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Abstract: Over the last decade a variety of models to analyze incomplete multivariate
and longitudinal data have been proposed, many of which allowing for the missingness
to be not at random (MNAR), in the sense that the unobserved measurements influ-
ence the process governing missingness, in addition to influences coming from observed
measurements and/or covariates. The fundamental problems implied by such models,
to which we refer as sensitivity to unverifiable modelling assumptions, has, in turn,
sparked off various strands of research in what is now termed sensitivity analysis. The
nature of sensitivity originates from the fact that an MNAR model is not fully verifi-
able from the data, rendering the empirical distinction between MNAR and random
missingness (MAR), where only covariates and observed outcomes influence missing-
ness, hard or even impossible, unless one is prepared to accept the posited MNAR
model in an unquestioning way. Based on Molenberghs et al (2007), we show that the
empirical distinction between MAR and MNAR is not possible, in the sense that each
MNAR model fit to a set of observed data can be reproduced exactly by an MAR
counterpart. Of course, such a pair of models will produce different predictions of the
unobserved outcomes, given the observed ones. While MAR are easy to characterize
in the selection model and pattern-mixture modeling frameworks, this has not been
the case for shared-parameter models (SPM). To mend this, based on Creemers et al
(2008), we characterize MAR for the SPM framework, and study the form of the MAR
counterpart for an MNAR model in this context. Also, for all settings combined, we
examine the conditions that need to be imposed on models for longitudinal data to
ensure that missingness does not depend on future occasions. Two illustrations are
given, one based on the Slovenian Public Opinion survey, and one based on a clinical
trial in onychomycosis.
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1 Introduction

Incomplete sets of data are common throughout all branches of empirical re-
search. Incomplete data have always posed problems of imbalance in the data
matrix, but more importantly incompleteness often destroys a trial’s randomiza-
tion justification or a survey’s representativeness. The extent to which this hap-
pens depends on the nature of the missing data mechanism. Rubin (1976) dis-
tinguished between missing complete at random (MCAR), where the outcomes
are independent of the mechanism governing missingness, missing at random
(MAR), where there is dependence between both, but only in the sense that
missingness may depend on the observed, but not further on the unobserved
measurements. Finally, when a missing not at random (MNAR) mechanism op-
erates, missingness depends on the unobserved outcomes, perhaps in addition
to the observed ones.

During the same era, the selection model (SeM), pattern-mizture model
(PMM), and shared-parameter model (SPM) frameworks have been established.
In a selection model, the joint distribution of the ith subject’s outcomes, de-
noted Y;, and vector of missingness indicators, written R;, is factored as the
marginal outcome distribution and the conditional distribution of R; given Y.
A pattern-mixture approach starts from the reverse factorization. In a shared-
parameter model, a set of latent variables, latent classes, and/or random effects
is assumed to drive both the Y; and R; processes. An important version of
such a model further asserts that, conditional on the latent variables, Y; and
R; exhibit no further dependence. Rubin (1976) contributed the concept of
ignorability, stating that under precise conditions, the missing data mechanism
can be ignored when interest lies in inferences about the measurement process.
Combined with regularity conditions, ignorability applies to MCAR and MAR
combined, when likelihood or Bayesian inference routes are chosen, but the
stricter MCAR condition is required for frequentist inferences to be generally
valid.

Traditionally, such simple methods as a complete case analysis or simple
forms of imputation (e.g., last observation carried forward) have been in use.
While they have the advantage of restoring balance and/or a rectangular data
matrix, it is sufficiently documented that such analyses are prone to severe bias
and/or losses of efficiency (Molenberghs et al, 2004; Jansen et al, 2006) and
should be avoided. Since a likelihood-based or Bayesian analysis is valid when
the missing data mechanism is MAR, as long as all observed data are included
into the analysis, the so-called ignorability property, so-called direct likelihood
analyses, their Bayesian counterparts, or multiple imputation (Rubin, 1987),
are regarded by many as candidates for the primary analyses of a study. When
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semi-parametric inferences are desired, the methods proposed by Robins et al
(1995) can be applied.

However, one can never exclude the possibility that MNAR models may be
operating. Even though a variety of statistical models have been proposed for
the MNAR situation (Diggle, and Kenward, 1994; Baker, 1995; Molenberghs et
al, 1997; Troxel et al, 1998), and in spite of the dramatically increased computa-
tional power, such models are prone to considerable sensitivity. This was made
clear by a variety of discussants to Diggle, and Kenward (1994), such as Laird
(1994), Little (1994b), and Rubin (1994). Several authors have laid bare such
sensitivities and proposed methods for informal and formal sensitivity analysis
(Kenward, 1998; Robins et al, 1998; Molenberghs et al, 2001; Van Steen et al,
2001; Verbeke et al, 2001; Thijs et al, 2002; Jansen et al, 2003). Overviews are
provided in Verbeke, and Molenberghs (2000) and Molenberghs, and Verbeke
(2005).

One view is that testing the MAR null hypothesis against an MNAR alterna-
tive is of a conventional nature. While indeed Diggle, and Kenward (1994) have
conducted such tests, it is very important to realize that they are conditional
upon the alternative model holding.

One contribution of this paper, based on Molenberghs et al (2007), is to
show that, strictly speaking, the correctness of the alternative model can only
be verified in as far as it fits the observed data. Thus, evidence for or against
MNAR can only be provided within a particular, predefined parametric family,
the plausibility of which cannot be verified in empirical terms alone. We show
that an overall (omnibus) assessment of MAR versus MNAR is not possible,
since every MNAR model can be doubled up with a uniquely defined MAR
counterpart, producing exactly the same fit as the original MNAR, model, in the
sense that it produces exactly the same predictions to the observed data (e.g.,
fitted counts in an incomplete contingency table) as the original MNAR, model,
and depending on exactly the same parameter vector. We show that, while
this so-called MAR counterpart generally does not belong to a conventional
parametric family, its existence has important ramifications. While this broad
issue is still open to debate and even confusion, it has been pointed out in the
literature. For example, the issue has been referred to, in general terms, by
Little, and Rubin (2002) and, in a non- and semi-parametric context, by Gill,
van der Laan, and Robins (1997). An excellent exposition, together with related
references, can be found in Schafer and Graham (2002). Here, we focus on a
general construction method for this counterpart, which we make explicit for
the case of categorical data.

Now, the concept of MAR has typically been framed within the SeM frame-
work, while Molenberghs et al (1998) provided a formulation in the PMM setting
as well. For the particular case of longitudinal data with dropout, these authors
derived a set of so-called identifying restrictions, to identify the model for the
missing measurements given the observed ones within a missing-data pattern,
consistent with MAR. Molenberghs et al (2007) showed that for every MNAR,
model, there is an MAR counterpart that produces exactly the same fit to the



4 G. Molenberghs/M AR Counterparts

observed data. Hence the original model and its MAR counterpart cannot be
distinguished from one another. This can be viewed as a formalization of the
ideas put forward in Jansen et al (2006). These authors focused on the SeM
and PMM frameworks. Another contributed of this paper, based on Creemers
et al (2008), we will characterize MAR in the SPM framework as well and a con-
nection will be made with the MAR counterpart in the sense of Molenberghs
et al (2007). To this end, a broad class of SPM will be defined. Implications
for both non-monotone missing data as well as longitudinal data with dropout
will be considered. In particular, in analogy with the PMM work by Kenward
et al (2003), conditions will be derived to ensure future, unobserved measure-
ments provide no information about dropout in addition to what is available
from current and past measurements.

The rest of the paper is organized as follows. Section 2 introduces the two
motivating case studies. In Section 3 we outline the necessary concepts, termi-
nology, and notation. Section 4 presents our results regarding the MAR counter-
part to MNAR models. In Section 5 the specific case of incomplete contingency
tables is studied. Section 6 focuses on the specific case of shared-parameter
models, while Section 7 examines what conditions need to be imposed on mod-
els for incomplete longitudinal data, to ensure that the missingness mechanism
does not depend on future occasions. In Section 8 we apply the ideas developed
to data from the Slovenian Public Opinion Survey, analyzed before by Rubin et
al (1995) and Molenberghs et al (2001). Section 9 reports on the analysis of the
onychomycosis data.

2 Motivating Case Studies

2.1 The Slovenian Public Opinion Survey

In 1991 Slovenians voted for independence from former Yugoslavia in a plebiscite.
To prepare for this result, the Slovenian government collected data in the Slove-
nian Public Opinion Survey (SPO), a month prior to the plebiscite. Rubin et
al (1995) studied the three fundamental questions added to the SPO and, in
comparing it to the plebiscite’s outcome, drew conclusions about the missing
data process.

The three questions added were: (1) Are you in favour of Slovenian indepen-
dence? (2) Are you in favour of Slovenia’s secession from Yugoslavia? (3) Will
you attend the plebiscite? In spite of their apparent equivalence, questions (1)
and (2) are different since independence would have been possible in confederal
form as well and therefore the secession question is added. Question (3) is highly
relevant since the political decision was taken that not attending was treated as
an effective NO to question (1). Thus, the primary estimand is the proportion
of people that will be considered as voting YES, which is the fraction of people
answering yes to both the attendance and independence question. The raw data
are presented in Table 1. We will return to this question in Section 8.2.



Actas do XVI Congresso Anual da SPE 5

Tabela 1: Data from the Slovenian Public Opinion Survey. The Don’t Know
category s indicated by *.

Independence

Secession  Attendance Yes No *
Yes Yes 1191 8 21
No 8 0 4
* 107 3 9
No Yes 158 68 29
No 7 14 3
* 18 43 31
* Yes 90 2 109
No 1 2 25
* 19 8 96

Molenberghs et al (2001) reanalyzed these data and used them as motivation
to introduce their so-called intervals of ignorance, a formal way of incorporating
uncertainty stemming from incompleteness into the analysis of incomplete con-
tingency tables. To this end, they used the convenient model family proposed
by Baker et al (1992). We will now introduce the model family.

2.2 An Onychomycosis Trial

The data introduced in this section were obtained from a randomized, double-
blind, parallel group, multicenter study for the comparison of two oral treat-
ments (in the sequel coded as A and B) for toenail dermatophyte onychomycosis
(TDO), described in full detail by De Backer et al (1996). TDO is a common
toenail infection, difficult to treat, affecting more than 2 out of 100 persons
(Roberts, 1992). Anti-fungal compounds, classically used for treatment of TDO,
need to be taken until the whole nail has grown out healthy. The development of
new such compounds, however, has reduced the treatment duration to 3 months.
The aim of the present study was to compare the efficacy and safety of 12 weeks
of continuous therapy with treatment A or with treatment B.

In total, 2 x 189 patients, distributed over 36 centers, were randomized.
Subjects were followed during 12 weeks (3 months) of treatment and followed
further, up to a total of 48 weeks (12 months). Measurements were taken
at baseline, every month during treatment, and every 3 months afterwards,
resulting in a maximum of 7 measurements per subject. At the first occasion,
the treating physician indicates one of the affected toenails as the target nail,
the nail which will be followed over time. We will restrict our analyses to only
those patients for which the target nail was one of the two big toenails. This
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Figura 1: Toenail Data. Individual profiles of 30 randomly selected subjects in
each of the treatment groups in the toenail experiment.

Tabela 2: Toenail Data. Number and percentage of patients (N ) with severe
toenail infection, for each treatment arm separately.

Group A Group B

# Severe N % # Severe N %
Baseline 54 146 37.0% 55 148 37.2%
1 month 49 141 34.7% 48 147 32.6%
2 months 44 138 31.9% 40 145 27.6%
3 months 29 132 22.0% 29 140 20.7%
6 months 14 130 10.8% 8 133 6.0%
9 months 10 117  85% 8 127  6.3%
12 months 14 133 10.5% 6 131 4.6%

reduces our sample under consideration to 146 and 148 subjects, in group A
and group B, respectively.

Figure 1 shows the observed profiles of 30 randomly selected subjects from
treatment group A and treatment group B, respectively.

One of the responses of interest was the unaffected nail length, measured
from the nail bed to the infected part of the nail, which is always at the free end
of the nail, expressed in millimeters. This outcome has been studied extensively
in Verbeke, and Molenberghs (2000). Another important outcome in this study
was the severity of the infection, coded as 0 (not severe) or 1 (severe). The
question of interest was whether the downward evolution of severe infection
differs among treatment groups. A summary of the number of patients in the
study at each time-point, and the number of patients with severe infections
is given in Table 2. A graphical representation is given in Figure 2. Due to
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Tabela 3: Toenail Data. Number of available repeated measurements per subject,
for each treatment arm separately.

Group A Group B
# Obs. N % N %
7 107 73.29% 117 79.05%
6 25 17.12% 14 9.46%
5 2 1.37% 8  5.41%
4 2 1.37% 4 2.70%
3 4 2.74% 3 2.03%
2 2 1.37% 1 0.68%
1 4 2.74% 1 0.68%
Total: 146 100% 148 100%

a variety of reasons, the outcome has been measured at all 7 scheduled time
points, for only 224 (76%) out of the 298 participants. Table 3 summarizes
the number of available repeated measurements per subject, for both treatment
groups separately. We see that the occurrence of missingness is similar in both
treatment groups.

3 Notation and Concepts

Let the random variable Y;; denote the response of interest, for the 7th study
subject, designed to be measured at occasions t;;, 1 =1,...,N, j =1,...,n,.
Independence across subjects is assumed. This setting covers both the longi-
tudinal as well as the multivariate settings. In the latter case, t;; = t; would
merely be indicators for the various variables studied, and typically n; = n. The
outcomes can conveniently be grouped into a vector Y; = (Yi1,..., Y, ). In
addition, define a vector of missingness indicators R; = (R;1,..., Rin,) with
R;; = 1if Y;; is observed and 0 otherwise. In the specific case of dropout, R;
can usefully be replaced by the dropout indicator

D; = i Rij.
j=1

Note that the concept of dropout refers to time-ordered variables, such as in
longitudinal studies. For a complete sequence, R; = 1 and/or D; = n;. It is
customary to split the vector Y; into observed (Y7¢) and missing (Y;") com-
ponents, respectively. When R; is conditioned up, Y7 and Y}" explicitly refer
to the observed and missing components. In the reverse case, they refer to an
arbitrary partition of the outcome vector.
In principle, one would like to consider the density of the full data f(y,, 7|0, ),

where the parameter vectors 8 and v describe the measurement and missingness
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Figura 2: Toenail Data. FEvolution of the observed percentage of severe toenail
infections in the two treatment groups separately.

processes, respectively. Covariates are assumed to be measured and grouped in
a vector x; but, throughout, are suppressed from notation. Although unusual,
it is in principle possible for 8 and v to have components in common.

This full density function can be factored in different ways, each leading to
a different framework. They were mentioned briefly in the introduction. Here,
we will present them more formally but in their standard form of appearance.
In subsequent sections, they will be tailored to our needs, in particular the
shared-parameter model.

The selection model (SeM) framework is based on the following factorization
(Rubin, 1976; Little, and Rubin, 2002):

[, mil0,9) = f(y;10)f(rily;, V). (1)

The first factor is the marginal density of the measurement process and the sec-
ond one is the density of the missingness process, conditional on the outcomes.
As an alternative, one can consider so-called pattern-mizture models (PMM;
Little (1993, 1994a)) using the reversed factorization

f(y;,7il0,%) = f(y;|ri, 0)f(ri|v). (2)

This can be seen as a mixture density over different populations, each of which
is defined by the observed pattern of missingness.

Instead of using the selection modeling or pattern-mixture modeling frame-
works, the measurement and the dropout process can be jointly modeled using
a shared-parameter model (Wu, and Carroll, 1988; Wu, and Bailey, 1988, 1989;
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TenHave et al, 1998; Follmann, and Wu, 1995; Little, 1995). One then might
assume there exists a vector of random effects b;, conditional upon which the
measurement and dropout processes are independent. This shared-parameter
model (SPM) is formulated by way of the following factorization

(Y, rilbi, 0,9) = f(y;]bi, 0) f(rilbi, ), (3)
and hence

f(y;mil0,4) :/f(yi|bi7e)f(ri|bi7¢)f(bi)db’i' (4)

Here, b; are shared parameters, often considered to be random effects and fol-
lowing a specific parametric distribution. There are various other forms an SPM
can take, and a more thorough discussion can be found in Section 6.

The taxonomy of missing data mechanisms, introduced by Rubin (1976)
and informally described in the introduction, is customarily formalized using
the second factor on the right hand side of selection-model factorization (1). A

mechanism is MCAR if
f(rily;, ) = f(ril), (5)

i.e., when the measurement and missingness processes are independent, perhaps
conditional on covariates. For a given set of data, MAR holds when

frilys, ) = frily?, ), (6)

strictly weaker than the MCAR condition, but still a simplification of the MNAR,
case, where missingness depends on the unobserved outcomes y}*, regardless of
the observed outcomes and the covariates.

Note that MCAR is equally trivial in the pattern-mixture model frame-
work, where r; does not influence the mixture components, and in the shared-
parameter model framework, where no random-effects are shared among the two
factors in (3). The concept of MAR in the other framework is a different matter.
As reviewed in the next section, a PMM characterization has been proposed by
Molenberghs et al (1998). In Section 6, an SPM-based characterization will be
provided, one of the contributions of this manuscript.

A final useful concept we need is ignorability. Note that the contribution to
the likelihood of subject ¢, based on (1), equals

Li= [ Fwlo)f iyt v ) dy? 7)
In general, (7) does not simplify, but under MAR, we obtain:

Li = f(y716)f (rily?, ¢). (8)

Hence, likelihood and Bayesian inferences for the measurement model parame-
ters @ can be made without explicitly formulating the missing data mechanism,
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provided the parameters @ and 1) are distinct, meaning that their joint param-
eter space is the Cartesian product of the two component parameter spaces
(Rubin, 1976). For Bayesian inferences, additionally the priors need to be in-
dependent (Little, and Rubin, 2002). It is precisely this result which makes
so-called direct likelihood analyses, valid under MAR, viable candidates for
the status of primary analysis in clinical trials and a variety of other settings
(Molenberghs et al, 2004).

4 Every MNAR Model Has Got a MAR Counterpart

In this section, we will show that for every MNAR model fitted to a set of
data, there is an MAR counterpart providing exactly the same fit to the data.
Here, the concept of model fit should be understood as measured using such
conventional methods as deviance measures and, of course, in as far as the
observed data are concerned. The following steps are involved: (1) fitting an
MNAR model to the data; (2) reformulating the fitted model in PMM form; (3)
replacing the density or distribution of the unobserved measurements given the
observed ones and given a particular response pattern by its MAR counterpart;
(4) establishing that such an MAR counterpart uniquely exists. Throughout
this section, we will suppress covariates @; from notation, but assume them to
be present.

In the first step, we fit an MNAR model to the observed set of data. The
observed data likelihood is:

L=11 / Flyi® w7410, ) dyi™. (9)

Upon denoting the obtained parameter estimates, e.g., obtained by likelihood-
based or Bayesian methods, by 8 and ) respectively, the fit to the hypothetical
full data is

Flys® 9™, ril0,9) = f(yi® ™ (0) f(rily:®, yi™ ¥). (10)

To undertake the second step, full density (10) can be re-expressed in PMM
form as:

Fyi® yi™ i, 0,9) f(ri|8, )
= f(yi°|ri, 0,0) f(ri|0,9) f(y:" |yi®, i, 0,7). (11)

A similar reformulation can be considered for an SPM. In a PMM, the model
will have been expressed in this form to begin with.

Note that, in linE vg\ith PMM theory, the final term on the right hand side of
(11), f(y:™|yi°, di, 0,)), is not identified from the observed data. In this case, it
is determined solely from modelling assumptions. Within the PMM framework,
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identifying restrictions have to be considered (Little, 1994a; Molenberghs et al,
1998; Kenward et al, 2003).

The third step requires replacing this factor by the appropriate MAR coun-
terpart. To this end, we need the following lemma, formulating MAR equiva-
lently within the PMM framework.

Lemma 1 In the PMM framework, the missing data mechanism is MAR if and
only if
fWily?,ri,0) = f(yi"y7,0). (12)

This means that, in a given pattern, the conditional distribution of the unob-
served components given the observed ones equals the corresponding distribu-
tion marginalized over the patterns. The proof, which is rather straightforward
and similar to what can be found in Molenberghs et al (1998), is reported in
Molenberghs et al (2007). Note that, owing to this result, MAR can be formu-
lated in terms of R given Y, but also in terms of V" given R.
Using Lemma 1, it is clear that f(y;™|y;° 7;,60,1%) needs to be replaced
with R
h(yi" g% i) = h(ys" |yi%) = f(y" |y:°, 6, 4), (13)

where the h(-) notation is used for shorthand purposes. Note that the density
in (13) follows from the SeM-type marginal density of the complete data vector.
Sometimes, therefore, it may be more convenient to replace the notation y;°
and y;™ by one that explicitly indicates which components are observed and
missing in pattern r; under consideration:

h(yi™yi® i) = h(yi™yi) = Fl(yii)r, =0l (Yi)r,=1, 0, %). (14)

Thus, (14) provides a unique way of extending the model fit to the observed
data, belonging to the MAR family. As stated before, the above construction
does not lead to a member of a conventional parametric family. While this
obviously implies limitations on its use, such is not dissimilar to the construction
of some semi- and non-parametric estimators. Also, it helps to understand that
an overall, definitive conclusion about the nature of the missing data mechanism
is not possible, even though one can make progress if attention is confined to a
given parametric family, in which one puts sufficiently strong prior belief. To
show formally that the fit remains the same, we consider the observed-data
likelihood based on (9) and (11):

L = H/f(yio,yimlg)f(ri|y,-°,yim,ﬂ,)dyim
- H/ F(yilri, 0.) £ (ril0, ) f (yi™lyi° 71, 0, %) dy™

= TLrlr.0.9)5(r(0.4)
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The above results justify the following theorem:

Theorem 1 FEvery fit to the observed data, obtained from fitting an MNAR
model to a set of incomplete data, is exactly reproducible from an MAR decom-
position.

The key computational consequence is the need to compute h(y;™|y;°) in
(13) or (14). This means, for each pattern, the conditional density of the un-
observed measurements given the observed ones needs to be extracted from the
marginal distribution of the complete set of measurements. Molenberghs et al
(1998) have shown that, for the case of dropout, the so-called available case
missing value restrictions (ACMYV) provide a practical computational scheme.
Precisely, ACMV states that

YVt >2,Vs <t: f(yielyin, - Yie—1.di = 8) = f(Yaelyir, -+ Yie—1,di > t). (15)

In other words, the density of a missing measurement, conditional on the mea-
surement history, is determined from the corresponding density over all patterns
for which all of these measurements are observed. For example, the density of
the third measurement in a sequence, given the first and second ones, in pat-
terns with only 1 or 2 measurements taken, is determined from the correspond-
ing density over all patterns with 3 or more measurements. Thijs et al (2002)
and Verbeke, and Molenberghs (2000)(p. 347) derived a practical computational
method for the factors in (15):

fWatlyir, -+ Yie—1,di = )

_ Yo saafa(yits - Yis) (16)

ZZZS aafa(yit, - - - 7yi,s—1)
_ Z ( Oédfd(yil,...,yi,sfl) ) fd(ys|yi17-~ayi,s—l)- (17)

d=s ZZ;S adfd(y’ilv s 7yi7571)

Here, aq is the probability to belong to pattern d.

The above identifications for the monotone case are useful in case an MNAR
pattern-mixture model has been fitted to begin with, since then the identifica-
tions under MAR can be calculated from the pattern-specific marginal distribti—
tions. When a selection model has been fitted in the initial step, f(yi1,- - -, Yin, |0)
has been estimated, from which all conditional distributions, needed in (14), can
be derived. When the initial model is an MNAR PMM model and the miss-
ing data patterns are non-monotone, then it is necessary to first rewrite the
PMM in SeM form, and derive the required conditional distributions from the
so-obtained SeM measurement model. This essentially comes down to calculat-
ing a weighted average of the pattern-specific measurement models. In some
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cases, such as for contingency tables, this step can be done in an alternative
way by fitting a saturated MAR selection model to the fit obtained from the
PMM model.

We will illustrate and contrast the monotone and non-monotone cases using
a bivariate and trivariate outcome with dropout on the one hand and a bivariate
non-monotone outcome on the other hand. While the theorem applies to both
the monotone and non-monotone settings, it is insightful to see that only for the
former relatively simple and intuitively appealing expressions arise, while the
latter setting involves the need for iterative computation. In the next section,
the aforementioned general contingency table setting to which a PMM has been
fitted, will be studied.

4.1 A Bivariate Outcome With Dropout

Here and in the following examples, we will present and equate the SeM and
PMM decompositions, enabling us to derive expressions for the MAR, counter-
parts. It is interesting and straightforward to derive results for the MCAR case,
and hence these will be presented, too.

Dropping covariates, parameters, and the subject index i from notation, the
SeM-PMM equivalence for the case of two outcomes, the first of which is always
observed but the second one partially missing, is given by:

f(y1,92)9(d =2ly1,92) = fa(yr,y2)a(d = 2),
fy1,92)9(d = 1y1,92) = fi(yr,y2)a(d =1).

Note that this is the setting considering by Glynn et al (1986). Here, g(-) is
used for the SeM dropout model, with &(-) denoting the PMM probabilities to
belong to one of the patterns. Since a(d = 1) + a(d = 2) = 1 and a similar
result holds for the g(-) functions, it is convenient to write:

F,92)9(y1,92) = fo(y1,y2)a (18)
fy,v2)[l =gy, 92)] = fi(ys,y2)[1 — al. (19)

Assuming MCAR, it is clear that o = g(y1,y2), producing, without any diffi-
culty:
fyi,y2) = fa(y1,92) = f1(y1, y2)- (20)

Under MAR, y»> has to be removed from g(-) for incomplete observations, but
since we assume a single parametric function for the missingness model, it follows
that ¢g(y1,y2) = g(y1) and hence (18) produces

Fy) f(y2ly1)g(y1) = fa(yr) f2(y2lyr) .

Upon reordering, we find:

Fly)g(yn) _ folyelyr) (21)

f2(y1)a fyalyr)
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The same arguments can be applied to (19), from which we derive:

falyr) = fa(y2lyr) = fi(y2lyr). (22)

Note that (22) is strictly weaker than (20). The last term in (22) is not identified
by itself, and hence, we see it needs to be set equal to its counterpart from the
completers which, in turn, is equal to the marginal distribution. This is in
agreement with (14) as well as with the specific identifications applicable in the
monotone and hence ACMV setting.

4.2 A Trivariate Outcome With Dropout

Note that identification (22) does not involve mixtures. This changes as soon as
there are three or more outcomes. The equations corresponding to (18)—(19),
specialized to the MAR case, are:

fyi,92,93)90 = fo(y1,y2,y3)0, (23)
fiy2,y3)01(y1) = fi(ya, ye, y3)eu, (24)
FW1,92,93)92(y1,92) = fa(v1, y2, y3)ae, (25)
f1,92,93)93(y1,92) = f3(y1,y2, y3)as. (26)

We have chosen to include pattern 0, the one without follow-up measurements,
as well, and will return to this one. We could write g3(-) as a function of y3 as
well, but because the sum of the g4(-) equals one, it is clear that gs(-) ought to
be independent of y3. With arguments similar to the ones developed in the case
of two measurements, we can rewrite (26) as:

Fiy2) g3y y2) _ f3(yslyrs )
f3(y1,92) a3 fyslyr,v2)

Exactly the same consideration can be made based on (25), and hence

T3(slyr, y2) = f(yslys, v2) = fa(vslyr, y2)- (27)

The first factor identifies the second one, and hence also the third one. Starting
from (24), we obtain:
J1(y2s yslyr) = fy2, yslyr),

which produces, in fact, two separate identities:
filyelyr) = f(y2lpn), (28)
fiyslyn,ye) = flyslyr,ye) = f3(yslyr, 2) = fo(yslyr, y2)- (29)

For the latter one, identity (27) has been used as well. The density f(y2|y1),
needed in (28), is determined from the general ACMV result (17):

f(y2ly1) = azfa(yalyr) + 043f3(yz|y1)'

a9 + a3
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Finally, turning attention to (23), it is clear that go = «ao and hence also
fo(y1,y2,y3) = f(y1,y2,ys3). From the latter density, only f(y1) has not been
determined yet, but this one follows again very easily from the general ACMV
result:

) = arfilyr) + aofa(yr) + agfg(yl)'

a1 + oo + as

In summary, the necessary MAR identifications easily follow from both the
PMM and the SeM formulations of the model.

4.3 A Bivariate Outcome With Non-Monotone Missingness

The counterparts to (18)—(19) and (23)—(26) for a bivariate outcome with non-
monotone missingness are

F(y1,92)g00(y1, y2) foo(y1, y2)aoo, (30)
f1,92)910(y1,92) = fro(y1, y2)uo, (31)
f(1,92)901(y1,92) = for (1, y2)a01, (32)
fi,y2)011(y1,92) = fua(yr, y2)omn (33)

Clearly, under MCAR, the g, (-) functions do not depend on the outcomes
and hence fr -, (y1,y2) = f(y1,y2) for all four patterns. For the MAR case,
(30)—(33) simplify to

fi,y2)900 = foo(y1, y2)o0, (34)
fi,y2)g10(y1) = fro(y1,y2)e0, (35)
fi,y2)901(y2) = for(y1,y2)a01, (36)

fi,y2)911(y1,92) = fua(yr, y2)on (37)

Observe there are four identifications across the g, ,,(y1,y2) functions:

goo + g10(y1) + go1(y2) + g11(y1,y2) = 1,

for each (y1,y2). Also >_, . ar, ., = 1. Applying the usual algebra to (34)—
(37), we obtain three identifications for the unobservable densities:

foolyr,y2) = f(y1,92), (38)
folyily2) = flyily2), (39)
for(yelyr) = f(y2lyr). (40)

Using these in conjunction with the identifiable parts of the distributions yields
the MAR counterpart.
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5 Incomplete Contingency Tables

In Sections 4.1-4.3 we have derived general identification schemes for an MAR,
extension of a fitted model to a binary or trivariate outcome with dropout, as
well as to a bivariate outcome with non-monotone missingness. Whereas the
monotone cases provide explicit expressions in terms of the pattern-specific den-
sities, (38)—(40) provide an identification only in terms of the marginal prob-
ability. This in itself is not a problem, since the marginal density is always
available, either directly when a SeM is fitted, or through marginalization when
a PMM or an SPM is fitted.

In the specific case of contingency tables, further progress can be made.
Indeed, we can show a saturated MAR model is always available, for any in-
complete contingency table setting. This implies one can start from the fit of
an MNAR model to the observed data, and then extend it, using this result,
towards MAR. We will present the general result and then discuss its precise
implications for practice.

Assume we have a [[;_, ¢; contingency table with supplemental margins,
where k indexes the n dimensions in the table and ¢ is the number of alterna-
tives the kth categorical variable can take. The table of completers is indexed
by r =1=(1,...,1). A particular incomplete table is indexed by a r # 1. The
full set of tables can but does not have to be present. The number of cells is:

#ecells = Z ﬁ cr. (41)

T k=1

Denote the measurement model probabilities by Pj = Piijn for jp =1,...¢ck

and k£ = 1,...,n. Clearly, these probabilities sum to one. The missingness
probabilities, assuming MAR, are:
) p(r|jr with rp = 1) ifr#£1,
p(rlj) = . . (42)
1 =3 ps1p(r[d) if r=1.

Summing over r implies summing over those patterns for which actual observa-
tions are available. The number of parameters in the saturated model is

#parameters = <ﬁ cr— 1> + Z ﬁ e (43)

k=1 r+l k=1

The first term in (43) is for the measurement model, the second one is for the
missingness model. Clearly, the number of parameters equals one less than
the number of cells, establishing the claim. The situation where covariates are
present is covered automatically, merely by considering one extra dimension in
the contigency table, j = 0 say, with ¢ referring to the total number of covariate
levels in the set of data.

We will now study the implications for the simple but important settings
studied in Sections 4.1 and 4.3.
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5.1 A Bivariate Contingency Table With Dropout

In Section 4.1 identifications have been derived for the bivariate case with mono-
tone missingness. For contingency tables, these can be derived as well by further
fitting the saturated MAR model, described in the previous section, to the fit ob-
tained from the original MNAR model. Denote the counts obtained from the fit
of the original model by 22 ;1 and z; ;, for the completers and dropouts, respec-
tively. Denote the measurement model probabilities by p;r and the dropout
probabilities by ¢;. Then, due to ignorability, the likelihood factors into two
components:

4

ZZQJlepjk"FZZlJ Inp;y — A ijk_ 11, (44)
3k J 3k

62 = ZZQJ']C IHQj +Zzl’j 111(1 - Qj). (45)

J.k J

We have used an undetermined Lagrange multiplier A to incorporate the sum
constraint on the marginal probabilities. Solving the score equations for (44)
and (45) produces, with simple and well-known algebra:

— 1 22 i+ + 21,5
o= g (2L 46
Pjk 22k ( Py (46)
~ 22,5+
G = —=T 47
! Z2,j+ T 21,5 "

where n is the total sample size. Combining parameter estimates leads to the
new, MAR-based, fitted counts:

Z2 k= NPkG = 22,5k, (48)

— —~ ~ 22, 5k

21 = npjp(l—qj) =21, 2k (49)
22,5+

A+ = A+ (50)

From (48) and (50) it is clear that the fit in terms of the observed data has not
changed. The expansion of the incomplete data into a complete one is described
by (49). Equations (48) and (49) can be used to produce the MAR counterpart
to the original model, without any additional calculations. This is not so simple
for the non-monotone case, as we will show next.
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5.2 A Bivariate Contingency Table With Non-Monotone Missing-
ness

The counterparts to (44)—(45) for this case are:

{1 = Z 211,k lnpjk + Z 210,5 lnpj+ + Z 201,k lnp+k
Jik J k

+zooInpiq — A ijk -17, (51)
ik

ly = Zzll,jk In(1 — gi0,; — qo1.k — q00) + Zzlo,j In g1o,5
J.k J

+ Z 201,k Ingo1,k + 200 In goo. (52)
%

Notation has been modified in accordance with the design. The ¢ quantities
correspond to the g(-) model in Section 4.3.

While p4+ = 1 and hence zgo does not contribute information to the mea-
surement probabilities, it does add to the estimation of the missingness model.

Deriving the score equations from (51) and (52) is straightforward but, unlike
in the previous section, no closed form exists. Chen, and Fienberg (1974) derived
an iterative scheme for the probabilities p;i, based on setting the expected
sufficient statistics equal to their complete-data counterparts:

Djk Pjk Djk
NPk = 211,jk + 210,jL + ZomL + 20—,
Dji+ D+k P+
(with p14+ = 1) and hence
Djk Djk
(n — 200)Pjk = 2115k + Zlo,jL + ZOl,kL- (53)
Pj+ DP+k

The same equation is obtained from the first derivative of (51). Chen and
Fienberg’s iterative scheme results from initiating the process with a set of
starting values for the pjx, e.g., from the completers, and then evaluating the
right hand side of (53). Equating it to the left hand side provides an update for
the parameters. The process is repeated until convergence.

While there are no closed-form counterparts to (46) and (47), the expressions
equivalent to (48)—(50) are

2,k = 2115k (54)
_ ik
2105k = ZlO,j%u (55)
i+
_ Dik
201,k = ZoLkﬁ, (56)
+

ZO/O,\jk = 200Pjk- (57)
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However, there is an important difference between (48)—(50) on the one hand
and (54)—(57) on the other hand. In the monotone case, the expressions on the
right hand side are in terms of the counts z only, whereas here the marginal
probabilities p;; intervene, which have to be determined from a numerical fit.

The practical use of the results in this section are illustrated next on data
from the Slovenian Public Opinion Survey.

6 Shared-parameter Models and Missingness at Random

SPM’s are closely linked to the joint modeling of longitudinal and time-to-event
data, a class of models considered for at least three reasons. First, a time-to-
event outcome may be measured in terms of a longitudinal covariate. Such a
joint model then allows, in a natural way, for incorporation of measurement
error present in the longitudinal covariate into the model. Second, a number of
researchers have used joint modeling methods to exploit longitudinal markers as
surrogates for survival (Tsiatis, DeGruttola, and Wulfsohn, 1995; Xu and Zeger,
2001a; Henderson, Diggle, and Dobson, 2000; Renard et al, 2002).

Third, and of most relevance here, such joint models can be used when
incomplete longitudinal data are collected. Important early references to such
models are Wu, and Carroll (1988), Wu, and Bailey (1988), and Wu, and Bailey
(1989). Wu, and Bailey (1988) proposed such a model for what they termed
informative right censoring. For a continuous response, Wu, and Carroll (1988)
suggested using a conventional Gaussian random-coefficient model combined
with an appropriate model for to time to dropout, such as proportional hazards,
logistic or probit regression. The combination of probit and Gaussian responses
allows explicit solution of the integral and was used in their application.

In a slightly different approach to modeling dropout time as a continuous
variable in the latent variable setting, Schluchter (1992) and DeGruttola and
Tu (1994) proposed joint multivariate Gaussian distributions for the latent vari-
able(s) of the response process and a variable representing time to dropout. The
correlation between these variables induces dependence between dropout and
response. Rizopoulos, Verbeke, and Molenberghs (2007) study the impact of
random-effects misspecification in a shared parameter model. Beunckens et al
(2007a) combine continuous random effects with latent classes, leading to the
simultaneous use of mixture and mixed-effects models ideas. It is very nat-
ural to handle random-coefficient models, and in particular shared-parameter
models, in a Bayesian framework. Examples in the missing value setting are
provided by Best et al (1996) and Carpenter, Pocock, and Lamm (2002). Fur-
ther references include Pawitan and Self (1993); Taylor et al (1994); Faucett
and Thomas (1996); Lavalley and DeGruttola (1996); Hogan and Laird (1997,
1998); Wulfsohn and Tsiatis (1997) and Xu and Zeger (2001b).

Models of this type handle non-monotone missingness quite conveniently
through random effects. There are many ways in which such models can be
extended and generalized. Nevertheless, these models seem to defy an easy,
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elegant characterization of MAR, which is the topic of what follows.

In Section 3, the commonly used definition (3) of an SPM is presented.
However, the preceding review makes clear that not all authors employ the
same definition. Before passing on to the definition we will employ here, it is
therefore instructive to take a more general position, also considered by Little
(1995), based on augmenting the joint density of (y;, ;) with a vector of random
effects b;:

f(yiv'rivbilev"/’uwi)v (58)
where x; is now explicitly included to parametrize the random-effects distri-
bution. As before, covariates are allowed to be present, perhaps taking the
form of different sets that each describe one of the three components. Again,
they are suppressed from notation. Based on (58), one can still consider the
selection-model factorization:

f(Yi,mi, 0i]0,4) = f(y;|bi, 0) f(rily;, bi, ) f(bilw:) (59)
and, likewise, the pattern-mixture model factorization:
f(y7,7 T, b’L|07 1/)7 wl) = f(yzllrza b’h 0)f(’l"1|bz, Q/J)f(bzlwl) (60)

The notation is the same as in Section 3, with in addition x; parameters describ-
ing the random-effects distribution. Little (1995) refers to such decompositions
as random-coefficient selection and pattern-mixture models, respectively. Obvi-
ously, SeM (1) and PMM (2) follow by removing the random effects from (59)
and (60), respectively or, at least, not having them in common between the
models for Y; and R;.

An important simplification, leading to the already-defined SPM (3), arises
when Y'; and R; are assumed independent, given the random effects, i.e., when
conditional independence assumptions are made. Spelling out the model in full
produces:

f(y;,7i,bi]0,%, i) = f(y;|bi, 0) f(ri|bi, ) f(bi|zi). (61)

Model (61) corresponds to (3), but now also the distribution of the random
effects has been spelled out explicitly. This model was entertained by Follmann,
and Wu (1995). Note that, when b; is assumed to be discrete, a latent-class or
mixture model follows.

We are now in a position to introduce the SPM framework needed for our
purposes. Note that most formulations assume that a single, common set b;
drives the entire process. Whilst holding on to the conditional-independence
assumption, we will expand b; to a set of latent structures, as in the following
definition.

Definition 1 (A General Shared-parameter Model Family.) We define a
general shared-parameter model as one of the form

f(y7,0|gq,7 hzvjzv‘el)f(y;n|yfvgm h’iv k’i; m’i)f(ri|gi7jia kz qi)a (62)



Actas do XVI Congresso Anual da SPE 21

where g,, hi, 3;, ki, i, m;, and q; are independent random-effects vectors
(vectors of latent variables).

For convenience, write
bi = (giuhiujiﬂki7‘ei7mi7qi)' (63)

Several remarks are in place. First, this is the most general random-effects
model that can be considered in the sense that g, is common to all three factors
in (62), h;, j;, and k; are shared between a pair of factors, and £;, m,, and g;
are restricted to a single factor. Depending on the application, one may choose
to either retain all random effects or to omit some. It will then be useful to
have a perspective on the implications of such simplifications, preferably also in
terms of the missing data mechanism operating. This is why we will establish
conditions under which MAR operates on the one hand, and missingness does
not depend on future, unobserved measurements in a longitudinal context on
the other hand. Second, in full generality, model (62) may come across as
somewhat contrived. Our objective is not to postulate (62) as a model of use
in every possible application of SPM, but rather as the most general SPM from
which substantively appropriate models follow as sub-classes. Related to this,
it appears (62) assumes two different distributions for the outcome vector, i.e.,
divorcing the observed from the missing components. This is not entirely the
case because g; and h; still tie both factors together. The impact of j,, ki, £,
and m; is to modify one’s latent process in terms of missingness. In other words,
the most general model assumes that observed and missing components are
governed in part by common processes and partly by separate processes. Third,
in principle, we could expand (62) with the densities of the random effects. This
is generally not necessary for our purposes, though. Fourth, the assumption
of independent random-effects vectors is not restrictive, because association is
captured through the sets common to at least two factors. Fifth, conventional
SPM formulation (61) follows by removing all random effects but g,.

Definition (62) will allow us to derive a general characterization of MAR in
the SPM framework. It is instructive to set out by deriving an elegant set of
sufficient conditions. Thereafter, necessity will be addressed. To this end, we
can start from either the SeM-based definition (6) or the PMM characterization
as laid out in Lemma 1.

Starting from the SeM definition, and assuming g,, h;, and k; are zero, we
can show that MAR follows:

g g™ _ f(""uyfvy;n)
f(rily?, yi") )
S F(yeldas ) f (i lyg, ma) f(rilds ;) f (bi) db;
T F(W21d:6) f (Y7 [y, my) f(bi) db;
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J fylyg,ma) dm - [ f(y21d:, ) f(rilgi, ;) f(bs) db;
[ fylyg,ma)dm - [ f(y?ld;,€:) f(bs) db;

f(y?a ri) o
fwp
where integration over b; is shorthand for integration over all component vectors
making up b;, listed in (63), or an appropriate subset thereof. Hence, a suffi-
cient condition for the SPM to be MAR is that the random effects driving the
observed measurements and/or the missing-data process do not influence the
missing measurements, given the observed ones. In other words, all information
about the missing measurements, apart from covariates, stems from the ob-
served measurements only. Clearly, the random effects m; are not identifiable;
they are included for completeness only.
It is instructive to study the same set of sufficient conditions from the PMM
perspective (Lemma 1), since it will lead us, at the end of the section, to the
construction of an MAR counterpart:

f(ygu yznu ’l"i)

f(y’L |yi7ri) f(y?,'ri)

[ FWeld ) f (Y |yg, ma) f(rild;, q;) f(bi) db;
T FWld: ) f(ylye, m) f(rild;, a;) f(bs) db; dyl™

ST Wlds ) f(rilgi, a:) f (bi) dbs

= fWly) [ Feldi €) f(rilis, a;) f (bs) db;

= fyi'ly9),

not surprisingly leading to the same result.
These considerations at the same time define an important sub-class, estab-
lishing the ensuing result:

Definition 2 (A Sub-class of SPM Models.) Define a sub-class of shared-
parameter model (62):

f(y?|]za£1)f(y;n|yfaml)f(rlbmql)a (64)
where 3,, £;, m;, and q; are independent random-effects vectors.

In other words, Definition 2 follows as a special case from Definition 1 by omit-
ting the random effects g,;, h;, and k;. The key rationale for this definition is,
of course, the following result:

Theorem 2 (A Class of MAR-based SPM Models.) The shared-parameter
model (64) is missing at random.
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We have not addressed necessity thus far. To this effect, we need to derive
general expressions for the left hand side and right hand side of (12), respectively.
First, for the left hand side:

fi|y7,ri)

ff(y'?'gu h17.77,7‘el)f(y?|y(z)7gmhhkzamz)f(rzlgz?.?zu kzuqz)f(bz) dl?h5)
ff(yzo|gzvh17.717£1)f(r1|gw.717kuqz)f(b't) db't '

Second, for the right hand side, consider:

mi,, 0\ _ ff(y;?'giv hzu.?zvel)f(y;nly(z)ugmhlaklaml)f(bl) db;
fyi'ly?) = [ F@W2lg,, iy g, ) f(bi) dbs . (66)

Equating (65) and (66) and, for brevity, integrating over random effects that
occur in one component only, produces the general conditions, laid out in the
next theorem.

Theorem 3 (Characterization of MAR in SPM Family.) A member of the
general SPM family (62) is MAR if and only if

f f(yﬂgm hla]z)f(y;n|yfa g;, hlv kl)f(r1|gza]zv kl)f(bl) dbl
f fWlgs,3:)f(rilg;, 3;)f(bi)db;

%gu, hi) £ (Y2, Gir hi) £ (bs) db;
_ [l )f(z.;(f;)g )/(bi) db; (67)

Evidently, again assuming that g;, h;, and k; cancel, reduces (67) to a
tautological statement, showing that (64) satisfies Theorem 3.

There are situations where (67) is satisfied, without the triplet (g;, h;, k;)
vanishing, but these will necessarily be more ad hoc and less intuitively appealing
than these laid out in Theorem 2. The existence of such singular solutions is
not straightforward to establish, as is clear from the following pair of examples.

Example 1 (MAR Example in Line With Definition 1.) For the purpose
of the examples, drop the index i from notation. Consider a bivariate outcome
(Y1,Ys), where the first one is always observed, and the second component some-
times missing. This necessitates a scalar missing-data variable R only, leading
to full-data vector (Y1,Y2, R). Let R = 0 if the second component is missing and
1 otherwise. For R =1, condition (67) is always fulfilled, since the key compo-
nent, describing the distribution of the missing observations given the observed
ones, is then empty. Therefore, we can concentrate on R = 0.

For simplicity, assume that all random effects, describing one factor only,
are absent, i.e., remove £;, m;, and q;. From the four remaining random-effects,
retain only 3, and k;, implying that the missing-data process is connected to both
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response-related factors which, in turn, are unrelated to each other. Assume
furthermore that both outcomes, Y1 and Ys, are dichotomous, and that also both
random effects are binary. This means that (67) can be simplified to:

' 12 -
Z Ty 1573 Z Ty1 15 Ty2 |y K Tr=0]kT5 Tk
J Jik
_ 1 i . 1 2 .
- Z Ty1]5 Tr=0kTj Tk Z Ty Ty2 |y kT3 Tk | (68)
gk gk

where the w’s are probabilities pertaining to the variables indicated by their cor-
responding indices. It is convenient to introduce some simplifying notation,
making use of the fact that all key variables are dichotomous: set v = mj—o,
» = Tg=0, and pPjk = Tr—q|jk-

Expression (68) needs to be considered only for (Y1,Y2) = (0,0) and (1,0),
since spelling out the ones for (1,0) and (1,1) and summing them with their
counterparts lead to tautological statements. This implies that (68) produces
two equations, i.e.,there are two constraints to be satisfied. For the first equa-
tion, in (Y1,Y2) = (0,0), choose x = 778\01 as the parameter to be determined.

This means that (68) is a linear equation in x. Clearly, setting 71'3‘00 = 71'3‘01

solves the equation, based on two observations. First, a constant factor w§2|y1
is common to both sides of the equation and cancels. Second, the remaining
factors are pairwise equal: the first factor on the LHS then equals the second
factor on the RHS; the second factor on the LHS equals the first factor on the
RHS. The argument for (Y1,Y2) = (1,0) is entirely symmetric, and hence the
unique solution implies that k vanishes from the distribution of Yo given Y7, in
agreement with Definition 2.

Similar manipulations can be done for the cases: (1) where only g; is present;
and (2) where only h; and j; are present. In these two cases, as well as in
Example 1, a single random effect describes ﬂfnlyl, This is crucial to ensure
accordance with Definition 1. The next example is different in that two inde-
pendent random effects will influence the probability of the second component
given the first one.

as is clear from the next example.

Example 2 (MAR Example Violating Definition 1.) Retain the setting of
Ezxample 1, but now with the pair of random effects h; and k; present. This par-
ticular choice leads to a different simplification of (67):

1 1 2
<Z ﬂ—ylhﬂ—h> ' Zﬂyl\hﬂyﬂylhkﬂ—?“zo\kﬂ—hﬂk
h

h.k
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_ 1 1 2
- Zﬂyllhw’”zo\kwhwk ’ Zﬂ—yllhﬂ—yQIylhkﬂ-hﬂk - (69)
h.k h,k

We will conveniently use the following notation: n = mp—g, ¢ = Tk=g, and
Pk = Tr=0|k-

With similar logic as in Example 1, it easily follows that we only need to
consider (69) for (Y1,Y2) = (0,0) and (1,0). Concentrating on the first of
these, and singling out 7Tg|011 as the parameter to identify from the others, it
follows that

ab — de
7T(2)|011 = aF —ac’ (70)
with
_ 1 1
a = myon+mp(l—mn),
b = Wé\oﬂgmoopomp + 7T3|07T§\001P177(1 - )+ 7T3|17T§|010P0(1 — e,
c = mm(—=n(1—e),
d = mg0p0ne + mo0o1n(l = @) + moppo(1 =) + moppr (L —1)(1 — @),
e = Wé\oﬂgmoomp + ”3|07T§\00177(1 -+ 7T6|17T§\010(1 — ),
fo= mu(l=n)(1-e).

The derivations for (Y1,Y2) = (1,0) is entirely similar and leads to (70) with
the first conditioning argument ‘1’ rather than ‘0°. A numerical example is
provided in Table 4, establishing that the random effects h; and k; do influence
the distribution of Y2|Y1, in the dropout pattern.

Finally, the characterization of Theorem 3 allows us to construct an MAR
counterpart to an arbitrary SPM of the form (62). It is necessary to (1) retain
the fit of the model to the observed data, while (2) ensuring that (67) hold.
This is easily done by a-posteriori integrating the shared random effects out of
the densities describing the unobserved measurements, given the observed ones.
Here, integration takes place over the densities of g,, h;, and k;, where fitted
parameters are plugged into the densities.

Theorem 4 (An MAR Counterpart to a General SPM.) The MAR
counterpart, to an arbitrary general SPM of the type (62) is found by replacing
f(yﬂyf,gl, hla kla ml) with

h(yT e, me) = / / / PPNy, g, by ks mi)dg dhadk; (71
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Tabela 4: Bivariate binary outcome with the first component fully observed and
the second component partially missing. The missing data mechanism is MAR.
The model belongs to general SPM family (62), but not to the specific MAR
sub-class (64).

Effect ‘Failure (0)’ ‘Success (1)’

Random h effect N =mp=o 0.3000 1—n=mp=1 0.7000
Random k effect @ = mp=o 0.4000 1—p=mg=1 0.6000
Rlk=0 po = mojo  0.4500 1—po=myo 0.5500
Rlk=1 p1 = mo1 0.8000 1—p1=my) 0.2000
Yilh=0 773\0 0.3000 W}IO 0.7000
Yilh=1 ”3\1 0.2000 w}“ 0.8000
Y2[Y1=0,h=0,& k=0 Wg\ooo 0.1500 ¢%|ooo 0.8500
YalY1=0,h=0,& k=1 Topor  0-2500 2001 0.7500
Y2lYi=0,h=1,& k=0 773‘010 0.3500 7%\010 0.6500
Y2[Yi=0,h=1,& k=1 Too11  0-2857 W%\Oll 0.7143
o2WWi=1,h=0,& k=0 773‘100 0.2000 W%\loo 0.8000
Yo[Yi=1,h=0,& k=1 7T(2J\101 0.3000 W%um 0.7000
oWWyi=1,h=1&k=0 73\110 0.4000 W%\uo 0.6000
VolYi=1,h=1&k=1 Tonn  0.3625 i 0.6375

First, it is clear that this marginalization is merely describing the model-based
prediction of the unobserved outcomes, given the observed ones. Hence, the
choice for h(-) does not alter the fit. Second, observe that using h(-) in (67),
instead of f(y!"|y?,g,, hi,ki,m;), of Theorem 3, reduces the equation to a
trivial identity, and hence the second condition is also satisfied.

For categorical random effects, such as in Examples 1 and 2, the integral in
(71) becomes summation.

7 Longitudinal Data With Dropout: Non-future Depen-
dence

When measurements are taken longitudinally, it is good practice to ensure that
the implied time dependencies are logical from a substantive standpoint. For
example, in a variety of contexts, such as growth, regression functions over time
may be constrained to non-decreasing forms.

Let us turn to the nature of the missingness mechanism. Throughout the
section, assume that missingness is confined to dropout. From a SeM perspec-
tive, one often classifies missing data mechanisms as (Diggle, and Kenward,
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1994): (1) independent of outcomes; (2) dependent on previous measurements
only; (3) dependent on the current and perhaps previous measurements only;
(4) fully arbitrary, i.e., where missingness can depend on previous, current, and
future measurements. Evidently, (1) is MCAR, (2) is MAR, and (4) is MNAR,
without restrictions. (Diggle, and Kenward, 1994), for example, did not consider
(4) but restricted MNAR to mechanism (3) only. While this is very restrictive,
it is also extremely appealing since it prevents dropout at a given point in time
to depend on future measurements; these are termed non-future dependent in
the next section.

Clearly, the concepts of the previous paragraph are very natural by virtue of
framing them in the SeM. Kenward et al (2003) underscored that the situation
is less clear in the PMM family and then translated the mechanisms from the
SeM to the PMM framework. We will review these in Section 7.1, and then
present a similar taxonomy for the SPM in Section 7.2.

7.1 Non-future Dependence in the PMM Framework

Since we are restricting attention to monotone missingness, we can easily indi-
cate a drop-out pattern by the numbers of observations made. In this sense, pat-
tern ¢ collects all individuals with the first ¢ measurements taken (¢t = 1,...,n).
Thijs et al (2002) constructed a general identifying-restrictions framework in
which the distribution of the (¢ + 1)th measurement, given the earlier mea-
surements, in pattern ¢, y.y1 say, is set equal to a linear combination of the
corresponding distributions in patterns ¢ + 1 to n. Since this family is charac-
terized by the use of observable distributions to identify the unobservable ones,
we term it the ‘interior’ family of identifying-restrictions. Three members of
this family are studied in detail by Thijs et al (2002): complete-case missing
value restrictions (Little, 1993), where information is borrowed from the com-
pleters only, available-case missing values, equivalent to MAR (Molenberghs et
al (1998)), for which a particular linear combination needs to be considered,
and neighboring-case missing value restrictions, where information is borrowed
from the closest available pattern.

The equivalence of available-case missing values and MAR is important in
that it enables us to make a clear connection between the selection and pattern-
mixture frameworks. By implication, the other members of the interior family
are of MNAR type, while at the same time there do exist MNAR type restric-
tions that are not captured by this family.

We will now characterize missing-data mechanisms that prevent missingness
from depending on future unobserved measurements. To this effect, it is useful to
consider the SeM and PMM factorizations for the specific context of longitudinal
data. Let » = ¢ < n be the number of measurements actually observed. The
selection model factorization for this context is given by

fr -y =1) = fyr,- - yn) f(r =ty yn)-
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Pattern-mixture models now take the form:

fr, - yn, 7 =1)
fy, - ynlr =) f(r =t)
= filyr, - yn)f(r=1)
= filyr, sy fe(eralyn, ) fe(Uerz, - Ynlyn, - yern) f(r = 1X72)

where fi(y1, -, yn) = f(y1, -+, yn|r = t). The first three factors in (72) are
referred to as the distributions of past, present, and future measurements, re-
spectively. Only the first and the fourth factors are identifiable from the data.

Definition 3 (Non-future Dependence (NFD).) In the SeM context, we
can formulate missing non-future dependent as

f(,r.:ﬂyl’...’yn):f(’l":t|qu"'7yt+1)' (73)

Note that MAR is a special case of missing non-future dependent, which in turn
is a sub-class of MNAR.

Definition 4 (Non-future Dependent Missing Value (NFMYV).) Within
the PMM framework, we define non-future dependent missing value restrictions
as follows:

f(ytlyla" S Yt—1,T :j) = f(ytlyla" S Yt—1,T Z t— 1)7 (74)
for all t > 2 and all j <t —1.

Non-future missing values is not a comprehensive set of restrictions, but rather
leaves one conditional distribution per incomplete pattern unidentified:

f(yt-i—l'ylu"'aytur:t)- (75)

In other words, the distribution of the ‘current’ unobserved measurement, given
the previous ones, is unconstrained. This implies that the NFMYV class contains
members outside of the interior family, where every restriction takes the form
of a linear combination of observable distributions. Conversely, (74) excludes
such mechanisms as complete-case missing values and neighboring-case missing
values, showing that there are members of the interior family that are not of non-
future missing values type. Finally, choosing (75) of the same functional form
as (74) establishes available-case missing values as a member of the intersection
of the interior and non-future missing values families. The latter is particularly
important since it shows, because of the equivalence of ACMV and MAR, that
MAR belongs to both families.

The following theorem, the proof of which is to be found in Kenward et
al (2003), establishes the equivalence between NFD and NFMV, showing the
NFMYV restrictions correspond to NFD, just as ACMV corresponds to MAR.
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Theorem 5 (Equivalence Between NFD and NFMV.). For longitudinal
data with drop-outs, missing non-future dependence is equivalent to non-future
missing values.

A consequence of using (74) is that the joint distribution will not typically
have a simple analytical representation. This is to be understood in the sense
that covariate effects would not necessarily be linear on an appropriate scale.
However, this is not to say there is no analytical form. Moreover, it does not have
to be a major disadvantage, provided the resulting distribution is empirically
reasonable. Such a requirement may help guide the choice for (75). Kenward et
al (2003) offered a tractable, sampling-based implementation and applied it to
the analysis of a set of data.

7.2 Non-future Dependence in the SPM Framework

It is now particularly easy to derive a general characterization of non-future
dependent SPM. First, note that (73) in Definition 3 can be seen as a longitudi-
nal dropout-based definition of MAR, “one component shifted to the right,"i.e
where y;11, in spite of its missingness, is also allowed to influence missingness.
Given that Theorem 3 was derived from the standard MAR definition, it imme-
diately follows that a characterization of NFD-SPM is as follows.

Theorem 6 (Non-future Dependent Shared-parameter Models.) A
member of the general SPM family (62) is NFD if and only if

ff(yi)c'gzu 17.71) ( |yz 7917hiuki)f(ri|gi7ji7ki)f(b’i) dbz
ff |gza]1 (T’L|gm]z)f(b’t) db’L

f(yfc)
where Y2 = (y1, -+, ye41) and y! = (yeso, -, yn)'-

Note that the subscript ‘pc’ refers to ‘previous and current,” while ‘f” refers to
‘future.’

Likewise, the sub-class (64) of Definition 2 can be ‘shifted’ to yield an NFD
version.

Definition 5 (A NFD Sub-class of SPM Models.) Define a sub-class of
shared-parameter model (62):

Frelds ) (] ly?e ma) f (il a0) (77)
where 3,, £;, m;, and q; are independent random-effects vectors.

With similar logic as before, Definition 5 offers a class of missing-data mech-
anism that belongs to the NFD family. The relationship between the various
mechanisms in the three families is depicted in Figure 3.
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SeM : MCAR C MAR C NFD C general MNAR

) )
PMM : MCAR C ACMV C NFMV C general MNAR
S 7 ¢

interior
!
SPM : MCAR C Theorem3 < Theorem 6 C general MNAR
U U
Definition 2 C Definition 5

Figura 3: Subset-relationships between nested families within the selection model
(SeM), pattern-mizture model (PMM), and shared-parameter model (SPM) fam-
ilies. MCAR: missing completely at random; MAR: missing at random; MNAR:
missing not at random; NFD: non-future dependence; ACMYV: available-case
missing values; NFMV: non-future missing values. The vertical two-headed ar-
rows indicate equivalence between mechanisms across model families.

8 Analysis of The Slovenian Public Opinion Survey

8.1 The BRD Models

Baker et al (1992) proposed a log-linear based family of models for the four-
way classification of both outcomes, together with their respective missingness
indicators: vig jx = V11,j805k, Yo1,jk = V11,jkQk, and Voo jk = V11,jk05k 05k,
with
_ o1)jk ~_ Puojk _ b11)5kPoojjk

br1fjk’ " br1fjk’ b10/jkPor|jk

Ak

Furthermore vy, , j; is the model for the four cells, indexed by j and k, in
pattern (r1,72), where (r1,72) = (1,1) corresponds to completers, etc.

The « (8) parameters describe missingness in the independence (attendance)
question, and ~ captures the interaction between both. The subscripts are miss-
ing from ~ since Baker et al (1992) have shown that this quantity is independent
of 7 and k in every identifiable model. These authors considered nine models,
based on setting o and §j; constant in one or more indices, and enumerated
using the ‘BRD’ abbreviation:

BRD1 : (a,f) BRD4 : («,0k) BRD7 : (ag, k)
BRD2 : («,(j) BRD5 : («j,0) BRDS8 : («j,05k)
BRD3 : (ag,[) BRD6 : («j,03)) BRDY9 : (o, ().

Interpretation is straightforward, for example, BRD1 is MCAR, and in BRD4
missingness in the first variable is constant, while missingness in the second
variable depends on its value. BRD6-BRD9 saturate the observed data degrees
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Tabela 5: (Part I). Analysis of the Slovenian Public Opinion Survey, restricted
to the independence and attendance questions. The observed data are shown,
as well as the fit of models BRD1, BRD2, BRD7, and BRDY, and their MAR
counterparts, to the observed data. The contingency tables’ rows (columns) cor-
respond to ‘yes’ vs. ‘no’ on the independence (attendance) question. The four
tables in each row correspond to: (i) people responding to both questions; (ii)
people responding to independence only; (i) people responding to attendance
only; (iv) people responding to neither question.

Observed data &
fit of BRD7, BRD7(MAR), BRD9, and BRD9(MAR) to incomplete data

1439 [ 78 159
TG o (144 [54 | [136 |

Fit of BRD1 and BRD1(MAR) to incomplete data
1381.6 | 101.7 182.9
T = [179.7[ 18.3] [136.0]

Fit of BRD2 and BRD2(MAR) to incomplete data
1402.2 | 108.9 159.0
9] 350 [181.2]16.8] [136.0

of freedom, while the lower numbered ones leave room for a non-trivial model
fit to the observed data.

8.2 Analysis of the Slovenian Public Opinion Data

The ideas developed in this paper can be illustrated easily by means of 4 models
from the BRD family, fitted to the independence and attendance outcomes,
i.e., collapsing Table 1. We select models BRD1, BRD2, BRD7, and BRD?9Y.
Model BRD1 assumes missingness to be MCAR. All others are of the MNAR,
type. Model BRD2 has 7 free parameters, and hence does not saturate the
observed data degrees of freedom, while models BRD7 and BRD9 saturate the
8 data degrees of freedom. The collapsed data, together with the model fits,
are displayed in Table 5. Each of the four models is doubled up with its MAR
counterpart.

Table 5 presents, apart from the raw data, for each of the models and its
MAR counterpart, the fit to the observed and the hypothetical complete data.
The fits of models BRD7, BRD9, and their MAR counterparts to the observed
data, coincide with the observed data. As the theory states, every MNAR model
and its MAR counterpart produce exactly the same fit to the observed data,
which is therefore also seen for BRD1 and BRD2. However, while Models BRD1
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and BRD1(MAR) coincide in their fit to the hypothetical complete data, this
is not the case for the other three models. The reason is clear: since model
BRD1 belongs to the MAR family from the start, its counterpart BRD1(MAR)
will not produce any difference, but merely copies the fit of BRD1 to the unob-
served data, given the observed ones. Finally, while BRD7 and BRD9 produce
a different fit to the complete data, BRD7(MAR) and BRD9(MAR) coincide.
This is because the fits of BRD7 and BRD9 coincide with respect to their fit
to the observed data, and indeed, due to their saturation, coincide with the ob-
served data as such. This fit is the sole basis for the models’ MAR extensions.
It is noteworthy that, while BRD7, BRD9, and BRD7(MAR)=BRD9(MAR)
all saturate the observed data degrees of freedom, their complete-data fits are
dramatically different.

Let us return to the implications of our results for the primary estimand 6,
the proportion of people voting YES by simultaneously being in favor of inde-
pendence and deciding to take part in the vote. Rubin et al (1995) considered,

apart from simple models such as complete case analysis (§: 0.928) and avail-
able case analyses (0 = 0.929), both ignorable models (6 = 0.892 when based on

~

the two main questions and 6 = 0.883 when using the secession question as an
auxiliary variable) and a non-ignorable one (§ = 0.782). Since the value of the
plebiscite was 6,,., = 0.885, an important benchmark obtained four weeks after
the SPO, they concluded the MAR, was preferable. Molenberghs et al (2001)
supplemented these analysis with a so-called pessimistic-optimistic interval, ob-
tained from replacing the incomplete data with NO and YES, respectively, and
obtained: 6 € [0.694,0.904]. Further, they considered all nine BRD models,
producing a range for 6 from 0.741 to 0.892. Ultimately, these authors devised
a method to consider overspecified models, in which point estimates are replaced
by interval estimates, so-called intervals of ignorance.

Let us consider the results obtained from fitting each of the nine BRD mod-
els. Molenberghs et al (2001) presented a summary table but unfortunately there
was a small computational error that had to be corrected, for which reason the
corrected results are reproduced here (Table 6). BRD1 produces § = 0.892,
exactly the same estimate as the first MAR estimate obtained by Rubin et al
(1995). This should not come as a surprise, since both BRD1 and Rubin’s
model assume MAR and use information from the two main questions. Before
continuing with the models’ interpretation, it is necessary to assess their fit.
Conducting likelihood ratio tests for BRD1 versus the ones with 7 parameters,
BRD2-BRD35, and then in turn for BRD2-BRD5 versus the saturated modes
BRD6-BRD9Y, suggests the lower numbered models do not fit well, leaving us
with BRD6-BRD9. The impression might be generated that the poor model fit
of BRD1 might be seen as evidence for discarding the MAR-based value 0.892.
However, studying the MAR values from each of the models BRD1(MAR)-
BRDY9(MAR), as displayed in the last column of Table 6, it is clear that this

value is remarkably stable and hence a value of 9 = 0.892, based on the four
counterparts BRD6(MAR)-BRD9(MAR), is a sensible choice after all. Thus,
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a main contribution resulting from considering the counterparts in this par-
ticular example, is the provision of a solid basis for the MAR-based estimate.
Obviously, since Models BRD6(MAR)-BRD9(MAR) are exactly the same and

o~

exhibit a perfect fit, the corresponding probabilities 6, are exactly equal too.
In this particular case, even though BRD2(MAR)-BRD5(MAR) differ among
each other, the probability of being in favor of independence and attending the
plebiscite is constant across these four models. This is a mere coincidence, since
all three other cell probabilities are different, but only slightly so. For example,
the probability of being in favour of independence combined with not attending
ranges over 0.066—0.0685 across these four models.

We have made the following two-stage use of Models BRD6(MAR)-
BRDI9(MAR). At the first stage, in a conventional way, the fully saturated
model is selected as the only adequate description of the observed data. At
the second stage, these models are transformed into their MAR counterpart,
from which inferences are drawn. As such, the MAR counterpart usefully sup-
plements the original models BRD6-BRD9 and provide one further, important
scenario to model the incomplete data. In principle, the same exercise can be
conducted when the additional secession variable would be used.

9 Analysis of the Onychomycosis Trial

We will first analyze the entire longitudinal profile of continuous outcomes (unaf-
fected nail length), and then switch to the binary outcome (severity of infection)
and confine attention to the first and last time points.

9.1 Continuous Unaffected Nail Length

Consider a general model of the form (62), with random effects confined to g;,
i.e., common to all three components. For the measurement model, assume a
linear mixed model (Verbeke, and Molenberghs, 2000), with general form:

g ~ N(©,D). (79)

Based on (78) and (79), the so-called marginal model can be derived
To compute the model’s prediction for the unobserved data, given the observed

measurements, the corresponding density needs to be derived. To this end, first
decompose the mean and variance in (78) as

Y? X z? $oe  xom
(¥ o |50 )oe (20 oo (50 5 )]
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This expression can easily be used to construct the conditional density:

Yy, g; ~ N |[(X" =S {0} X9)B + D {x0)  y?

(2 = S {5} Z0)g,, T - s {20} 2o (81)

Now, (81) corresponds to the model as formulated, and will typically be of the
MNAR type. To derive the MAR counterpart, we need to integrate over the
random effect. With similar logic that leads to (80), now applied to (81), we
obtain:

Yy o~ N (X =SS} X)) B+ {5}y,
(2" = 7Sy Z)D(Z — S Asey T Z7)
- s g0} wem]. (82)

Hence, (82) is the MAR counterpart to (81). For the unaffected nail length, we
choose for (78)—(79):

E(Yijlgi, T, tj, B) = Bo + gi + 5115 + Bt + 3Tt , (83)

gi ~ N(0,d), and ¥; = o%I;, where I7 is a 7 x 7 identity matrix. Further,
T; = 0 if patient ¢ received standard treatment and 1 for experimental therapy
(t=1,...,298). Finally, t; is the time at which the jth measurement is taken
(Gj=1,...,7).

Given these choices, (81) and (82) simplify to

Y'yS, 9 ~ N(XiB+Z"g,0%L), (84)
Y7y ~ N(Xi8,dJ; +0°I), (85)

with I; an identity matrix and J; a matrix of ones, with dimensions equal to
the number of missing measurements for subject i. Especially owing to the
conditional independence assumption, the simplification is dramatic.

Next, let us formulate a model for the missingness mechanism in (62). The
sequence 7; can take one of two forms in our case. Either, it is a length-7 vector
of ones, for a completely observed subject, or it is a sequence of k£ ones followed
by a sole zero 1 < k < 6, for someone dropping out. Note that k is 1 at least,
since for everyone the initial measurement has been observed. It is convenient
to assume a logistic regression of the form:

logit [P(Rij = 1|R; j—1 = 0, i, T3, t5,7)] = vo+7019i + 1 Ti+2tj+3Tit 5, (86)

(7 > 1), where 791 is a scale factor for the shared random effect in the missingness
model; forcing the variance in the measurement and dropout indicator sequences
to be equal would make no sense. As a result, vo19; ~ N(0,72,d).
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Figura 4: Toenail Data. Individual profiles of subjects with incomplete data,
for each treatment arm, extended using MNAR Model (83) (dashed line) and
using the model’s MAR counterpart (solid line). In each group, three subjects
are highlighted.

The model specified by (83) and (86) can easily be fitted using, for exam-
ple, the SAS procedure NLMIXED, details about which are provided in the
Appendix.

Parameter estimates and standard errors are displayed in Table 7. It is
noteworthy that the scale factor 7p; is estimated to be negative, even though
it is not significant. While we should not overly stress its importance, there is
some indication that a higher subject-specific profile of unaffected nail length
corresponds with a lower dropout probability, which is not surprising. The
magnitude of the scale factor allows us to ‘translate’ the subject-specific effect
from the continuous outcome scale, expressed in mm, to the unitless logit scale
on which the probability of missingness is described. Note that the random-
intercept variance is highly significant among unaffected nail length outcomes;
the same is not true for the dropout model, with p = 0.2487, using a 50 : 50
mixture of a 3 and x? distribution (Verbeke, and Molenberghs, 2000).

Figure 4 displays the incomplete profiles, extended beyond the time of dropout,
using prediction based on: (1) the original model (dashed lines); (2) the MAR
counterpart (solid lines). Within each of the treatment arms, three profiles are
highlighted. The MAR counterpart reduces all predictions to the same profile,
whereas the MNAR model predicts different evolutions for different subjects,
implied by the presence of the random effect. The simple MAR-based predic-
tion structure follows directly from the conditional independence assumption,
present in (84). When deemed less plausible, the fully general structure (81)
can be implemented.

9.2 Dichotomous Severity of Infection

Let us turn attention to the binary severity of infection outcome, for the pair of
time points formed by the always recorded initial measurement and the some-
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times missing final point in time. The data are displayed in Table 8. By way of
illustration, we will assume a single dichotomous random effect, of the g, type.
This imposes a latent-class structure. Decompose the cell probabilities as:

Tgivigrt = TgTiy|gTiz|iygtTr|gs (87)

with g = 0,1 indicating the latent class, 71,72 = 0,1 non-severe versus severe
infection at the first and last occasions, respectively, » = 0,1 referring to the
dropouts versus completers groups, and ¢ = 0,1 denoting standard versus ex-
perimental treatment arm. The probability factors on the right hand side of
(87) are modeled as:

ey
TS Ty
e(ﬁo-‘rﬁlg)il
Tislg = T oBothig’ (88)

e(’Yo +v1i1+y29+73119+vat)iz

Tizlingt = 1 4+ eYotmii+y2g+ysing+at’ (89)

6(50+519)T
Trlg = T gdotorg”

In Model ‘Binl’, we will set 81 = 0 in (88) for reasons of identifiability. In
Model ‘Bin2’; 2 = v3 = 0 in (89). This implies the latter model is of the MAR
type, and hence its MAR counterpart will equal the original model. Fitted
counts are presented in Table 8. For the dropout group, both the fit to the
pair of observed counts and the prediction of the underlying unobserved two-
by-two table is given. Note that the MAR counterpart preserves the distribution
of the first outcome, within each treatment and dropout group; the difference
between original model and MAR, counterpart is confined to the distribution of
the second outcome, given the first one. The fits of the models is obtained by
replacing all quantities in (87) by their estimates, followed by summing over g.
The MAR counterpart is obtained as mgi,iyre = g7, |gTiy|iytTr|g, Where

ﬂ-iglilt = § ﬂ-gﬂ-ig\ilgt-
g9

Parameter estimation by both maximum likelihood, as well as the EM algorithm
(Dempster, Laird, and Rubin, 1977) is particularly easy. For direct likelihood,
the log-likelihood function takes the form

{ = g Zi1i2,T:1,t In ( E 7Tg7ri1gﬂ-i2|ilgt7rr—l|g>

i1,i2,t 9

+ Zil,r:O,t In (Z 7Tg7Ti1g7T7‘—Og> ) (90)
i1,t g
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where Z; ;, r=1, and Z;, ,—o are the observed-data counts, with obvious no-
tation. Maximization then proceeds by feeding (90) to a standard numerical
optimizer.

The complete-data log-likelihood, needed for the EM algorithm, takes the
form:

* _ *
o= § : Zgilizrt In (W.‘Jwil\gwiz\ilgtwﬂg)
g,i1,82,7,t
. *
= E gy In(7g) + E  Ziy it I (7i,1)
g1

+ Z wiviare I (T iy gt +Z oo I (7)) - (91)

g,i1,%2,t

Here, qu?rt is the (hypothetical) count in bivariate severity category (i1, i2),
in missingness group r, treatment arm ¢, and allocated to latent class g. A plus
in lieu of a subscript indicates summation over the corresponding index. To
proceed, the expected values of the complete-data sufficient statistics need to
be computed. Thanks to the multinomial structure of £*, this is straightforward

and hence the E step consists of:

E (Z;++++) = TgZiti+t,

E(Zy,111) = momijgZintt+

E (Z;'Lll2+t) = Tgliyigr=1t + TgTislivgtZir+r=0,ts
E(Z5iirs) = ToTrigZtrts

Finally, the M step takes the form of four separate logistic regressions, in the
a, 3, v, and 0 parameters, respectively, i.e., for each of the four terms in (91).

10 Concluding Remarks

Incomplete data are governed by a number of taxonomies and classification sys-
tems, two of which were of relevance here. A first one is concerned with the type
of missing data mechanism (MCAR, MAR, and MNAR), whereas a second one
classifies joint models for the outcome and missing data processes as belonging
to the SeM, PMM, and SPM model families. Since MCAR, merely comes ‘down
to independence between both processes, perhaps conditional on fixed covari-
ates, it takes a trivial form regardless of the model family. Whereas MAR has
been defined in an SeM fashion, it has been characterized in a PMM way and
studied further for the specific context of longitudinal data by Molenberghs et
al (1998). Characterizing MAR in the SPM family is less straightforward and,
to our knowledge, had not formally been done before. As a first result, we have
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provided such a characterization in this paper, after defining a very general class
of SPM that encompasses many earlier, specific instances. Since the character-
ization, in its full generality, may be somewhat awkward to work with, a more
restrictive but appealing sub-class of SPM, satisfying MAR, has been proposed
too.

Molenberghs et al (2007) established that every MNAR model fitted to a
particular set of data can be replaced by a unique MAR. counterpart, i.e., a
model producing exactly the same fit to the observed data but where the pre-
diction of the unobserved outcomes given the observed ones is of the MAR type.
While their result is general, they focused on the SeM and PMM frameworks.
As a second result, Creemers et al (2008) presented a generic format of this
counterpart for the SPM family.

Apart from considerations on the basis of taxonomy, particular design as-
pects may be used to further focus one’s model choices. For example, in a lon-
gitudinal study subject to dropout, one will often cast missingness mechanisms
in terms of previous, current, and future measurements, rather than simply in
terms of observed and unobserved measurements. There is a subtle distinction.
While previous and observed measurements are synonymous in such a case, the
unobserved measurements are further sub-divided into current and future mea-
surements. Substantively, it is usually conceivable to assume that dropout is
driven by the current, perhaps unobserved measurement, but it will not always
be sensible to let dropout depend on future measurements. Constraining a SeM
to this effect is particularly straightforward, but this is less trivial for the other
two families. While Kenward et al (2003) translated this requirement to the
PMM family, this had not yet been done for the SPM. As a third result re-
viewed here, Creemers et al (2008) characterize so-called non-future dependent
mechanisms within the SPM family.

While the results reviewed in this paper are predominantly of a conceptual
nature, a number of them have been illustrated, for enhanced insight, using both
a continuous and a binary outcome from a two-armed clinical trial in toenail
dermatophyte onychomycosis. In the continuous case, a linear mixed model
was combined with logistic regression contributions for dropout. In the binary
case, a dichotomous random effect was assumed, i.e., a latent class, reducing
the analysis to one of incompletely observed contingency tables. Evidently,
within each of the analyses done, a wider variety of model specifications can
be entertained. Moreover, the ideas developed in this paper are generic and
one could, for example, consider generalized linear mixed models for the entire
binary profile, etc. (Molenberghs, and Verbeke, 2005).

Finally, the results of this paper open avenues for sensitivity analysis re-
garding substantive conclusions with respect to missingness (Molenberghs and
Kenward, 2007). Thanks to the results in this and previous papers, and the
ensuing classification of model families versus missing data mechanisms (Fig-
ure 3), one could, for example, select an insightful set models across families and
mechanisms, perhaps supplementing MNAR, models with their MAR counter-
parts, and then assess formally or informally how key conclusions change when
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ranging over models.
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Tabela 5: (Part II). Analysis of the Slovenian Public Opinion Survey, restricted
to the independence and attendance questions. The fit of models BRD1, BRD2,
BRD7, and BRDY, and their MAR counterparts, to the hypothetical complete
data is shown. The contingency tables’ rows (columns) correspond to ‘yes’ vs.
‘no’ on the independence (attendance) question. The four tables in each row
correspond to: (i) people responding to both questions; (ii) people responding
to independence only; (iii) people responding to attendance only; (iv) people
responding to neither question.

Fit of BRD1 and BRD1(MAR) to complete data
1381.6 | 101.7 1704 | 12,5 176.6 | 13.0 121.3 | 9.0
24.2| 414 3.0 5.1 3.1 5.3 21|36

Fit of BRD2 to complete data
1402.2[108.9 | [147.5]11.5 179.2 | 13.9 105.0 | 8.2
15.6 | 22.3 | 13.2 | 18.8 2.0 2.9 941134

Fit of BRD2(MAR) to complete data
1402.2 | 108.9 1477 | 11.3 1779 12.5 121.21 9.3

15.6 | 22.3 13.3 | 18.7 3.3 4.3 23132
Fit of BRD7 to complete data

1439 78 3.2 | 155.8 142.4 | 44.8 0.4 1]112.5

16 16 0.0 32.0 1.6 9.2 0.0] 23.1
Fit of BRD9 to complete data

1439 78 150.8 | 8.2 142.4 | 44.8 66.8 | 21.0

16 16 16.0 | 16.0 1.6 9.2 711411

Fit of BRD7(MAR) and BRD9(MAR) to complete data
1439 78 148.1 | 10.9 141.5 | 384 121.3 1 9.0
16 18 11.8 | 20.2 2.5 |15.6 21|36
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Tabela 6: Analysis of the Slovenian Public Opinion Survey, restricted to the in-
dependence and attendance questions. Summaries on each of the Models BRD1-

BRD9Y are presented.

Model Structure d.f. loglik 0 C.IL Oniar

BRD1 (o, B) 6 -2495.29 0.892 [0.878;0.906] 0.8920
BRD2 (o, B5) 7 -2467.43 0.884 [0.869;0.900| 0.8915
BRD3 (ag, B) 7 -2463.10 0.881 [0.866;0.897] 0.8915
BRD4 (o, Bk) 7 -2467.43 0.765 [0.674;0.856] 0.8915
BRD5 (c, ) 7 -2463.10 0.844 [0.806;0.882] 0.8915
BRD6  (aj,53;) 8  -2431.06 0.819 [0.788;0.849] 0.8919
BRD7 (o, Bk) 8 -2431.06 0.764 [0.697;0.832] 0.8919
BRD8  («j, Ok) 8 -2431.06 0.741 [0.657;0.826] 0.8919
BRD9  (ax,0;) 8 -2431.06 0.867 [0.851;0.884] 0.8919

Tabela 7: Toenail Data.

Continuous, longitudinal unaffected-nail-length out-

come. Parameter estimates (standard errors) for the model specified by (83)

and (86).
Unaffected nail length Dropout
Effect Par. Est. (s.e.) Par. Est. (s.e.)
Mean structure parameters
Intercept Bo 2.510 (0.247) Yo -3.127 (0.282)
Treatment 51 0.255 (0.347) Y1 -0.538 (0.436)
Time B2 0.558 (0.023) Y2 0.035 (0.041)
Treatment-by-time B3 0.048 (0.031) V3 0.040 (0.061)
Variance-covariance structure parameters

Residual variance o2 6.937(0.248)

Scale factor Y1  -0.076 (0.057)
Rand. int. variance 72 6.507 (0.630) ve,m? 0.038 (0.056)
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Tabela 8: Toenail Data. Bivariate binary severity index at first and last time
points. The observed data are shown, as well as the fit of Models ‘Binl’ and
‘Bin2’, together with their corresponding counterparts. Both the fit to the ob-
served data as well as to the hypothetical complete data are shown.

Standard treatment Experimental treatment

Completers Dropouts Completers Dropouts

Observed data

77 5 10 79
42 9 3 42 3 6

w
—
—

Fit of Model ‘Binl’

76.85 | 5.66 9.04|0.34 9.38 81.21|2.43 9.36 | 0.15 9.51
40.60| 7.99 4.62|0.90 9.52 45.62| 3.63 5.19|0.41 5.60

Fit of Model ‘Bin1(MAR)’

77.12|5.39 8.7710.61 9.38 81.32]2.32 9.240.26 9.51
40.61 | 7.98 4.62 (091 5.52 45.63 | 3.63 5.1810.41 5.59

Fit of Model ‘Bin2’=‘Bin2(MAR)’

75.86 | 5.58 9.7210.72| | 10.44 80.16 | 2.40 10.2710.31| | 10.58
41.50 | 8.15 3.7410.73 4.47 46.61 | 3.72 4.2010.34 4.53




