤ n:

(c1, . . . , cki
) ∈ Ri ⇒ (h(c1), . . . , h(cki

)) ∈ Si.

Here,ki denotes the arity ofRi andSi.
The constraint satisfaction problemconsists of deciding, given rela-

tional structuresA andB whether there is a homomorphism fromA to B.
This problem is NP-complete in general, since it is clearly in NP and it con-
tains NP-hard problems as special cases. For example, 3-COLORABILITY

is equivalent to the problem of deciding whether there is a homomorphism
from a given graphH to the complete graph with3 nodes

K3 = ({r, g, b}, {(r, b), (b, r), (r, g), (g, r), (b, g), (g, b)}).

The constraint satisfaction problem for whichB is fixed is calledthe
non-uniform constraint satisfaction problem(non-uniform CSP). Let us
defineH(B) as the set of all structures for which there exists a homomor-
phism toB. It is well-known that there exist structuresB such thatH(B)
is NP-complete (K3 being an example).

We will now relate the typability problem to non-uniform CSP. LetΘ =
{θ1, . . . , θn} be a set of predicates. We define thestructureof an expression
e ∈ RΘ, denoted byStruc(e), as the relational structure

(Specattrs(e), θ1(e), . . . , θn(e)),

where

θi(e) = {(A1, . . . , A|θi|) | σθi(A1,...,A|θi|)
(e′) is a subexpression ofe}.

8 Stijn Vansummeren

Likewise, we define thestructure of Θ, denoted byStruc(Θ), as the
relational structure(β(Θ), ς(θ1), . . . , ς(θn)). Here,β(Θ) denotes the set of
all base types mentioned in the signatures of predicates inΘ.

Lemma 4. If Θ is a finite set of predicates ande ∈ RΘ
∪,−,on,σ, thene is

typable if, and only if, there is a homomorphism from Struc(e) to Struc(Θ).

Proof. Intuitively, we need to make sure that there are no base-type clashes
between the various uses of an attribute ine in order to decide typability of
e. This is exactly what the existence of a homomorphism fromStruc(e) to
Struc(Θ) indicates.

Formally, suppose that there is a homomorphismh from Struc(e) to
Struc(Θ). Let Γ be the type assignment defined byΓ (r) = h for every
r ∈ Relvars(e). In order to show thate is typable, it suffices that to show
that every subexpressione′ of e has typeh underΓ . We do so by induction
one′.

– Clearly,Γ ` r : h.
– If e′ = e1 ∪ e2 or e′ = e1 − e2, thenΓ ` e1 : h andΓ ` e2 : h by the

induction hypothesis. Hence, all the premises of the type rule for union,
respectively difference, are met andΓ ` e′ : h holds.

– If e′ = e1 on e2, then thenΓ ` e1 : h andΓ ` e2 : h by the induction
hypothesis. Clearly,h ∼ h andh = h ∪ h. Hence, all the premises of
the type rule for join are met andΓ ` e′ : h holds.

– If e′ = σθi(A1,...,Ak)(e′′), then we have by the induction hypothesis that
Γ ` e′′ : h. By definition,(A1, . . . , Ak) ∈ θi(e). Since{A1, . . . , Ak} ⊆
Specattrs(e) and sinceh is a homomorphism fromStruc(e) to Struc(Θ)
we have(h(A1), . . . , h(Ak)) ∈ ς(θi). Hence, all the premises of the
type rule for selection are met andΓ ` e′ : h holds.

Conversely, suppose that there exists a type assignmentΓ under which
e is well-typed. Let us writeτe for the type ofe underΓ and let us write
H(e) for the set of homomorphisms fromStruc(e) to Struc(Θ). We prove
by induction one thatτe|Specattrs(e) ∈ H(e).

– This is clear ife = r.
– If e = e1 ∪ e2, then τe = τe1 = τe2 by the type rule for union.

Thenτe|Specattrs(e1) ∈ H(e1) andτe|Specattrs(e2) ∈ H(e2) by the induc-
tion hypothesis. SinceStruc(e) = Struc(e1) ∪ Struc(e2), it follows that
τe|Specattrs(e) ∈ H(e). If e = e1 − e2 we make an analogous reasoning.

– If e = e1 on e2, then τe1 ∼ τe2 , and τe = τe1 ∪ τe2 by the type
rule for join. Moreover,τe1 |Specattrs(e1) ∈ H(e1) andτe2 |Specattrs(e2) ∈
H(e2) by the induction hypothesis. Sinceτe1 |Specattrs(e1) ⊆ τe|Specattrs(e)
andτe2 |Specattrs(e2) ⊆ τe|Specattrs(e), and sinceStruc(e) = Struc(e1) ∪
Struc(e2), it follows thatτe|Specattrs(e) ∈ H(e).

On the complexity of deciding typability in the relational algebra 9

– If e = σθi(A1,...,Ak)(e′), thenτe′ |Specattrs(e′) ∈ H(e′) by the induction
hypothesis. Furthermore,(τe′(A1), . . . , τe′(Ak)) ∈ ς(θi) andτe = τe′

by the type rule forσ. For1 ≤ j ≤ n we have

θj(e) =

{
θi(e′) ∪ {(A1, . . . , Ak)} if i = j

θj(e′) otherwise.

Hence,τe|Specattrs(e) ∈ H(e). ut

Using this lemma, we may conclude that typability is as least as difficult
as non-uniform CSP.

Theorem 5.If Θ is a finite, non-empty set of predicates andV is a sub-
set of the relational algebra operators containingσ, thenH(Struc(Θ)) is
LOGSPACEreducible toT (RΘ

V).

Proof. We show that for every relational structureA we can create an ex-
pressione ∈ RΘ

σ (in logarithmic space) such that there is a homomorphism
from A to Struc(Θ) if, and only if, there is a homomorphism fromStruc(e)
to Struc(Θ). The result then follows by Lemma 4.

Let Θ = {θ1, . . . , θn} and letA = (C,R1, . . . , Rn) be a relational
structure where the arity ofRi equals|θi|. Let adom(A) denote theactive
domainof A, i.e., the set of all elements inC actually mentioned in one of
theRi. It is easy to see that there is a homomorphism fromA to Struc(Θ)
if, and only if, there is a homomorphism from(adom(A), R1, . . . , Rn) to
Struc(Θ).

We now createe such thatStruc(e) = (adom(A), R1, . . . , Rn). This is
true whenevere is of the formσ . . . σ(r) such that for everyRi and every
tuple(c1, . . . , ck) in Ri there is a subexpression of the formσθi(c1,...,ck)(e′)
in e. Here we viewc1, . . . , ck as attribute names. It is easy to see that we
can create such ane in logarithmic space: we simply iterate over the tuples
in A, and in each iteration add an extra selection operator of the correct
form to the expression built so far.ut

Corollary 6. LetV be a subset of the relational algebra operators contain-
ing σ. ThenT (RΘ

V) is NP-complete ifH(Struc(Θ)) is.

As we have noted before, there are structuresB for whichH(B) is NP-
complete. For every such structureB = (C,S1, . . . , Sn) we can create a
set of predicatesΘ such thatStruc(θ) = B. Indeed, we simply takeΘ to
contain predicatesθ1, . . . , θn such that|θi| equals the arity ofSi, and such
that ς(θi) = Si. Hence, there are predicate setsΘ for which T (RΘ

V) is
NP-complete.

On the positive side, the following corollary to Lemma 4 tells us that
the complexity ofT (RΘ

∪,−,on,σ) is in P whenH(Struc(Θ)) is in P.

10 Stijn Vansummeren

Corollary 7. If Θ is a finite, non-empty set of predicates, thenT (RΘ
∪,−,on,σ)

is LOGSPACEreducible toH(Struc(Θ)).

This result cannot be generalized further to includeπ or ρ. To see why,
let us fix a set of unary predicatesΩ = {θ1, θ2} whereς(θ1) = {0} and
ς(θ2) = {1}. Here,0 and1 are base types. Note that such predicates will
occur in practice. For instance, we can interpretθ1 by “equals 5” with0
being the base typeint andθ2 by “equals Mary” with1 being the base
typestring .

Theorem 8.WithΩ the set of predicates described above,H(Struc(Ω)) is
in P, butT (RΩ

on,σ,π) andT (RΩ
on,σ,ρ) are NP-complete.

Proof. Obviously,A = (C,R1, R2) ∈ H(Struc(Ω)) if, and only if, R1 ∩
R2 = ∅, which can be checked in polynomial time.

We only need to show NP-hardness ofT (RΩ
∪,−,on,σ,π,ρ), for which we

modify a reduction invented by Ohori and Buneman [4]. The reduction is
from MONOTONE 3SAT [3]: decide whether there is a satisfying truth as-
signment for a given 3CNF boolean formulaφ whose clauses are either all
variables (called a positive clause) or all negated variables (called a negative
clause).

Let φ = (a1
1 ∨ a1

2 ∨ a1
3) ∧ · · · ∧ (an

1 ∨ an
2 ∨ an

3) be such a formula.
We will create an expressioneφ such thateφ is typable if, and only if,φ
is satisfiable. We will use the variables and negated variablesa1

1, . . . , a
n
3 of

φ as relation names. Intuitively, we encode truth assignmentsw on the set
X of all variables inφ by type assignmentsΓ whereA ∈ dom(Γ (x)) if,
and only, ifw(x) is true andA ∈ dom(Γ (x)) if, and only if,w(x) is false.
Here, we denote byx a variable and byx a negated variable.

Let us first define, for every variablex in φ, the expression:

ex := πBσθ1(A)(x on x1) on πBσθ2(A)(x on x2) on πBπA,B(x on x).

Intuitively, ex is used to verify that every type assignment under which
eφ is well-typed is indeed an encoding of a truth assignment. The whole
expression is now defined by:

eφ := on
x∈X

ex on
n
on
i=1

πBπA,B(ai
1 on ai

2 on ai
3).

It is clear thateφ can be constructed fromφ in logarithmic space.
Suppose thatφ is satisfiable. Then there exists a satisfying truth assign-

mentw on the variables ofφ. To show thateφ is typable, we construct the
type assignmentΓ on Relvars(e) as follows. Letτ be a type which is un-
defined on all attributes exceptB. Let τ1 andτ2 be the types with domain

On the complexity of deciding typability in the relational algebra 11

{A} such thatτ1(A) = 0 andτ2(A) = 1. If w(x) is true, then we define

Γ (x) := τ ∪ τ1 Γ (x) := ∅
Γ (x1) := ∅ Γ (x2) := τ ∪ τ2

Otherwise, we define

Γ (x) := ∅ Γ (x) := τ ∪ τ2

Γ (x1) := τ ∪ τ1 Γ (x2) := ∅

The reader is asked to verify thatex has output typeτ underΓ . Since every
clause inφ consists entirely of un-negated variables, or entirely of negated
variables, and since by constructionΓ (x) ∼ Γ (y) andΓ (x) ∼ Γ (y) for
every variablex andy, the subexpressions(ai

1 on ai
2 on ai

3) are well-typed
underΓ . Moreover, sincew(ai

1 ∨ ai
2 ∨ ai

3) is true, at least one ofΓ (ai
1),

Γ (ai
2) andΓ (ai

3) is defined onA andB. SinceΓ (ai
1) ∪ Γ (ai

2) ∪ Γ (ai
3) is

the type of(ai
1 on ai

2 on ai
3) underΓ , we know thatπBπA,B(ai

1 on ai
2 on ai

3)
also has typeτ underΓ . Theneφ is well-typed underΓ , since it is a join of
subexpressions of typeτ and sinceτ is certainly compatible with itself.

Conversely, supposeeφ is typable. Then there exists a type assignment
Γ on Relvars(e) such that every subexpression ofe is well-typed under
Γ . In particular,ex is well-typed underΓ for every variablex. ThenΓ
encodes a truth assignment. Indeed, the subexpressionπBπA,B(x on x) of
ex requires thatA ∈ dom(Γ (x)) or A ∈ dom(Γ (x)). However, ifA ∈
dom(Γ (x)), then subexpressionσθ1(A)(x on x1) of ex requiresΓ (x)(A) =
0, while subexpressionσθ2(A)(x on x2) requiresΓ (x)(A) = 1 whenA ∈
dom(Γ (x)). Since subexpressionx on x of ex requires thatΓ (x) andΓ (x)
are compatible, we haveA ∈ dom(Γ (x)) if, and only if, A 6∈ dom(Γ (x)).
Let w be the truth assignment such thatw(x) is true if, and only if,A ∈
dom(Γ (x)). Let1 ≤ i ≤ n. SinceπA,B(ai

1 on ai
2 on ai

3) is well-typed under
Γ , the type ofai

1 on ai
2 on ai

3 must defined onA. Hence,Γ (ai
j) is defined on

A for some1 ≤ j ≤ 3. We have two cases. Eitherai
j = x for some variable

x, meaning that thei-th clause inφ is positive. Thenw(ai
1 ∨ ai

2 ∨ ai
3) is

true sincew(ai
j) is true. Otherwise,ai

j = x for some variablex and the
i-th clause ofφ is negative. ThenΓ (x) cannot be defined onA sinceΓ (x)
is defined onA. Hence,w(x) is false which meansw(x) is true and thus
w(ai

1 ∨ ai
2 ∨ ai

3) is true. Hence,φ is satisfiable.
To show NP-hardness ofT (RΩ

on,σ,ρ) a similar reduction can be made:
we define

ex :=ρA/Cx
σθ1(A)(x on x1) on ρA/Dx

σθ2(A)(x on x2) on ρA/Ex
(x on x)

eφ := on
x∈X

ex on
n
on
i=1

ρA/Fi
(ai

1 on ai
2 on ai

3).

12 Stijn Vansummeren

Here the auxiliary attributesCx, Dx, Ex, andFi are used to prevent base-
type clashes between the various subexpressions.ut

As a consequence,T (RΩ
V) is NP-complete wheneverV includes{on

, σ, π} or {on, σ, ρ} as a subset of operators.
The predicate setΩ depends heavily on the presence of more than one

base type. What is the complexity of deciding typability when we have only
one base type, as in the original setting of Van den Bussche and Waller? As
we will show, this can be done in polynomial time. This implies that we can
at least efficiently check expressions for mistakes that require an attribute
to be present and absent at the same time, as for example inρA/B(πB(r)).

Theorem 9.Let Θ be a finite set of predicates over at most one base type,
so|β(Θ)| = 1. ThenT (RΘ

∪,−,on,σ,π,ρ) is in P.

To prove this Theorem, we will show that we can always reformulate the
typability problem as a non-uniform CSP which is solvable in polynomial
time. Since|β(Θ)| = 1, there can be no base-type clashes in an expression
e, and hence we only need to verify that attributes are used consistently, i.e.
that an attribute is not required to be present and absent at the same time.

We will record the requirements the type system makes on the pres-
ence or absence of attributes in an relational structure as follows. Lete′� e
denote the fact thate′ is a subexpression ofe. To each expressione ∈
RΘ
∪,−,on,σ,π,ρ we then associate the relational structure

Ae = (Ce, De, Ue, Ee, Je)

where

– Ce is a set ofvariablesof the formAe′
wheree′ is a subexpression ofe

andA is an attribute occurring ine;
– De is the set of variablesAe′

for which the type system requires thatA is
present in the output type of subexpressione′ under any type assignment
Γ which makese well-typed:

De = {Ae′ | σθ(B1,...,A,...,Bn)(e′)� e}
∪ {Ae′ | πB1,...,A,...,Bn(e′)� e}
∪ {Ae′

, BρA/B(e′) | ρA/B(e′)� e};

– Ue is the set of variablesAe′
for which the type system requires thatA

is absent in the output type ofe′ under any type assignmentΓ which
makese well-typed:

Ue = {AπB1,...,Bn (e′) | πB1,...,Bn(e′)� e,A 6∈ {B1, . . . , Bn}}
∪ {AρA/B(e′), Be′ | ρA/B(e′)� e};

On the complexity of deciding typability in the relational algebra 13

– Ee is the set of pairs of variables(Ae′
, Be′′

) for which the type system
requires thatA is present in the output type ofe′ under a type assignment
which makese well-defined, if, and only if,B is present in the output
type ofe′′ under this assignment:

Ee = {(Ae1 , Ae2), (Ae1∪e2 , Ae1) | e1 ∪ e2� e,A ∈ Specattrs(e)}
∪ {(Ae1 , Ae2), (Ae1−e2 , Ae1) | e1 − e2� e,A ∈ Specattrs(e)}
∪ {(Aσθ(A1,...,An)(e

′), Ae′
) | σθ(A1,...,An)(e′)� e,A ∈ Specattrs(e)};

– Je captures the relations between the attributes imposed by the type rule
for join:

Je = {(Ae1one2 , Ae1 , Ae2) | e1 on e2� e,A ∈ Specattrs(e)}.

It is clear thate is typable if, and only if, the requirements made by the
type system can be met, i.e., if there is a homomorphism fromAe to the
structureB = ({0, 1}, D, U, E, J) where

– D is used to verify that the attributes mentioned inDe are actually
present:D = {1};

– U is used to verify that the attributes mentioned inUe are actually ab-
sent:U = {0};

– E is used to verify that for the pairs of variables(Ae′
, Be′′

) mentioned
in Ee, A is present in the output type ofe′ if, and only if, B is present
in the output type ofe′: E = {(0, 0), (1, 1)}; and

– J is used to verify that for the triples(Ae1one2 , Ae1 , Ae2) in Je, the pres-
ence ofA in the output type ofe1 on e2 follows the type rule for join:
J = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 0)}.

Such a relational structure, where the domain contains only two elements,
is called aboolean structure.

Lemma 10.Let Θ be a finite set of predicates. If|β(Θ)| = 1 and e ∈
RΘ
∪,−,on,σ,π,ρ, thene is typable if, and only if, there is a homomorphism

fromAe to B.

Proof. Suppose thate is well-typed under type assignmentΓ . Then every
subexpressione′ of e is well-typed underΓ . Let τe′ be the type ofe′ under
Γ . Define the functionf fromCe to{0, 1} such thatf(Ae′

) = 1 if, and only
if, A ∈ dom(τe′). It is easy to show thatf is a homomorphism fromAe to
B. For example, if(Ae1∪e2 , Ae1) ∈ Ee, thene1 ∪ e2� e by construction.
By the type rule for union, we know thatτe1 = τe1∪e2 . Hencef(Ae1) =
f(Ae1∪e2) and thus(f(Ae1∪e2), f(Ae1)) ∈ E. Similar reasonings can be
made for the other cases.

Conversely, leth be a homomorphism fromAe toB. Let b be the single
base type inβ(Θ). For every subexpressione′ of e we defineτe′ such that

14 Stijn Vansummeren

τe′(A) = b if f(Ae′
) = 1, andτe′ is undefined onA otherwise. LetΓ

be the type assignment such thatΓ (r) = τr for every r ∈ Relvars(e).
It is easy to show by induction one′ that Γ ` e′ : τe′ . For example, if
e′ = σθ(A1,...,An)(e′′), thenΓ ` e′′ : τe′′ by the induction hypothesis. By

construction,Ae′′
i ∈ De for 1 ≤ i ≤ n. Hence,f(Ae′′

i) ∈ D = {1} and
thusA ∈ dom(τe′′). Moreover,(τe′′(A1), . . . , τe′′(An)) = (b, . . . , b). Since
|β(Θ)| = 1, ς(θ) = {(b, . . . , b)}, and hence(τe′′(A1), . . . , τe′′(An)) ∈
ς(θ). By the type rule for selection,Γ ` e′ : τe′′ . Since(Ae′

, Ae′′
) ∈ Ee,

we know that(f(Ae′
), f(Ae′′

)) ∈ E. Hence,f(Ae′
) = f(Ae′′

), τe′ = τe′′ ,
andΓ ` e′ : τe′ . Similar reasonings can be made for the other cases.ut

We recall the following important theorem from constraint satisfaction
theory, due to Shaefer [6]:

Theorem 11 (Shaefer’s Dichotomy Theorem).

– If B is a Boolean structure, thenH(B) is in P or it is NP-complete.
– In particular, if every relation in a Boolean structureB is closed under

the functiong(x, y) = x ∨ y, thenH(B) is in P.

An n-ary relationR is closedunder the functiong(x, y) if for any two tu-
ples(a1, . . . , an) and(b1, . . . , bn) in R the tuple(g(a1, b1), . . . , g(an, bn))
is also inR. It is easy to see that every relation inB is closed underg.
Theorem 9 then follows from this theorem and Lemma 10.

As a corollary to Theorem 9,T (RΘ′
∪,−,on,π,ρ) is in P for any predicate

setΘ′, sinceRΘ′
∪,−,on,π,ρ ⊆ RΘ

∪,−,on,σ,π,ρ for all predicate setsΘ (and hence
in particular for those with|β(Θ)| = 1).

5 Conclusion

We have shown that deciding typability for the relational algebra is NP-
complete for many settings. In particular, ifV is a superset of{×,∪, π},
{×,−, π}, {×,−, σ}, {×,∪, σ}, or{×, ρ} then deciding typability forRΘ

V
is NP-complete for any set of predicatesΘ. Since every non-uniform con-
straint satisfaction problem can be expressed inRΘ

V whenV includesσ,
T (RΘ

V) is NP-complete wheneverH(Struc(Θ)) is. Furthermore, there ex-
ists a very simple set of predicatesΩ such that the constraint satisfaction
problem forΩ is in P, butT (RΩ

V) is NP-complete for any supersetV
of {on, π, σ} or {on, σ, ρ}. On the positive side, deciding typability of ex-
pressions inRΘ

∪,−,on,σ is in P when the constraint satisfaction problem for
Θ is in P. Furthermore, deciding typability of expressions inRΘ

∪,−,on,σ,π,ρ

whereΘ mentions only one base type (|β(Θ)| = 1) is also in P. This
implies that we can efficiently check expressions inRΘ

∪,−,on,σ,π,ρ for er-
rors requiring an attribute to be present and absent at the same time. Since

On the complexity of deciding typability in the relational algebra 15

RΘ′
∪,−,on,π,ρ ⊆ RΘ

∪,−,on,σ,π,ρ, this also implies thatT (RΘ′
∪,−,on,π,ρ) is in P for

any predicate setΘ′.

Acknowledgements.The author thanks Frank Neven, Jan Van den Bussche, Dirk Van Gucht
and the anonymous referees for comments on an earlier draft of this paper.

References

1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
2. C. J. Date.An Introduction to Database Systems. Addison-Wesley, 6th edition edition,

1995.
3. M. R. Garey and D. S. Johnson.Computer and Intractability, A Guide to the Theory of

NP-Completeness. Freeman, 1979.
4. A. Ohori and P. Buneman. Type inference in a database programming language. In

Proceedings of the 1988 ACM conference on LISP and functional programming. ACM
Press, 1988.

5. B. C. Pierce.Types and Programming Languages. MIT Press, 2002.
6. T. J. Schaefer. The complexity of satisfiability problems. InProceedings of the tenth

annual ACM symposium on Theory of computing, pages 216–226. ACM Press, 1978.
7. J. Van den Bussche and E. Waller. Polymorphic type inference for the relational algebra.

Jounal of Computer and System Sciences, 64:694–718, 2002.

