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Abstract. We investigate the complexity of the typability problem for the
relational algebra. This problem consists of deciding, for a given relational
algebra expression, whether there exists an assignment of types to variables
occurring in the expression such that the expression is well-typed under the
assignment. We obtain that the problem is NP-complete in general. In par-
ticular, we show that the problem becomes NP-hard due to (1) the cartesian
product operator; (2) the selection operator on arbitrary sets of typed predi-
cates; and (3) the selection operator on “well-behaved” sets of typed predi-
cates together with join and projection or renaming. However, the problem
is in P when (1) we only allow union, difference, join and selection on
“well-behaved” sets of typed predicates; or (2) we allow all operators ex-
cept cartesian product, where the set of selection predicates can mention at
most one base type. Most of these results follow from a close connection of
the typability problem to non-uniform constraint satisfaction.

1 Introduction

The relational algebra is the basis of all relational query languages [1, 2].
For a relational algebra expression to be well-defined, its relation variables
must satisfy certain requirements. For example, in order for the expression
o=5(r) to have any meaning, relatiomeeds to have an integer-valuéd
attribute. In the theory of programming languages [5], such requirements
are recorded ilypesandtype systemare used to discern ill-defined ex-
pressions from well-defined ones. In particular, well-defined expressions
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are those expressions that can be assigned a type in the system. Recently,
Van den Bussche and Waller [7] considered a type system for the relational
algebra. This system consists of a setygfe rulesallowing to derive the
output type of a program given types for its relation variables. If such an
output type can be derived for a given type assignment, the expression is
calledwell-typedunder the assignment. VVan den Bussche and Waller devel-
oped atype inferencalgorithm capable of determining tipeincipal type
formula of a given expression. This formula describes all assignments of
types to relation names, under which a given relational algebra expression
is well-typed, as well as the output type that expression will have under
each of these assignments.

For general motivations for studying type inference for the relational
algebra, we refer to Van den Bussche and Waller [7]. In this paper, we will
focus ontypability: deciding whether a given expression can ever be well-
defined; that is, does there exist a type assignment for which the expression
is well-typed? Traditional type inference algorithms also check typability
(i.e. they returdalseinstead of a principal type formula when an expression
is not typable). By studying the complexity of the typability problem, we
hence get an insight into the complexity of the corresponding type inference
problem.

Van den Bussche and Waller showed that typability for the relational al-
gebra is decidable in non-deterministic polynomial time. The precise com-
plexity remained open. In this paper we obtain that the problem is NP-
complete in general. In particular, we show that the problem becomes NP-
hard due to (1) the cartesian product operator; (2) the selection operator on
arbitrary sets of typed predicates; and (3) the selection operator on “well-
behaved” sets of typed predicates together with join and projection or re-
naming. However, the problem is in P when (1) we only allow union, dif-
ference, join and selection on “well-behaved” sets of typed predicates; or
(2) we allow all operators except cartesian product, where the set of selec-
tion predicates can mention at most one base type. Most of these results
follow from a close connection of the typability problem to non-uniform
constraint satisfaction.

This paper is further organized as follows. We introduce the type sys-
tem of Van den Bussche and Waller in Section 2, including the notions of
well-typedness and typability. We then show that the typability problem is
NP-complete in its most general setting in Section 3. In Section 4 we il-
lustrate the close connection between the typability problem and constraint
satisfaction problems, which allows us to obtain most of the results men-
tioned above. We summarize our results in Section 5.
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2 Preliminaries

The type system of Van den Bussche and Waller [7] considers an expres-
sion ill-defined if the schema of some subexpression is required to have
an attribute present and absent at the same time. Practical query languages
also consider an expression ill-defined if attributes are not used consistently
with regard to their base types. For instance, the relational algebra expres-
siono a—5(0a=ue(R)) would be considered correct in the framework of
Van den Bussche and Waller. The corresponding SQL expression would
be considered incorrect however, since an attribute cannot have base type
bool andint atthe same time. In this section, we therefore augment the
type system of Van den Bussche and Waller [7] with the ability to deal with
types on the attribute value level.

We assume given sufficiently large setsrefation variablesand at-
tribute namesRelation variables will be denoted by lowercase letters from
the end of the alphabet, whereas attribute names will be denoted by upper-
case letters from the beginning of the alphabet.

We also assume to be given a finite, non-empty sbasé typeésuch as
int ,string ,bool ,...) and a sufficiently large set gfredicateg(such
as=, <,...). Every predicaté has ararity |0, which is a natural number,
and asignaturec(#), which is a non-emptyp|-ary relation over the set of
base types. An example of a signature for the binary predicatéength is
{(string ,int )}, while an example of a signature for the binary predicate
=1is

{(int ,int ), (bool ,bool ), (string ,string )}.

Base types will be denoted Iay possibly subscripted. Predicates will be
denoted by, possibly subscripted. Finite sets of predicates will be denoted
by ©. The set of all base types mentioned in signatures of predicates in
will be denoted by3(O).

The relational algebra with selection predicate®indenoted byR®,
is the set of all expressions generated by the following grammar:

| (eUe)[(e—e)|(exe)|(exe)

| oocay,..A0)(€) [ Tay . 4,(e) | pasB(e)

Heree denotes an expressiondenotes a relation variablé denotes a se-
lection predicate it of arity n, and A, B, andA; denote attribute names.

If V is a set of operators, theR$ denotes the subset of expressions in
RE using only operators if. The semantics of relational algebra is the
well-known one [1,2] and will actually not concern us in the present pa-
per. The set of all relation variables occurring in expressios denoted
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rry=r I'Fei:m I'kbexy:7 I'kFei:m I'kFex:7
I'Er:r I'FeitUes: T I'Fel—ex:T
I'tei:mm I'bFex:mo
I'tFeir:mm I'bFex:m 11~ dom(71) Ndom(7e) = 0
ke Xey:T U I'ei xXex:1i Ut

I'te:7 A, ..., A, € domr)
(T(A1),...,7(An)) €5(9) I'te:7 A, ..., A, € dom(7)

I'toga,,..,an(e) i T I'tma,,.an(e): {A1,..., Ay}

I'te:7 Aedom(r) B ¢dom(T)
I'-pasple): pasp(r)

Fig. 1 The typing relation

by Relvarge) and the set of all attributes occurring énis denoted by
Specattrée).

A typer is a function from a finite set of attribute namesm() to
the set of base types. Two types a@mpatible denoted byr; ~ m, if
71(A) = 17 (A) for eachA in dom(r; ) Ndom(72). Clearly, the union of two
compatible types is defined, and is again a type.iffa type, them 4, 5(7)
is the type with domaidom()—{A}U{ B} suchthap 4,z (7)(B) = 7(4)
andp,p(7)(C) = 7(C) for everyC' € dom(t) — {A, B}. A schemds a
finite setS of relation variables. Aype assignmeran S is a mappingl”
onS, assigning to each e S atypel’(r).

Let e be an expression iR®, S a schema withRelvarge) C S, andI”
a type assignment ofi. Then the relatiod” F e : 7, indicating that has
typer under I, is defined by the rules in Figure 1. i € dom(7), then
we say that is presentin e underl”. We say thatd is absentin e under
I' otherwise. Note that has at most one type undEr which can easily be
derived fromI” by applying the rules in an order determined by the syntax
of expressiore.

The central notion of this paper is given by the following definition:

Definition 1. Lete be an expression iR® and letI” be a type assignment
on Relvarge). If there exists a type such thatl” + e : 7, we say thae
is well-typedunderI". Expressiore is calledtypableif there exists a type
assignmen{” on Relvarge) such that is well-typed under".

Let V be a subset of the relational algebra operators. We denote the
set of all typable expressions RS by 7 (R{). Deciding membership of
T(RY) is called thetypability problem
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3 Deciding typability

Van den Bussche and Waller noted that the typability problem can be solved
in non-deterministic polynomial time [7]. We reiterate their result here for
completeness’ sake. fis a type and4 is a set of attribute names, then we
write 7| 4 for the type defined by|4(A) := 7(A) for every A in dom(7) N

A. If I' is a type assignment, then we writ& 4 for the type assignment
defined byl"| 4(r) := I'(r)| 4.

Lemma 2 (Van den Bussche and Waller)if I" - e : 7 and Specattrig) C
A, thenl'| 4 Fe: 7|a.

The proof is straightforward. As a consequence, in order to decide whether
there exists a type assignment under whidls well-typed, it suffices to
consider type assignmentswith the property that

dom(I'(r)) C Specattrée),

for everyr € Relvarge). It follows immediately that typability is in NP.
This upper bound is tight, as the following theorem shows.

Theorem 3.7 (R?) is NP-complete for any predicate-séx

Proof. We give a LoGspPACEreduction from ®SITIVE ONE-IN-THREE
3SAT, which is known to be NP-hard [3]. ThedBITIVE ONE-IN-THREE
3SAT problem consists of deciding for a given 3CNF formula with only
positive clauses of the forifx: \V y V z), whether there exists a truth assign-
ment that makes exactly one literal per clause true.

Let¢ = (z1Vy1 Vz1) A A(xn Vyn V z,) be a 3CNF formula where
every clause is positive. LeX be the set of all variables occurring in
We construct the expressiep using X as relation variables, such thats
one-in-three satisfiable if, and only iy is typable:

n
ey = UT(‘A(:L‘l' X Yi X 2;).
i=1

It is clear thate, can be constructed frogin logarithmic space.
Supposeyp is one-in-three satisfiable. Then there exists a truth assign-

mentw on X such that for every exactly one ofuv(z;), w(y;), andw(z;) is
true. To show that,, is typable, we construct the type assignmeran X
as follows. Letr be a type with domaigA}. We definel’(z) := 7 if w(z)
is true, andl"'(z) := () otherwise. Since exactly one af(x;), w(y;) and
w(z;) is true for everyi, we have by construction that exactly one/dfr;),
I'(y;),andI’(z;) is T, the others bein@. Since the domains df (x;), I'(y;)
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andI'(z;) are then disjoint and sincB(x;) U I'(y;) U I'(z;) = 7, the ex-
pressionse; X y; X z; have typer underl". Then everyra(z; X y; X z;)
also has type underI". Therefore every operand of the union operator has
type, and thuszy4 is well-typed under".

Conversely, supposg; is typable. Then there exists a type assignment
I" on X such that every subexpressionedfincluding e) is well-typed un-
der I'. To show thatp is satisfiable, we construct the truth assignment
on X such thatw(u) is true if, and only if, A € domI'(u)). Since ev-
eryma(x; X y; X z) is well-typed unded”, the type ofz; x y; x z; must
be defined oM. Because of the typing rule fox, this means that at ex-
actly one ofl"(x;), I'(y;), andI'(z;) is defined orA. Hence, exactly one of
w(z;), w(y;), orw(z;) is true for everyi, and¢ is one-in-three satisfiable.
0

The following natural question now arises: for which operators of the
relational algebra can typability be decided in polynomial time? We note
that expressions iﬁl%ﬁ,_%X are always typable, hencE(RS_%X) iS
trivially in P. However, addingr, p, or o to the set of operators immediately
makes the problem NP-complete. This is clear fofrom the reduction
above. Also, the reduction still works if we defing as

n
e¢ = ,XllOA/Bz(xi X Y; X ZZ)

1=

Here theB; are auxiliary attribute names used to make sure that the various
operands ok have a disjoint domain. Finally, € @, then we can define
€g as:

n
€y ‘= U 0—9(1417---7Ak)(mi X Y; X Zz)

=1

Indeed, if¢ is one-in-three satisfiable, then we can show typability of
simply by takingr in the reasoning above to be a type for which

(T(A1),...,7(Ax)) € <(0).

Conversely, ife, is typable, we can show one-in-three satisfiabilitygof
by takingw in the reasoning above such thatu) is true if, and only if,
Ay € dom(I'(u)).

Hence, deciding typability for restrictions of the relational algebra con-
taining{—, x, 7}, {—, x,0}, {U, x,0}, or{x, p} as a subset of operators
remains NP-complete for any (non-empty) predicatecset
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4 Typability and constraint satisfaction

The results of Section 3 seem to imply that the cartesian product operator is
the main reason why the typability problem is NP-hard. Consider expres-
sions of the following form however:

In order to decide typability of such expressions, we need to make sure that
there are no base-type clashes between the various uses of an attribute. It is
not hard to see that this is another potential source of intractability.

We will formalize this intuition by showing that typability iR? is a
disguised form of thenon-uniform constraint satisfaction problemvhich
is known to be NP-complete in general.

A relational structureis a tuple(C, Ry, ..., R,) whereC'is a finite
set andR;, ..., R, are relations ove€. Let A = (C,R;,...,R,) and
B = (D,S5,...,S,) be two relational structures where the arity ®f
equals the arity ob; for everyl < i < n. A homomorphisnirom A to B
is a functioni from C' to D such that forl < i < n:

(61, .. -7Ck¢) €ER;, = (h(Cl), .. .,h(Cki)) € 5;.

Here,k; denotes the arity ok; andS;.

The constraint satisfaction probleronsists of deciding, given rela-
tional structuresA andB whether there is a homomorphism fromto B.
This problem is NP-complete in general, since itis clearly in NP and it con-
tains NP-hard problems as special cases. For example) LB RABILITY
is equivalent to the problem of deciding whether there is a homomorphism
from a given graptH to the complete graph withnodes

K3 = ({Tvgv b}7 {(7’, b)? (b,T‘), (Ta g)? (Q,T‘), (b79)7 (gv b)})

The constraint satisfaction problem for whighis fixed is calledthe
non-uniform constraint satisfaction probletmon-uniform CSP). Let us
define’H(B) as the set of all structures for which there exists a homomor-
phism toB. It is well-known that there exist structur&such thatH(B)
is NP-completeK 3 being an example).

We will now relate the typability problem to non-uniform CSP. et
{01, ...,0,} be aset of predicates. We define stieictureof an expression
e € R, denoted bystrude), as the relational structure

(Specattrge), 01 (e), ..., 0,(e)),
where

0i(e) = {(A1, ... Ajp,)) | 06,(4,.....4,,)(¢') is asubexpression ef.
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Likewise, we define thetructure of ©, denoted byStrud®), as the
relational structuré3(0),<(61), .. .,<(6,)). Here,3(©) denotes the set of
all base types mentioned in the signatures of predicatés in

Lemma 4.1f © is a finite set of predicates andc RS, _, thene is

typable if, and only if, there is a homomorphism from é@él)ltizo Strud¢o).

Proof. Intuitively, we need to make sure that there are no base-type clashes
between the various uses of an attribute in order to decide typability of
e. This is exactly what the existence of a homomorphism f&tnude) to
Struq©) indicates.

Formally, suppose that there is a homomorphisrfrom Struge) to
Strud®). Let I" be the type assignment defined byr) = h for every
r € Relvarge). In order to show that is typable, it suffices that to show
that every subexpressiehof e has typeh underl”. We do so by induction
one'.

— Clearly,I" -1 : h.

—Ifel =e;Uesore =e; —ey, thenl' ey : handI' - e : h by the
induction hypothesis. Hence, all the premises of the type rule for union,
respectively difference, are met afhd- ¢’ : h holds.

— If ¢ = e; ™ ey, thenthenl ey : handI' - es : h by the induction
hypothesis. Clearlys ~ h andh = h U h. Hence, all the premises of
the type rule for join are met anfd I~ ¢’ : h holds.

— If ' = 0g9,(a,,..4,)(€"), then we have by the induction hypothesis that
'+ €” : h.Bydefinition,(A, ..., Ax) € 0;(e). Since{ Ay, ..., Ax} C
Specattrée) and sinceh is a homomorphism frorBtrude) to Strud©)
we have(h(A1),...,h(Ax)) € <(6;). Hence, all the premises of the
type rule for selection are met ad- ¢’ : h holds.

Conversely, suppose that there exists a type assignmanter which
e is well-typed. Let us writer, for the type ofe under” and let us write
H (e) for the set of homomorphisms froBtrude) to Struq®). We prove
by induction ore that 7. |specattree) € H (€)-

— This is clear ife = r.

—If e = e; Ueg, thenr, = 7., = 7., by the type rule for union.
ThenTe|specattree;) € H(e1) ande|specatirge,) € H(e2) by the induc-
tion hypothesis. SincBtruge) = Strude; ) U Strudeg), it follows that
Te|specatirge) € H(e). If e = e1 — ea we make an analogous reasoning.

—Ife = e ™ e thenr, ~ 7, andr. = 7., U 7., by the type
rule for join. Moreover,r, |specatirée;) € H(e1) and e, [specattrges) €
H (e2) by the induction hypothesis. Sineg |specattrge;)  Telspecattrée)
and 7e, |specattrées) S Telspecattrge), @nd sinceStrude) = Strude;) U
Strudes), it follows that7[specatrge) € H (€)-
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—If e = 0g,(a,,..4,)(€), thenty |Specattr$€ € H(¢') by the induction
hypothesis. Furthermorér. (A1), ..., 7 (Ak)) € ¢(6;) andre = 7o
by the type rule for. Forl < j < n we have

0.(c) = (YU{(AL,...,Ap)} ifi=
) otherwise

Henceﬂ'e|8pecattr$e) € H(e). O

Using this lemma, we may conclude that typability is as least as difficult
as non-uniform CSP.

Theorem 5.1f @ is a finite, non-empty set of predicates avids a sub-
set of the relational algebra operators containingthen (Struq®)) is
LoGsPAcEreducible to7 (R9).

Proof. We show that for every relational structuAewe can create an ex-
pressiore € R (in logarithmic space) such that there is a homomorphism
from A to Struq @) if, and only if, there is a homomorphism fro8truqe)

to Strug©). The result then follows by Lemma 4.

Let® = {6y,...,0,} and letA = (C,Ry,...,R,) be a relational
structure where the arity d®; equals|d;|. Letadon{A) denote theactive
domainof A, i.e., the set of all elements @ actually mentioned in one of
the R;. It is easy to see that there is a homomorphism fearto Struq©)
if, and only if, there is a homomorphism frofadom(A), Ry, ..., R,,) to
Strug o).

We now create such thatStruge) = (adom(A), Ry, ..., R,). Thisis
true whenevee is of the formo ... o(r) such that for evenyi,; and every
tuple(ci, . . ., cx) in R; there is a subexpression of the fos) ., . c,)(€)
in e. Here we viewes, . .., ¢, as attribute names. It is easy to see that we
can create such anin logarithmic space: we simply iterate over the tuples
in A, and in each iteration add an extra selection operator of the correct
form to the expression built so far.0

Corollary 6. LetV be a subset of the relational algebra operators contain-
ing o. ThenZ (RY) is NP-complete ifH (Strud©)) is

As we have noted before, there are structBder which+(B) is NP-

complete. For every such structuB2= (C, Si,...,S,) we can create a
set of predicate® such thatStruq#) = B. Indeed, we simply také® to
contain predicateg, . . ., 6,, such thatf;| equals the arity of;, and such

thatc(d;) = S;. Hence, there are predicate sésor which 7 (R?) is
NP-complete.

On the positive side, the following corollary to Lemma 4 tells us that
the complexity of7 (RS _ ,, ,) is in P whenH(Strud®)) is in P.



10 Stijn Vansummeren

Corollary 7. If © is a finite, non-empty set of predicates, thefRS _ . )
is LoGsPACEreducible toH (Strud®)).

This result cannot be generalized further to inclader p. To see why;,
let us fix a set of unary predicaté€s = {6, 6>} wherec(#;) = {0} and
¢(#2) = {1}. Here,0 and1 are base types. Note that such predicates will
occur in practice. For instance, we can intergteby “equals 5” with0
being the base typmt andd, by “equals Mary” with1 being the base
typestring

Theorem 8.With {2 the set of predicates described abokgStruq (2)) is
in P, but7 (R ) and7T (RS ) are NP-complete.

X,0,7m X,0,p

Proof. Obviously,A = (C, R, R2) € H(Struq{2)) if, and only if, R; N
Ry = (), which can be checked in polynomial time.

We only need to show NP-hardness®fR{ _ ,, , . ,), for which we
modify a reduction invented by Ohori and Buneman [4]. The reduction is
from MONOTONE 3SAT [3]: decide whether there is a satisfying truth as-
signment for a given 3CNF boolean formulavhose clauses are either all
variables (called a positive clause) or all negated variables (called a negative
clause).

Letp = (ai ValVval) A---A(a] Vad vV a}) be such a formula.
We will create an expression, such thatey is typable if, and only if,¢
is satisfiable. We will use the variables and negated variajles . , a3 of
¢ as relation names. Intuitively, we encode truth assignmerds the set
X of all variables in¢ by type assignmentg whereA € dom(I'(z)) if,
and only, ifw(z) is true andA € dom(I'(z)) if, and only if, w(x) is false.
Here, we denote by a variable and by a negated variable.

Let us first define, for every variablein ¢, the expression:

€y 1= WBagl(A)(x X xl) X WBUQQ(A)(E X .I'Q) X 7TBTI'A7B((£ X f)

Intuitively, e, is used to verify that every type assignment under which
e4 is well-typed is indeed an encoding of a truth assignment. The whole
expression is now defined by:

esi= M ey % X Tpmap(al xah X ah).
reX i=1
It is clear that, can be constructed frogin logarithmic space.

Suppose thap is satisfiable. Then there exists a satisfying truth assign-
mentw on the variables of. To show thatk,, is typable, we construct the
type assignment’ on Relvarge) as follows. Letr be a type which is un-
defined on all attributes except. Let 11 andr, be the types with domain
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{A} such thatr;(A) = 0 andm(A) = 1. If w(x) is true, then we define

I(z) :=7Umn 'z =0
I(xzy) =10 IMxg) :=7Um

Otherwise, we define

I(z) =10 I'z) =71
I(x1):=7Un [(xg) =0

The reader is asked to verify that has output type under!”. Since every
clause ing consists entirely of un-negated variables, or entirely of negated
variables, and since by constructidiiz) ~ I'(y) and'(z) ~ I'(y) for
every variabler andy, the subexpressiorig} x a} x a}) are well-typed
under’. Moreover, sincev(aj V ab V aj) is true, at least one af'(a}),
I'(ab) andI'(aj) is defined ond and B. Sincel’(a}) U I'(aj) U F(a3) is
the type of(al x a} x @) underl’, we know thatr g4 B(al X ah X a3)
also has type underI". Theney is well-typed under’, since it is a join of
subexpressions of tygeand sincer is certainly compatible with itself.

Conversely, supposg; is typable. Then there exists a type assignment
I" on Relvarge) such that every subexpression ofs well-typed under
I'. In particular,e; is well-typed underl” for every variablex. ThenI”
encodes a truth assignment. Indeed, the subexpression p(z X z) of
e; requires thatd € domI'(z)) or A € dom(I'(z)). However, ifA €
dom(I'(z)), then subexpressiary, 4)(z X x1) of e, requiresl’(z)(A) =
0, while subexpressiony, 4)(z x x2) requiresl’'(z)(A) = 1 whenA €
dom(I'(z)). Since subexpressianx = of e, requires thaf '(z) and'(7)
are compatible, we havé € dom(I'(z)) if, and only if, A ¢ dom(I'(x)).
Let w be the truth assignment such thatr) is true if, and only if,A €
dom(I'(z)). Letl < i < n. Sincera Blal x dl xal)is well-typed under
I, the type ofu} x a} x a} must defined ont. HenceI'(a )|s defined on
Aforsomel < j < 3. We have two cases. Elthe}f =z for some variable
x, meaning that the-th clause ing is positive. Thenw(a} V @} Vv aj) is
true sincew(a J) is true. Otherwiseq’ = 7 for some variabler and the
i-th clause ofp is negative. Thed (x) cannot be defined oA sincel (T)
is defined onA. Hence,w(z) is false which means(z) is true and thus

w(al Vv ab Vv a}) is true. Henceg is satisfiable.

To show NP-hardness df(R{fgp) a similar reduction can be made:

we define

€z 5:PA/01061(A)($ X Z1) X pA/D,Th,(4)(T X T2) X pa/p, (T X T)

ep = X ey X M PA/F(CH X ab X ah).
zeX
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Here the auxiliary attribute§€',, D,., E,., and F; are used to prevent base-
type clashes between the various subexpressians.

As a consequencd, (R{) is NP-complete whenever includes{x
,o,m}or{x,o, p} as a subset of operators.

The predicate se® depends heavily on the presence of more than one
base type. What is the complexity of deciding typability when we have only
one base type, as in the original setting of Van den Bussche and Waller? As
we will show, this can be done in polynomial time. This implies that we can
at least efficiently check expressions for mistakes that require an attribute
to be present and absent at the same time, as for example ii7(7)).

Theorem 9.Let © be a finite set of predicates over at most one base type,
s0|8(0)| = 1. ThenT (R _ i 5.+.,) iSinP.

To prove this Theorem, we will show that we can always reformulate the
typability problem as a non-uniform CSP which is solvable in polynomial
time. Since3(©)| = 1, there can be no base-type clashes in an expression
e, and hence we only need to verify that attributes are used consistently, i.e.
that an attribute is not required to be present and absent at the same time.

We will record the requirements the type system makes on the pres-
ence or absence of attributes in an relational structure as follows’ ket
denote the fact that’ is a subexpression af. To each expressioa €
RE we then associate the relational structure

va’Nvo-Jrvp

Ae == (067 D€7 U67 E€7 Je)

where

— C, is a set ofvariablesof the form A" wheree’ is a subexpression ef
and A is an attribute occurring is;
— D, is the set of variabled®’ for which the type system requires théts
present in the output type of subexpressibander any type assignment
I" which makes: well-typed:
D. = {Ae: | 09(By,....A,....Bn) (€]) 2 €}
U{A® | 7B, ..A,..B, ()€}
U {4, BPrars@) | py p(e) <e};

— U, is the set of variabled®’ for which the type system requires théat
is absent in the output type ef under any type assignmeit which
makese well-typed:

U, = {A”Bl ,,,,, By (€) | ﬂ'Bl’“.’Bn(e,) <e, Ad {Bl, ceey Bn}}
U {4rasB(e) B | pasp(e) Zel;
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— E, is the set of pairs of variablgsi®’, B¢") for which the type system
requires thatl is present in the output type efunder a type assignment
which makes: well-defined, if, and only if.B is present in the output
type ofe” under this assignment:

E. = {(A®, A%2) (A2 A1) | e; Uey <€, A € Specattrée) }
U {(A%, A%?), (A2 A1) | e — eg < e, A € Specattrée)}
U {(A%0ram €AY [ oy a4y (€') Ze, A € Specattrée) };

— J. captures the relations between the attributes imposed by the type rule
for join:

Jo = {(A1Xe2 A% A°) | e X eg < e, A € Specattrée)}.

Itis clear thate is typable if, and only if, the requirements made by the
type system can be met, i.e., if there is a homomorphism fAqnio the
structureB = ({0,1}, D, U, E, J) where

— D is used to verify that the attributes mentioned/iy are actually
presentD = {1},

— U is used to verify that the attributes mentionedinare actually ab-
sent:U = {0};

— Eis used to verify that for the pairs of variabled®’, B¢") mentioned
in E,., A is present in the output type ef if, and only if, B is present
in the output type o¢’: £ = {(0,0), (1,1)}; and

— Jis used to verify that for the triplgsA©1®¢2, A°1 | A°?)in J,, the pres-
ence ofA in the output type ok, x e follows the type rule for join:
J=1{(1,1,1),(1,1,0),(1,0,1),(0,0,0)}.

Such a relational structure, where the domain contains only two elements,
is called aboolean structure

Lemma 10.Let © be a finite set of predicates. |#(©)| = 1 ande €
RE _ .o, thene is typable if, and only if, there is a homomorphism

from A, to B.

Proof. Suppose that is well-typed under type assignmehit Then every
subexpression’ of ¢ is well-typed under”. Let 7., be the type ot’ under
I". Define the functiorf from C to {0, 1} such thatf (A®') = 1if, and only
if, A € dom(7./). It is easy to show thaf is a homomorphism fromA. to
B. For example, ifl A°1Y¢2, A1) € E,, thene; U ez < e by construction.
By the type rule for union, we know that, = 7,ue,. Hencef(A®) =
f(AeYe2) and thus(f(A“Ye2), f(A°)) € E. Similar reasonings can be
made for the other cases.

Conversely, leh be a homomorphism from . to B. Letb be the single
base type in3(©). For every subexpressian of e we definer., such that
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To(A) = bif f(A¢) = 1, and. is undefined on4 otherwise. Letl”
be the type assignment such thatr) = 7, for everyr € Relvarge).

It is easy to show by induction o#f that " + ¢’ : 7... For example, if
e = 0p(a,,..,a,)(€"), thenl" = e” : 7. by the induction hypothesis. By
construction AS” € D, for 1 < i < n. Hence,f(A¢") € D = {1} and
thusA € dom(7.~). Moreover (7. (A1),...,Ter(Ay)) = (b, ..., b). Since
1B(@) = 1,<(0) = {(b,...,b)}, and hence(reu(Al),...l, reulgAn)) €
¢(#). By the type rule for selectiorf; - ¢’ : 7.». Since(A®, A°") € E.,
we know that( f(A®'), f(A¢")) € E. Hence,f(A¢) = f(A"), 7o = Ten,
andI" +- ¢’ : 7... Similar reasonings can be made for the other cases.

We recall the following important theorem from constraint satisfaction
theory, due to Shaefer [6]:

Theorem 11 (Shaefer’s Dichotomy Theorem).

—If B is a Boolean structure, theH(B) is in P or it is NP-complete.
— In particular, if every relation in a Boolean structui® is closed under
the functiong(z,y) = = V y, thenH(B) isin P.

An n-ary relationR is closedunder the functiory(z, y) if for any two tu-
ples(ai,...,a,) and(by,...,b,) in Rthe tuple(g(ay, b1), ..., g(an,by))
is also inR. It is easy to see that every relationBis closed undey).
Theorem 9 then follows from this theorem and Lemma 10.

As a corollary to Theorem QZ’(RQ”_,MJ’p) is in P for any predicate

set®’, sinceRS_ ., C RY for all predicate set® (and hence

,—,X,0,T,p

in particular for those with3(©)| = 1).

5 Conclusion

We have shown that deciding typability for the relational algebra is NP-
complete for many settings. In particular,Vif is a superset of x, U, 7},

{x,— 7} {x,—, 0}, {x,U,0}, or{x, p} then deciding typability foR

is NP-complete for any set of predicai@s Since every non-uniform con-
straint satisfaction problem can be expresse®{h whenV includeso,
T(RY) is NP-complete whenevé{(Struq®)) is. Furthermore, there ex-
ists a very simple set of predicatéssuch that the constraint satisfaction
problem for (2 is in P, butT(R{}) is NP-complete for any supersgt

of {x,m, o} or {x,o, p}. On the positive side, deciding typability of ex-
pressions irRS_MJ is in P when the constraint satisfaction problem for
O isin P. Furthermore, deciding typability of expressiong?jﬁ_mm,p
where ©® mentions only one base type3(©)| = 1) is also in P. This
implies that we can efficiently check expressionsRlﬁ_%Ump for er-

rors requiring an attribute to be present and absent at the same time. Since
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RE _ xp S RE this also implies thal (RS’ )isin P for

,_P - va’Mvgﬂrap’
any predicate sed’.

—, X,T,p
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