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t: Over the last de
ade a variety of models to analyze in
omplete multivariateand longitudinal data have been proposed, many of whi
h allowing for the missingnessto be not at random (MNAR), in the sense that the unobserved measurements in�u-en
e the pro
ess governing missingness, in addition to in�uen
es 
oming from observedmeasurements and/or 
ovariates. The fundamental problems implied by su
h models,to whi
h we refer as sensitivity to unveri�able modelling assumptions, has, in turn,sparked o� various strands of resear
h in what is now termed sensitivity analysis. Thenature of sensitivity originates from the fa
t that an MNAR model is not fully veri�-able from the data, rendering the empiri
al distin
tion between MNAR and randommissingness (MAR), where only 
ovariates and observed out
omes in�uen
e missing-ness, hard or even impossible, unless one is prepared to a

ept the posited MNARmodel in an unquestioning way. Based on Molenberghs et al (2007), we show that theempiri
al distin
tion between MAR and MNAR is not possible, in the sense that ea
hMNAR model �t to a set of observed data 
an be reprodu
ed exa
tly by an MAR
ounterpart. Of 
ourse, su
h a pair of models will produ
e di�erent predi
tions of theunobserved out
omes, given the observed ones. While MAR are easy to 
hara
terizein the sele
tion model and pattern-mixture modeling frameworks, this has not beenthe 
ase for shared-parameter models (SPM). To mend this, based on Creemers et al(2008), we 
hara
terize MAR for the SPM framework, and study the form of the MAR
ounterpart for an MNAR model in this 
ontext. Also, for all settings 
ombined, weexamine the 
onditions that need to be imposed on models for longitudinal data toensure that missingness does not depend on future o

asions. Two illustrations aregiven, one based on the Slovenian Publi
 Opinion survey, and one based on a 
lini
altrial in ony
homy
osis.



2 G. Molenberghs/MAR CounterpartsKeywords: Contingen
y table; Ignorability; Missing 
ompletely at random; Pattern-mixture model; Sele
tion model; Shared parameter model.1 Introdu
tionIn
omplete sets of data are 
ommon throughout all bran
hes of empiri
al re-sear
h. In
omplete data have always posed problems of imbalan
e in the datamatrix, but more importantly in
ompleteness often destroys a trial's randomiza-tion justi�
ation or a survey's representativeness. The extent to whi
h this hap-pens depends on the nature of the missing data me
hanism. Rubin (1976) dis-tinguished between missing 
omplete at random (MCAR), where the out
omesare independent of the me
hanism governing missingness, missing at random(MAR), where there is dependen
e between both, but only in the sense thatmissingness may depend on the observed, but not further on the unobservedmeasurements. Finally, when a missing not at random (MNAR) me
hanism op-erates, missingness depends on the unobserved out
omes, perhaps in additionto the observed ones.During the same era, the sele
tion model (SeM), pattern-mixture model(PMM), and shared-parameter model (SPM) frameworks have been established.In a sele
tion model, the joint distribution of the ith subje
t's out
omes, de-noted Y i, and ve
tor of missingness indi
ators, written Ri, is fa
tored as themarginal out
ome distribution and the 
onditional distribution of Ri given Y i.A pattern-mixture approa
h starts from the reverse fa
torization. In a shared-parameter model, a set of latent variables, latent 
lasses, and/or random e�e
tsis assumed to drive both the Y i and Ri pro
esses. An important version ofsu
h a model further asserts that, 
onditional on the latent variables, Y i and
Ri exhibit no further dependen
e. Rubin (1976) 
ontributed the 
on
ept ofignorability , stating that under pre
ise 
onditions, the missing data me
hanism
an be ignored when interest lies in inferen
es about the measurement pro
ess.Combined with regularity 
onditions, ignorability applies to MCAR and MAR
ombined, when likelihood or Bayesian inferen
e routes are 
hosen, but thestri
ter MCAR 
ondition is required for frequentist inferen
es to be generallyvalid.Traditionally, su
h simple methods as a 
omplete 
ase analysis or simpleforms of imputation (e.g., last observation 
arried forward) have been in use.While they have the advantage of restoring balan
e and/or a re
tangular datamatrix, it is su�
iently do
umented that su
h analyses are prone to severe biasand/or losses of e�
ien
y (Molenberghs et al, 2004; Jansen et al, 2006) andshould be avoided. Sin
e a likelihood-based or Bayesian analysis is valid whenthe missing data me
hanism is MAR, as long as all observed data are in
ludedinto the analysis, the so-
alled ignorability property, so-
alled dire
t likelihoodanalyses, their Bayesian 
ounterparts, or multiple imputation (Rubin, 1987),are regarded by many as 
andidates for the primary analyses of a study. When
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 inferen
es are desired, the methods proposed by Robins et al(1995) 
an be applied.However, one 
an never ex
lude the possibility that MNAR models may beoperating. Even though a variety of statisti
al models have been proposed forthe MNAR situation (Diggle, and Kenward, 1994; Baker, 1995; Molenberghs etal, 1997; Troxel et al, 1998), and in spite of the dramati
ally in
reased 
omputa-tional power, su
h models are prone to 
onsiderable sensitivity. This was made
lear by a variety of dis
ussants to Diggle, and Kenward (1994), su
h as Laird(1994), Little (1994b), and Rubin (1994). Several authors have laid bare su
hsensitivities and proposed methods for informal and formal sensitivity analysis(Kenward, 1998; Robins et al, 1998; Molenberghs et al, 2001; Van Steen et al,2001; Verbeke et al, 2001; Thijs et al, 2002; Jansen et al, 2003). Overviews areprovided in Verbeke, and Molenberghs (2000) and Molenberghs, and Verbeke(2005).One view is that testing the MAR null hypothesis against an MNAR alterna-tive is of a 
onventional nature. While indeed Diggle, and Kenward (1994) have
ondu
ted su
h tests, it is very important to realize that they are 
onditionalupon the alternative model holding.One 
ontribution of this paper, based on Molenberghs et al (2007), is toshow that, stri
tly speaking, the 
orre
tness of the alternative model 
an onlybe veri�ed in as far as it �ts the observed data. Thus, eviden
e for or againstMNAR 
an only be provided within a parti
ular, prede�ned parametri
 family,the plausibility of whi
h 
annot be veri�ed in empiri
al terms alone. We showthat an overall (omnibus) assessment of MAR versus MNAR is not possible,sin
e every MNAR model 
an be doubled up with a uniquely de�ned MAR
ounterpart, produ
ing exa
tly the same �t as the original MNAR model, in thesense that it produ
es exa
tly the same predi
tions to the observed data (e.g.,�tted 
ounts in an in
omplete 
ontingen
y table) as the original MNAR model,and depending on exa
tly the same parameter ve
tor. We show that, whilethis so-
alled MAR 
ounterpart generally does not belong to a 
onventionalparametri
 family, its existen
e has important rami�
ations. While this broadissue is still open to debate and even 
onfusion, it has been pointed out in theliterature. For example, the issue has been referred to, in general terms, byLittle, and Rubin (2002) and, in a non- and semi-parametri
 
ontext, by Gill,van der Laan, and Robins (1997). An ex
ellent exposition, together with relatedreferen
es, 
an be found in S
hafer and Graham (2002). Here, we fo
us on ageneral 
onstru
tion method for this 
ounterpart, whi
h we make expli
it forthe 
ase of 
ategori
al data.Now, the 
on
ept of MAR has typi
ally been framed within the SeM frame-work, while Molenberghs et al (1998) provided a formulation in the PMM settingas well. For the parti
ular 
ase of longitudinal data with dropout, these authorsderived a set of so-
alled identifying restri
tions, to identify the model for themissing measurements given the observed ones within a missing-data pattern,
onsistent with MAR. Molenberghs et al (2007) showed that for every MNARmodel, there is an MAR 
ounterpart that produ
es exa
tly the same �t to the



4 G. Molenberghs/MAR Counterpartsobserved data. Hen
e the original model and its MAR 
ounterpart 
annot bedistinguished from one another. This 
an be viewed as a formalization of theideas put forward in Jansen et al (2006). These authors fo
used on the SeMand PMM frameworks. Another 
ontributed of this paper, based on Creemerset al (2008), we will 
hara
terize MAR in the SPM framework as well and a 
on-ne
tion will be made with the MAR 
ounterpart in the sense of Molenberghset al (2007). To this end, a broad 
lass of SPM will be de�ned. Impli
ationsfor both non-monotone missing data as well as longitudinal data with dropoutwill be 
onsidered. In parti
ular, in analogy with the PMM work by Kenwardet al (2003), 
onditions will be derived to ensure future, unobserved measure-ments provide no information about dropout in addition to what is availablefrom 
urrent and past measurements.The rest of the paper is organized as follows. Se
tion 2 introdu
es the twomotivating 
ase studies. In Se
tion 3 we outline the ne
essary 
on
epts, termi-nology, and notation. Se
tion 4 presents our results regarding the MAR 
ounter-part to MNAR models. In Se
tion 5 the spe
i�
 
ase of in
omplete 
ontingen
ytables is studied. Se
tion 6 fo
uses on the spe
i�
 
ase of shared-parametermodels, while Se
tion 7 examines what 
onditions need to be imposed on mod-els for in
omplete longitudinal data, to ensure that the missingness me
hanismdoes not depend on future o

asions. In Se
tion 8 we apply the ideas developedto data from the Slovenian Publi
 Opinion Survey, analyzed before by Rubin etal (1995) and Molenberghs et al (2001). Se
tion 9 reports on the analysis of theony
homy
osis data.2 Motivating Case Studies2.1 The Slovenian Publi
 Opinion SurveyIn 1991 Slovenians voted for independen
e from former Yugoslavia in a plebis
ite.To prepare for this result, the Slovenian government 
olle
ted data in the Slove-nian Publi
 Opinion Survey (SPO), a month prior to the plebis
ite. Rubin etal (1995) studied the three fundamental questions added to the SPO and, in
omparing it to the plebis
ite's out
ome, drew 
on
lusions about the missingdata pro
ess.The three questions added were: (1) Are you in favour of Slovenian indepen-den
e? (2) Are you in favour of Slovenia's se
ession from Yugoslavia? (3) Willyou attend the plebis
ite? In spite of their apparent equivalen
e, questions (1)and (2) are di�erent sin
e independen
e would have been possible in 
onfederalform as well and therefore the se
ession question is added. Question (3) is highlyrelevant sin
e the politi
al de
ision was taken that not attending was treated asan e�e
tive NO to question (1). Thus, the primary estimand is the proportion θof people that will be 
onsidered as voting YES, whi
h is the fra
tion of peopleanswering yes to both the attendan
e and independen
e question. The raw dataare presented in Table 1. We will return to this question in Se
tion 8.2.
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tas do XVI Congresso Anual da SPE 5Tabela 1: Data from the Slovenian Publi
 Opinion Survey. The Don't Know
ategory is indi
ated by ∗. Independen
eSe
ession Attendan
e Yes No ∗Yes Yes 1191 8 21No 8 0 4
∗ 107 3 9No Yes 158 68 29No 7 14 3
∗ 18 43 31

∗ Yes 90 2 109No 1 2 25
∗ 19 8 96Molenberghs et al (2001) reanalyzed these data and used them as motivationto introdu
e their so-
alled intervals of ignoran
e, a formal way of in
orporatingun
ertainty stemming from in
ompleteness into the analysis of in
omplete 
on-tingen
y tables. To this end, they used the 
onvenient model family proposedby Baker et al (1992). We will now introdu
e the model family.2.2 An Ony
homy
osis TrialThe data introdu
ed in this se
tion were obtained from a randomized, double-blind, parallel group, multi
enter study for the 
omparison of two oral treat-ments (in the sequel 
oded as A and B) for toenail dermatophyte ony
homy
osis(TDO), des
ribed in full detail by De Ba
ker et al (1996). TDO is a 
ommontoenail infe
tion, di�
ult to treat, a�e
ting more than 2 out of 100 persons(Roberts, 1992). Anti-fungal 
ompounds, 
lassi
ally used for treatment of TDO,need to be taken until the whole nail has grown out healthy. The development ofnew su
h 
ompounds, however, has redu
ed the treatment duration to 3 months.The aim of the present study was to 
ompare the e�
a
y and safety of 12 weeksof 
ontinuous therapy with treatment A or with treatment B.In total, 2 × 189 patients, distributed over 36 
enters, were randomized.Subje
ts were followed during 12 weeks (3 months) of treatment and followedfurther, up to a total of 48 weeks (12 months). Measurements were takenat baseline, every month during treatment, and every 3 months afterwards,resulting in a maximum of 7 measurements per subje
t. At the �rst o

asion,the treating physi
ian indi
ates one of the a�e
ted toenails as the target nail,the nail whi
h will be followed over time. We will restri
t our analyses to onlythose patients for whi
h the target nail was one of the two big toenails. This
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Figura 1: Toenail Data. Individual pro�les of 30 randomly sele
ted subje
ts inea
h of the treatment groups in the toenail experiment.Tabela 2: Toenail Data. Number and per
entage of patients (N) with severetoenail infe
tion, for ea
h treatment arm separately.Group A Group B# Severe N % # Severe N %Baseline 54 146 37.0% 55 148 37.2%1 month 49 141 34.7% 48 147 32.6%2 months 44 138 31.9% 40 145 27.6%3 months 29 132 22.0% 29 140 20.7%6 months 14 130 10.8% 8 133 6.0%9 months 10 117 8.5% 8 127 6.3%12 months 14 133 10.5% 6 131 4.6%redu
es our sample under 
onsideration to 146 and 148 subje
ts, in group Aand group B, respe
tively.Figure 1 shows the observed pro�les of 30 randomly sele
ted subje
ts fromtreatment group A and treatment group B, respe
tively.One of the responses of interest was the una�e
ted nail length, measuredfrom the nail bed to the infe
ted part of the nail, whi
h is always at the free endof the nail, expressed in millimeters. This out
ome has been studied extensivelyin Verbeke, and Molenberghs (2000). Another important out
ome in this studywas the severity of the infe
tion, 
oded as 0 (not severe) or 1 (severe). Thequestion of interest was whether the downward evolution of severe infe
tiondi�ers among treatment groups. A summary of the number of patients in thestudy at ea
h time-point, and the number of patients with severe infe
tionsis given in Table 2. A graphi
al representation is given in Figure 2. Due to
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tas do XVI Congresso Anual da SPE 7Tabela 3: Toenail Data. Number of available repeated measurements per subje
t,for ea
h treatment arm separately.Group A Group B# Obs. N % N %7 107 73.29% 117 79.05%6 25 17.12% 14 9.46%5 2 1.37% 8 5.41%4 2 1.37% 4 2.70%3 4 2.74% 3 2.03%2 2 1.37% 1 0.68%1 4 2.74% 1 0.68%Total: 146 100% 148 100%a variety of reasons, the out
ome has been measured at all 7 s
heduled timepoints, for only 224 (76%) out of the 298 parti
ipants. Table 3 summarizesthe number of available repeated measurements per subje
t, for both treatmentgroups separately. We see that the o

urren
e of missingness is similar in bothtreatment groups.3 Notation and Con
eptsLet the random variable Yij denote the response of interest, for the ith studysubje
t, designed to be measured at o

asions tij , i = 1, . . . , N , j = 1, . . . , ni.Independen
e a
ross subje
ts is assumed. This setting 
overs both the longi-tudinal as well as the multivariate settings. In the latter 
ase, tij = tj wouldmerely be indi
ators for the various variables studied, and typi
ally ni ≡ n. Theout
omes 
an 
onveniently be grouped into a ve
tor Y i = (Yi1, . . . , Yini
)′. Inaddition, de�ne a ve
tor of missingness indi
ators Ri = (Ri1, . . . , Rini

)′ with
Rij = 1 if Yij is observed and 0 otherwise. In the spe
i�
 
ase of dropout, Ri
an usefully be repla
ed by the dropout indi
ator

Di =

ni∑

j=1

Rij .Note that the 
on
ept of dropout refers to time-ordered variables, su
h as inlongitudinal studies. For a 
omplete sequen
e, Ri = 1 and/or Di = ni. It is
ustomary to split the ve
tor Y i into observed (Y o
i ) and missing (Y m

i ) 
om-ponents, respe
tively. When Ri is 
onditioned up, Y o
i and Y m

i expli
itly referto the observed and missing 
omponents. In the reverse 
ase, they refer to anarbitrary partition of the out
ome ve
tor.In prin
iple, one would like to 
onsider the density of the full data f(yi, ri|θ,ψ),where the parameter ve
tors θ and ψ des
ribe the measurement and missingness
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Figura 2: Toenail Data. Evolution of the observed per
entage of severe toenailinfe
tions in the two treatment groups separately.pro
esses, respe
tively. Covariates are assumed to be measured and grouped ina ve
tor xi but, throughout, are suppressed from notation. Although unusual,it is in prin
iple possible for θ and ψ to have 
omponents in 
ommon.This full density fun
tion 
an be fa
tored in di�erent ways, ea
h leading toa di�erent framework. They were mentioned brie�y in the introdu
tion. Here,we will present them more formally but in their standard form of appearan
e.In subsequent se
tions, they will be tailored to our needs, in parti
ular theshared-parameter model.The sele
tion model (SeM) framework is based on the following fa
torization(Rubin, 1976; Little, and Rubin, 2002):
f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ). (1)The �rst fa
tor is the marginal density of the measurement pro
ess and the se
-ond one is the density of the missingness pro
ess, 
onditional on the out
omes.As an alternative, one 
an 
onsider so-
alled pattern-mixture models (PMM;Little (1993, 1994a)) using the reversed fa
torization
f(yi, ri|θ,ψ) = f(yi|ri,θ)f(ri|ψ). (2)This 
an be seen as a mixture density over di�erent populations, ea
h of whi
his de�ned by the observed pattern of missingness.Instead of using the sele
tion modeling or pattern-mixture modeling frame-works, the measurement and the dropout pro
ess 
an be jointly modeled usinga shared-parameter model (Wu, and Carroll, 1988; Wu, and Bailey, 1988, 1989;
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tas do XVI Congresso Anual da SPE 9TenHave et al, 1998; Follmann, and Wu, 1995; Little, 1995). One then mightassume there exists a ve
tor of random e�e
ts bi, 
onditional upon whi
h themeasurement and dropout pro
esses are independent. This shared-parametermodel (SPM) is formulated by way of the following fa
torization
f(yi, ri|bi,θ,ψ) = f(yi|bi,θ)f(ri|bi,ψ), (3)and hen
e

f(yi, ri|θ,ψ) =

∫
f(yi|bi,θ)f(ri|bi,ψ)f(bi) dbi. (4)Here, bi are shared parameters, often 
onsidered to be random e�e
ts and fol-lowing a spe
i�
 parametri
 distribution. There are various other forms an SPM
an take, and a more thorough dis
ussion 
an be found in Se
tion 6.The taxonomy of missing data me
hanisms, introdu
ed by Rubin (1976)and informally des
ribed in the introdu
tion, is 
ustomarily formalized usingthe se
ond fa
tor on the right hand side of sele
tion-model fa
torization (1). Ame
hanism is MCAR if

f(ri|yi,ψ) = f(ri|ψ), (5)i.e., when the measurement and missingness pro
esses are independent, perhaps
onditional on 
ovariates. For a given set of data, MAR holds when
f(ri|yi,ψ) = f(ri|y

o
i ,ψ), (6)stri
tly weaker than the MCAR 
ondition, but still a simpli�
ation of the MNAR
ase, where missingness depends on the unobserved out
omes ym

i , regardless ofthe observed out
omes and the 
ovariates.Note that MCAR is equally trivial in the pattern-mixture model frame-work, where ri does not in�uen
e the mixture 
omponents, and in the shared-parameter model framework, where no random-e�e
ts are shared among the twofa
tors in (3). The 
on
ept of MAR in the other framework is a di�erent matter.As reviewed in the next se
tion, a PMM 
hara
terization has been proposed byMolenberghs et al (1998). In Se
tion 6, an SPM-based 
hara
terization will beprovided, one of the 
ontributions of this manus
ript.A �nal useful 
on
ept we need is ignorability. Note that the 
ontribution tothe likelihood of subje
t i, based on (1), equals
Li =

∫
f(yi|θ)f(ri|y

o
i ,y

m
i ,ψ) dym

i . (7)In general, (7) does not simplify, but under MAR, we obtain:
Li = f(yo

i |θ)f(ri|y
o
i ,ψ). (8)Hen
e, likelihood and Bayesian inferen
es for the measurement model parame-ters θ 
an be made without expli
itly formulating the missing data me
hanism,



10 G. Molenberghs/MAR Counterpartsprovided the parameters θ and ψ are distin
t, meaning that their joint param-eter spa
e is the Cartesian produ
t of the two 
omponent parameter spa
es(Rubin, 1976). For Bayesian inferen
es, additionally the priors need to be in-dependent (Little, and Rubin, 2002). It is pre
isely this result whi
h makesso-
alled dire
t likelihood analyses, valid under MAR, viable 
andidates forthe status of primary analysis in 
lini
al trials and a variety of other settings(Molenberghs et al, 2004).4 Every MNAR Model Has Got a MAR CounterpartIn this se
tion, we will show that for every MNAR model �tted to a set ofdata, there is an MAR 
ounterpart providing exa
tly the same �t to the data.Here, the 
on
ept of model �t should be understood as measured using su
h
onventional methods as devian
e measures and, of 
ourse, in as far as theobserved data are 
on
erned. The following steps are involved: (1) �tting anMNAR model to the data; (2) reformulating the �tted model in PMM form; (3)repla
ing the density or distribution of the unobserved measurements given theobserved ones and given a parti
ular response pattern by its MAR 
ounterpart;(4) establishing that su
h an MAR 
ounterpart uniquely exists. Throughoutthis se
tion, we will suppress 
ovariates xi from notation, but assume them tobe present.In the �rst step, we �t an MNAR model to the observed set of data. Theobserved data likelihood is:
L =

∏

i

∫
f(yi

o,yi
m, ri|θ,ψ)dyi

m. (9)Upon denoting the obtained parameter estimates, e.g., obtained by likelihood-based or Bayesian methods, by θ̂ and ψ̂ respe
tively, the �t to the hypotheti
alfull data is
f(yi

o,yi
m, ri|θ̂, ψ̂) = f(yi

o,yi
m|θ̂)f(ri|yi

o,yi
m, ψ̂). (10)To undertake the se
ond step, full density (10) 
an be re-expressed in PMMform as:

f(yi
o,yi

m|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)

= f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi

m|yi
o, ri, θ̂, ψ̂). (11)A similar reformulation 
an be 
onsidered for an SPM. In a PMM, the modelwill have been expressed in this form to begin with.Note that, in line with PMM theory, the �nal term on the right hand side of(11), f(yi

m|yi
o, di, θ̂, ψ̂), is not identi�ed from the observed data. In this 
ase, itis determined solely from modelling assumptions. Within the PMM framework,
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tions have to be 
onsidered (Little, 1994a; Molenberghs et al,1998; Kenward et al, 2003).The third step requires repla
ing this fa
tor by the appropriate MAR 
oun-terpart. To this end, we need the following lemma, formulating MAR equiva-lently within the PMM framework.Lemma 1 In the PMM framework, the missing data me
hanism is MAR if andonly if
f(ym

i |yo
i , ri,θ) = f(ym

i |yo
i ,θ). (12)This means that, in a given pattern, the 
onditional distribution of the unob-served 
omponents given the observed ones equals the 
orresponding distribu-tion marginalized over the patterns. The proof, whi
h is rather straightforwardand similar to what 
an be found in Molenberghs et al (1998), is reported inMolenberghs et al (2007). Note that, owing to this result, MAR 
an be formu-lated in terms of R given Y , but also in terms of Y given R.Using Lemma 1, it is 
lear that f(yi

m|yi
o, ri, θ̂, ψ̂) needs to be repla
edwith

h(yi
m|yi

o, ri) = h(yi
m|yi

o) = f(yi
m|yi

o, θ̂, ψ̂), (13)where the h(·) notation is used for shorthand purposes. Note that the densityin (13) follows from the SeM-type marginal density of the 
omplete data ve
tor.Sometimes, therefore, it may be more 
onvenient to repla
e the notation yi
oand yi

m by one that expli
itly indi
ates whi
h 
omponents are observed andmissing in pattern ri under 
onsideration:
h(yi

m|yi
o, ri) = h(yi

m|yi
o) = f [(yij)rj=0|(yij)rj=1, θ̂, ψ̂]. (14)Thus, (14) provides a unique way of extending the model �t to the observeddata, belonging to the MAR family. As stated before, the above 
onstru
tiondoes not lead to a member of a 
onventional parametri
 family. While thisobviously implies limitations on its use, su
h is not dissimilar to the 
onstru
tionof some semi- and non-parametri
 estimators. Also, it helps to understand thatan overall, de�nitive 
on
lusion about the nature of the missing data me
hanismis not possible, even though one 
an make progress if attention is 
on�ned to agiven parametri
 family, in whi
h one puts su�
iently strong prior belief. Toshow formally that the �t remains the same, we 
onsider the observed-datalikelihood based on (9) and (11):

L̂ =
∏

i

∫
f(yi

o,yi
m|θ̂)f(ri|yi

o,yi
m, ψ̂)dyi

m

=
∏

i

∫
f(yi

o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi
m|yi

o, ri, θ̂, ψ̂)dyi
m

=
∏

i

f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)
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=

∏

i

∫
f(yi

o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)h(yi
m|yi

o)dyi
m.The above results justify the following theorem:Theorem 1 Every �t to the observed data, obtained from �tting an MNARmodel to a set of in
omplete data, is exa
tly reprodu
ible from an MAR de
om-position.The key 
omputational 
onsequen
e is the need to 
ompute h(yi

m|yi
o) in(13) or (14). This means, for ea
h pattern, the 
onditional density of the un-observed measurements given the observed ones needs to be extra
ted from themarginal distribution of the 
omplete set of measurements. Molenberghs et al(1998) have shown that, for the 
ase of dropout, the so-
alled available 
asemissing value restri
tions (ACMV) provide a pra
ti
al 
omputational s
heme.Pre
isely, ACMV states that

∀t ≥ 2, ∀s < t : f(yit|yi1, · · · , yi,t−1, di = s) = f(yit|yi1, · · · , yi,t−1, di ≥ t). (15)In other words, the density of a missing measurement, 
onditional on the mea-surement history, is determined from the 
orresponding density over all patternsfor whi
h all of these measurements are observed. For example, the density ofthe third measurement in a sequen
e, given the �rst and se
ond ones, in pat-terns with only 1 or 2 measurements taken, is determined from the 
orrespond-ing density over all patterns with 3 or more measurements. Thijs et al (2002)and Verbeke, and Molenberghs (2000)(p. 347) derived a pra
ti
al 
omputationalmethod for the fa
tors in (15):
f(yit|yi1, · · · , yi,t−1, di = s)

=

∑n
d=s αdfd(yi1, . . . , yis)∑n

d=s αdfd(yi1, . . . , yi,s−1)
(16)

=

n∑

d=s

(
αdfd(yi1, . . . , yi,s−1)∑ni

d=s αdfd(yi1, . . . , yi,s−1)

)
fd(ys|yi1, . . . , yi,s−1). (17)Here, αd is the probability to belong to pattern d.The above identi�
ations for the monotone 
ase are useful in 
ase an MNARpattern-mixture model has been �tted to begin with, sin
e then the identi�
a-tions under MAR 
an be 
al
ulated from the pattern-spe
i�
 marginal distribu-tions. When a sele
tion model has been �tted in the initial step, f(yi1, . . . , yini

|θ̂)has been estimated, from whi
h all 
onditional distributions, needed in (14), 
anbe derived. When the initial model is an MNAR PMM model and the miss-ing data patterns are non-monotone, then it is ne
essary to �rst rewrite thePMM in SeM form, and derive the required 
onditional distributions from theso-obtained SeM measurement model. This essentially 
omes down to 
al
ulat-ing a weighted average of the pattern-spe
i�
 measurement models. In some
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ases, su
h as for 
ontingen
y tables, this step 
an be done in an alternativeway by �tting a saturated MAR sele
tion model to the �t obtained from thePMM model.We will illustrate and 
ontrast the monotone and non-monotone 
ases usinga bivariate and trivariate out
ome with dropout on the one hand and a bivariatenon-monotone out
ome on the other hand. While the theorem applies to boththe monotone and non-monotone settings, it is insightful to see that only for theformer relatively simple and intuitively appealing expressions arise, while thelatter setting involves the need for iterative 
omputation. In the next se
tion,the aforementioned general 
ontingen
y table setting to whi
h a PMM has been�tted, will be studied.4.1 A Bivariate Out
ome With DropoutHere and in the following examples, we will present and equate the SeM andPMM de
ompositions, enabling us to derive expressions for the MAR 
ounter-parts. It is interesting and straightforward to derive results for the MCAR 
ase,and hen
e these will be presented, too.Dropping 
ovariates, parameters, and the subje
t index i from notation, theSeM-PMM equivalen
e for the 
ase of two out
omes, the �rst of whi
h is alwaysobserved but the se
ond one partially missing, is given by:
f(y1, y2)g̃(d = 2|y1, y2) = f2(y1, y2)α̃(d = 2),

f(y1, y2)g̃(d = 1|y1, y2) = f1(y1, y2)α̃(d = 1).Note that this is the setting 
onsidering by Glynn et al (1986). Here, g̃(·) isused for the SeM dropout model, with α̃(·) denoting the PMM probabilities tobelong to one of the patterns. Sin
e α̃(d = 1) + α̃(d = 2) = 1 and a similarresult holds for the g̃(·) fun
tions, it is 
onvenient to write:
f(y1, y2)g(y1, y2) = f2(y1, y2)α (18)

f(y1, y2)[1 − g(y1, y2)] = f1(y1, y2)[1 − α]. (19)Assuming MCAR, it is 
lear that α = g(y1, y2), produ
ing, without any di�-
ulty:
f(y1, y2) = f2(y1, y2) = f1(y1, y2). (20)Under MAR, y2 has to be removed from g(·) for in
omplete observations, butsin
e we assume a single parametri
 fun
tion for the missingness model, it followsthat g(y1, y2) = g(y1) and hen
e (18) produ
es

f(y1)f(y2|y1)g(y1) = f2(y1)f2(y2|y1)α.Upon reordering, we �nd:
f(y1)g(y1)

f2(y1)α
=

f2(y2|y1)

f(y2|y1)
. (21)
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an be applied to (19), from whi
h we derive:
f(y2|y1) = f2(y2|y1) = f1(y2|y1). (22)Note that (22) is stri
tly weaker than (20). The last term in (22) is not identi�edby itself, and hen
e, we see it needs to be set equal to its 
ounterpart from the
ompleters whi
h, in turn, is equal to the marginal distribution. This is inagreement with (14) as well as with the spe
i�
 identi�
ations appli
able in themonotone and hen
e ACMV setting.4.2 A Trivariate Out
ome With DropoutNote that identi�
ation (22) does not involve mixtures. This 
hanges as soon asthere are three or more out
omes. The equations 
orresponding to (18)�(19),spe
ialized to the MAR 
ase, are:

f(y1, y2, y3)g0 = f0(y1, y2, y3)α0, (23)
f(y1, y2, y3)g1(y1) = f1(y1, y2, y3)α1, (24)

f(y1, y2, y3)g2(y1, y2) = f2(y1, y2, y3)α2, (25)
f(y1, y2, y3)g3(y1, y2) = f3(y1, y2, y3)α3. (26)We have 
hosen to in
lude pattern 0, the one without follow-up measurements,as well, and will return to this one. We 
ould write g3(·) as a fun
tion of y3 aswell, but be
ause the sum of the gd(·) equals one, it is 
lear that g3(·) ought tobe independent of y3. With arguments similar to the ones developed in the 
aseof two measurements, we 
an rewrite (26) as:

f(y1, y2)

f3(y1, y2)
·
g3(y1, y2)

α3
=

f3(y3|y1, y2)

f(y3|y1, y2)
.Exa
tly the same 
onsideration 
an be made based on (25), and hen
e

f3(y3|y1, y2) = f(y3|y1, y2) = f2(y3|y1, y2). (27)The �rst fa
tor identi�es the se
ond one, and hen
e also the third one. Startingfrom (24), we obtain:
f1(y2, y3|y1) = f(y2, y3|y1),whi
h produ
es, in fa
t, two separate identities:

f1(y2|y1) = f(y2|y1), (28)
f1(y3|y1, y2) = f(y3|y1, y2) = f3(y3|y1, y2) = f2(y3|y1, y2). (29)For the latter one, identity (27) has been used as well. The density f(y2|y1),needed in (28), is determined from the general ACMV result (17):

f(y2|y1) =
α2f2(y2|y1) + α3f3(y2|y1)

α2 + α3
.
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lear that g0 = α0 and hen
e also
f0(y1, y2, y3) = f(y1, y2, y3). From the latter density, only f(y1) has not beendetermined yet, but this one follows again very easily from the general ACMVresult:

f(y1) =
α1f1(y1) + α2f2(y1) + α3f3(y1)

α1 + α2 + α3
.In summary, the ne
essary MAR identi�
ations easily follow from both thePMM and the SeM formulations of the model.4.3 A Bivariate Out
ome With Non-Monotone MissingnessThe 
ounterparts to (18)�(19) and (23)�(26) for a bivariate out
ome with non-monotone missingness are

f(y1, y2)g00(y1, y2) = f00(y1, y2)α00, (30)
f(y1, y2)g10(y1, y2) = f10(y1, y2)α10, (31)
f(y1, y2)g01(y1, y2) = f01(y1, y2)α01, (32)
f(y1, y2)g11(y1, y2) = f11(y1, y2)α11. (33)Clearly, under MCAR, the gr1r2

(·) fun
tions do not depend on the out
omesand hen
e fr1r2
(y1, y2) = f(y1, y2) for all four patterns. For the MAR 
ase,(30)�(33) simplify to

f(y1, y2)g00 = f00(y1, y2)α00, (34)
f(y1, y2)g10(y1) = f10(y1, y2)α10, (35)
f(y1, y2)g01(y2) = f01(y1, y2)α01, (36)

f(y1, y2)g11(y1, y2) = f11(y1, y2)α11. (37)Observe there are four identi�
ations a
ross the gr1r2
(y1, y2) fun
tions:

g00 + g10(y1) + g01(y2) + g11(y1, y2) = 1,for ea
h (y1, y2). Also ∑r1,r2
αr1,r2

= 1. Applying the usual algebra to (34)�(37), we obtain three identi�
ations for the unobservable densities:
f00(y1, y2) = f(y1, y2), (38)
f10(y1|y2) = f(y1|y2), (39)
f01(y2|y1) = f(y2|y1). (40)Using these in 
onjun
tion with the identi�able parts of the distributions yieldsthe MAR 
ounterpart.
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omplete Contingen
y TablesIn Se
tions 4.1�4.3 we have derived general identi�
ation s
hemes for an MARextension of a �tted model to a binary or trivariate out
ome with dropout, aswell as to a bivariate out
ome with non-monotone missingness. Whereas themonotone 
ases provide expli
it expressions in terms of the pattern-spe
i�
 den-sities, (38)�(40) provide an identi�
ation only in terms of the marginal prob-ability. This in itself is not a problem, sin
e the marginal density is alwaysavailable, either dire
tly when a SeM is �tted, or through marginalization whena PMM or an SPM is �tted.In the spe
i�
 
ase of 
ontingen
y tables, further progress 
an be made.Indeed, we 
an show a saturated MAR model is always available, for any in-
omplete 
ontingen
y table setting. This implies one 
an start from the �t ofan MNAR model to the observed data, and then extend it, using this result,towards MAR. We will present the general result and then dis
uss its pre
iseimpli
ations for pra
ti
e.Assume we have a ∏n
k=1 ck 
ontingen
y table with supplemental margins,where k indexes the n dimensions in the table and ck is the number of alterna-tives the kth 
ategori
al variable 
an take. The table of 
ompleters is indexedby r = 1 = (1, . . . , 1). A parti
ular in
omplete table is indexed by a r 6= 1. Thefull set of tables 
an but does not have to be present. The number of 
ells is:

#
ells =
∑

r

n∏

k=1

crk

k . (41)Denote the measurement model probabilities by pj = pj1...jn
for jk = 1, . . . ckand k = 1, . . . , n. Clearly, these probabilities sum to one. The missingnessprobabilities, assuming MAR, are:

p(r|j) =

{
p(r|jk with rk = 1) if r 6= 1,

1 −
∑
r 6=1 p(r|j) if r = 1.

(42)Summing over r implies summing over those patterns for whi
h a
tual observa-tions are available. The number of parameters in the saturated model is
#parameters =

(
n∏

k=1

ck − 1

)
+
∑

r 6=1

n∏

k=1

crk

k . (43)The �rst term in (43) is for the measurement model, the se
ond one is for themissingness model. Clearly, the number of parameters equals one less thanthe number of 
ells, establishing the 
laim. The situation where 
ovariates arepresent is 
overed automati
ally, merely by 
onsidering one extra dimension inthe 
ontigen
y table, j = 0 say, with c0 referring to the total number of 
ovariatelevels in the set of data.We will now study the impli
ations for the simple but important settingsstudied in Se
tions 4.1 and 4.3.
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y Table With DropoutIn Se
tion 4.1 identi�
ations have been derived for the bivariate 
ase with mono-tone missingness. For 
ontingen
y tables, these 
an be derived as well by further�tting the saturated MAR model, des
ribed in the previous se
tion, to the �t ob-tained from the original MNAR model. Denote the 
ounts obtained from the �tof the original model by z2,jk and z1,j , for the 
ompleters and dropouts, respe
-tively. Denote the measurement model probabilities by pjk and the dropoutprobabilities by qj . Then, due to ignorability, the likelihood fa
tors into two
omponents:
ℓ1 =

∑

j,k

z2,jk ln pjk +
∑

j

z1,j ln pj+ − λ


∑

j,k

pjk − 1


 , (44)

ℓ2 =
∑

j,k

z2,jk ln qj +
∑

j

z1,j ln(1 − qj). (45)We have used an undetermined Lagrange multiplier λ to in
orporate the sum
onstraint on the marginal probabilities. Solving the s
ore equations for (44)and (45) produ
es, with simple and well-known algebra:
p̂jk =

1

n
z2,jk

(
z2,j+ + z1,j

z2,j+

)
, (46)

q̂j =
z2,j+

z2,j+ + z1,j

, (47)where n is the total sample size. Combining parameter estimates leads to thenew, MAR-based, �tted 
ounts:
ẑ2,jk = np̂jk q̂j = z2,jk, (48)
ẑ1,jk = np̂jk(1 − q̂j) = z1,j

z2,jk

z2,j+
, (49)

ẑ1,j+ = z1,j+. (50)From (48) and (50) it is 
lear that the �t in terms of the observed data has not
hanged. The expansion of the in
omplete data into a 
omplete one is des
ribedby (49). Equations (48) and (49) 
an be used to produ
e the MAR 
ounterpartto the original model, without any additional 
al
ulations. This is not so simplefor the non-monotone 
ase, as we will show next.
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y Table With Non-Monotone Missing-nessThe 
ounterparts to (44)�(45) for this 
ase are:
ℓ1 =

∑

j,k

z11,jk ln pjk +
∑

j

z10,j ln pj+ +
∑

k

z01,k ln p+k

+z00 ln p++ − λ


∑

j,k

pjk − 1


 , (51)

ℓ2 =
∑

j,k

z11,jk ln(1 − q10,j − q01,k − q00) +
∑

j

z10,j ln q10,j

+
∑

k

z01,k ln q01,k + z00 ln g00. (52)Notation has been modi�ed in a

ordan
e with the design. The q quantities
orrespond to the g(·) model in Se
tion 4.3.While p++ = 1 and hen
e z00 does not 
ontribute information to the mea-surement probabilities, it does add to the estimation of the missingness model.Deriving the s
ore equations from (51) and (52) is straightforward but, unlikein the previous se
tion, no 
losed form exists. Chen, and Fienberg (1974) derivedan iterative s
heme for the probabilities pjk, based on setting the expe
tedsu�
ient statisti
s equal to their 
omplete-data 
ounterparts:
npjk = z11,jk + z10,j

pjk

pj+
+ z01,k

pjk

p+k

+ z00
pjk

p++
,(with p++ = 1) and hen
e

(n − z00)pjk = z11,jk + z10,j

pjk

pj+
+ z01,k

pjk

p+k

. (53)The same equation is obtained from the �rst derivative of (51). Chen andFienberg's iterative s
heme results from initiating the pro
ess with a set ofstarting values for the pjk, e.g., from the 
ompleters, and then evaluating theright hand side of (53). Equating it to the left hand side provides an update forthe parameters. The pro
ess is repeated until 
onvergen
e.While there are no 
losed-form 
ounterparts to (46) and (47), the expressionsequivalent to (48)�(50) are
̂z11,jk = z11,jk, (54)
̂z10,jk = z10,j

pjk

pj+
, (55)

̂z01,jk = z01,k

pjk

p+k

, (56)
̂z00,jk = z00pjk. (57)
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e between (48)�(50) on the one handand (54)�(57) on the other hand. In the monotone 
ase, the expressions on theright hand side are in terms of the 
ounts z only, whereas here the marginalprobabilities pjk intervene, whi
h have to be determined from a numeri
al �t.The pra
ti
al use of the results in this se
tion are illustrated next on datafrom the Slovenian Publi
 Opinion Survey.6 Shared-parameter Models and Missingness at RandomSPM's are 
losely linked to the joint modeling of longitudinal and time-to-eventdata, a 
lass of models 
onsidered for at least three reasons. First, a time-to-event out
ome may be measured in terms of a longitudinal 
ovariate. Su
h ajoint model then allows, in a natural way, for in
orporation of measurementerror present in the longitudinal 
ovariate into the model. Se
ond, a number ofresear
hers have used joint modeling methods to exploit longitudinal markers assurrogates for survival (Tsiatis, DeGruttola, and Wulfsohn, 1995; Xu and Zeger,2001a; Henderson, Diggle, and Dobson, 2000; Renard et al, 2002).Third, and of most relevan
e here, su
h joint models 
an be used whenin
omplete longitudinal data are 
olle
ted. Important early referen
es to su
hmodels are Wu, and Carroll (1988), Wu, and Bailey (1988), and Wu, and Bailey(1989). Wu, and Bailey (1988) proposed su
h a model for what they termedinformative right 
ensoring. For a 
ontinuous response, Wu, and Carroll (1988)suggested using a 
onventional Gaussian random-
oe�
ient model 
ombinedwith an appropriate model for to time to dropout, su
h as proportional hazards,logisti
 or probit regression. The 
ombination of probit and Gaussian responsesallows expli
it solution of the integral and was used in their appli
ation.In a slightly di�erent approa
h to modeling dropout time as a 
ontinuousvariable in the latent variable setting, S
hlu
hter (1992) and DeGruttola andTu (1994) proposed joint multivariate Gaussian distributions for the latent vari-able(s) of the response pro
ess and a variable representing time to dropout. The
orrelation between these variables indu
es dependen
e between dropout andresponse. Rizopoulos, Verbeke, and Molenberghs (2007) study the impa
t ofrandom-e�e
ts misspe
i�
ation in a shared parameter model. Beun
kens et al(2007a) 
ombine 
ontinuous random e�e
ts with latent 
lasses, leading to thesimultaneous use of mixture and mixed-e�e
ts models ideas. It is very nat-ural to handle random-
oe�
ient models, and in parti
ular shared-parametermodels, in a Bayesian framework. Examples in the missing value setting areprovided by Best et al (1996) and Carpenter, Po
o
k, and Lamm (2002). Fur-ther referen
es in
lude Pawitan and Self (1993); Taylor et al (1994); Fau
ettand Thomas (1996); Lavalley and DeGruttola (1996); Hogan and Laird (1997,1998); Wulfsohn and Tsiatis (1997) and Xu and Zeger (2001b).Models of this type handle non-monotone missingness quite 
onvenientlythrough random e�e
ts. There are many ways in whi
h su
h models 
an beextended and generalized. Nevertheless, these models seem to defy an easy,
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hara
terization of MAR, whi
h is the topi
 of what follows.In Se
tion 3, the 
ommonly used de�nition (3) of an SPM is presented.However, the pre
eding review makes 
lear that not all authors employ thesame de�nition. Before passing on to the de�nition we will employ here, it istherefore instru
tive to take a more general position, also 
onsidered by Little(1995), based on augmenting the joint density of (yi, ri) with a ve
tor of randome�e
ts bi:
f(yi, ri, bi|θ,ψ,xi), (58)where xi is now expli
itly in
luded to parametrize the random-e�e
ts distri-bution. As before, 
ovariates are allowed to be present, perhaps taking theform of di�erent sets that ea
h des
ribe one of the three 
omponents. Again,they are suppressed from notation. Based on (58), one 
an still 
onsider thesele
tion-model fa
torization:

f(yi, ri, bi|θ,ψ) = f(yi|bi,θ)f(ri|yi, bi,ψ)f(bi|xi) (59)and, likewise, the pattern-mixture model fa
torization:
f(yi, ri, bi|θ,ψ,xi) = f(yi|ri, bi,θ)f(ri|bi,ψ)f(bi|xi). (60)The notation is the same as in Se
tion 3, with in addition xi parameters des
rib-ing the random-e�e
ts distribution. Little (1995) refers to su
h de
ompositionsas random-
oe�
ient sele
tion and pattern-mixture models, respe
tively. Obvi-ously, SeM (1) and PMM (2) follow by removing the random e�e
ts from (59)and (60), respe
tively or, at least, not having them in 
ommon between themodels for Y i and Ri.An important simpli�
ation, leading to the already-de�ned SPM (3), ariseswhen Y i and Ri are assumed independent, given the random e�e
ts, i.e., when
onditional independen
e assumptions are made. Spelling out the model in fullprodu
es:

f(yi, ri, bi|θ,ψ,xi) = f(yi|bi,θ)f(ri|bi,ψ)f(bi|xi). (61)Model (61) 
orresponds to (3), but now also the distribution of the randome�e
ts has been spelled out expli
itly. This model was entertained by Follmann,and Wu (1995). Note that, when bi is assumed to be dis
rete, a latent-
lass ormixture model follows.We are now in a position to introdu
e the SPM framework needed for ourpurposes. Note that most formulations assume that a single, 
ommon set bidrives the entire pro
ess. Whilst holding on to the 
onditional-independen
eassumption, we will expand bi to a set of latent stru
tures, as in the followingde�nition.De�nition 1 (A General Shared-parameter Model Family.) We de�ne ageneral shared-parameter model as one of the form
f(yo

i |gi,hi, ji, ℓi)f(ym
i |yo

i , gi,hi,ki,mi)f(ri|gi, ji,ki qi), (62)
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ts ve
tors(ve
tors of latent variables).For 
onvenien
e, write
bi = (gi,hi, ji,ki, ℓi,mi, qi). (63)Several remarks are in pla
e. First, this is the most general random-e�e
tsmodel that 
an be 
onsidered in the sense that gi is 
ommon to all three fa
torsin (62), hi, ji, and ki are shared between a pair of fa
tors, and ℓi, mi, and qiare restri
ted to a single fa
tor. Depending on the appli
ation, one may 
hooseto either retain all random e�e
ts or to omit some. It will then be useful tohave a perspe
tive on the impli
ations of su
h simpli�
ations, preferably also interms of the missing data me
hanism operating. This is why we will establish
onditions under whi
h MAR operates on the one hand, and missingness doesnot depend on future, unobserved measurements in a longitudinal 
ontext onthe other hand. Se
ond, in full generality, model (62) may 
ome a
ross assomewhat 
ontrived. Our obje
tive is not to postulate (62) as a model of usein every possible appli
ation of SPM, but rather as the most general SPM fromwhi
h substantively appropriate models follow as sub-
lasses. Related to this,it appears (62) assumes two di�erent distributions for the out
ome ve
tor, i.e.,divor
ing the observed from the missing 
omponents. This is not entirely the
ase be
ause gi and hi still tie both fa
tors together. The impa
t of ji, ki, ℓi,andmi is to modify one's latent pro
ess in terms of missingness. In other words,the most general model assumes that observed and missing 
omponents aregoverned in part by 
ommon pro
esses and partly by separate pro
esses. Third,in prin
iple, we 
ould expand (62) with the densities of the random e�e
ts. Thisis generally not ne
essary for our purposes, though. Fourth, the assumptionof independent random-e�e
ts ve
tors is not restri
tive, be
ause asso
iation is
aptured through the sets 
ommon to at least two fa
tors. Fifth, 
onventionalSPM formulation (61) follows by removing all random e�e
ts but gi.De�nition (62) will allow us to derive a general 
hara
terization of MAR inthe SPM framework. It is instru
tive to set out by deriving an elegant set ofsu�
ient 
onditions. Thereafter, ne
essity will be addressed. To this end, we
an start from either the SeM-based de�nition (6) or the PMM 
hara
terizationas laid out in Lemma 1.Starting from the SeM de�nition, and assuming gi, hi, and ki are zero, we
an show that MAR follows:

f(ri|y
o
i ,y

m
i ) =

f(ri,y
o
i ,y

m
i )

f(yo
i ,y

m
i )

=

∫
f(yo

i |ji, ℓi)f(ym
i |yo

i ,mi)f(ri|ji, qi)f(bi) dbi∫
f(yo

i |ji, ℓi)f(ym
i |yo

i ,mi)f(bi) dbi
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=

∫
f(ym

i |yo
i ,mi) dmi ·

∫
f(yo

i |ji, ℓi)f(ri|ji, qi)f(bi) dbi∫
f(ym

i |yo
i ,mi) dmi ·

∫
f(yo

i |ji, ℓi)f(bi) dbi

=
f(yo

i , ri)

f(yo
i )

= f(ri|y
o
i ),where integration over bi is shorthand for integration over all 
omponent ve
torsmaking up bi, listed in (63), or an appropriate subset thereof. Hen
e, a su�-
ient 
ondition for the SPM to be MAR is that the random e�e
ts driving theobserved measurements and/or the missing-data pro
ess do not in�uen
e themissing measurements, given the observed ones. In other words, all informationabout the missing measurements, apart from 
ovariates, stems from the ob-served measurements only. Clearly, the random e�e
ts mi are not identi�able;they are in
luded for 
ompleteness only.It is instru
tive to study the same set of su�
ient 
onditions from the PMMperspe
tive (Lemma 1), sin
e it will lead us, at the end of the se
tion, to the
onstru
tion of an MAR 
ounterpart:

f(ym
i |yo

i , ri) =
f(yo

i ,y
m
i , ri)

f(yo
i , ri)

=

∫
f(yo

i |ji, ℓi)f(ym
i |yo

i ,mi)f(ri|ji, qi)f(bi) dbi∫ ∫
f(yo

i |ji, ℓi)f(ym
i |yo

i ,mi)f(ri|ji, qi)f(bi) dbi dym
i

= f(ym
i |yo

i ) ·

∫
f(yo

i |ji, ℓi)f(ri|ji, qi)f(bi) dbi∫
f(yo

i |ji, ℓi)f(ri|ji, qi)f(bi) dbi

= f(ym
i |yo

i ),not surprisingly leading to the same result.These 
onsiderations at the same time de�ne an important sub-
lass, estab-lishing the ensuing result:De�nition 2 (A Sub-
lass of SPM Models.) De�ne a sub-
lass of shared-parameter model (62):
f(yo

i |ji, ℓi)f(ym
i |yo

i ,mi)f(ri|ji, qi), (64)where ji, ℓi, mi, and qi are independent random-e�e
ts ve
tors.In other words, De�nition 2 follows as a spe
ial 
ase from De�nition 1 by omit-ting the random e�e
ts gi, hi, and ki. The key rationale for this de�nition is,of 
ourse, the following result:Theorem 2 (A Class of MAR-based SPM Models.) The shared-parametermodel (64) is missing at random.
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essity thus far. To this e�e
t, we need to derivegeneral expressions for the left hand side and right hand side of (12), respe
tively.First, for the left hand side:
f(ym

i |yo
i , ri)

=

∫
f(yo

i |gi,hi, ji, ℓi)f(ym
i |yo

i , gi,hi,ki,mi)f(ri|gi, ji,ki, qi)f(bi) dbi∫
f(yo

i |gi,hi, ji, ℓi)f(ri|gi, ji,ki, qi)f(bi) dbi

.(65)Se
ond, for the right hand side, 
onsider:
f(ym

i |yo
i ) =

∫
f(yo

i |gi,hi, ji, ℓi)f(ym
i |yo

i , gi,hi,ki,mi)f(bi) dbi∫
f(yo

i |gi,hi, ji, ℓi)f(bi) dbi

. (66)Equating (65) and (66) and, for brevity, integrating over random e�e
ts thato

ur in one 
omponent only, produ
es the general 
onditions, laid out in thenext theorem.Theorem 3 (Chara
terization of MAR in SPM Family.) A member of thegeneral SPM family (62) is MAR if and only if
∫

f(yo
i |gi,hi, ji)f(ym

i |yo
i , gi,hi,ki)f(ri|gi, ji,ki)f(bi) dbi∫

f(yo
i |gi, ji)f(ri|gi, ji)f(bi) dbi

=

∫
f(yo

i |gi,hi)f(ym
i |yo

i , gi,hi)f(bi) dbi

f(yo
i )

. (67)Evidently, again assuming that gi, hi, and ki 
an
el, redu
es (67) to atautologi
al statement, showing that (64) satis�es Theorem 3.There are situations where (67) is satis�ed, without the triplet (gi,hi,ki)vanishing, but these will ne
essarily be more ad ho
 and less intuitively appealingthan these laid out in Theorem 2. The existen
e of su
h singular solutions isnot straightforward to establish, as is 
lear from the following pair of examples.Example 1 (MAR Example in Line With De�nition 1.) For the purposeof the examples, drop the index i from notation. Consider a bivariate out
ome
(Y1, Y2), where the �rst one is always observed, and the se
ond 
omponent some-times missing. This ne
essitates a s
alar missing-data variable R only, leadingto full-data ve
tor (Y1, Y2, R). Let R = 0 if the se
ond 
omponent is missing and
1 otherwise. For R = 1, 
ondition (67) is always ful�lled, sin
e the key 
ompo-nent, des
ribing the distribution of the missing observations given the observedones, is then empty. Therefore, we 
an 
on
entrate on R = 0.For simpli
ity, assume that all random e�e
ts, des
ribing one fa
tor only,are absent, i.e., remove ℓi,mi, and qi. From the four remaining random-e�e
ts,retain only ji and ki, implying that the missing-data pro
ess is 
onne
ted to both
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tors whi
h, in turn, are unrelated to ea
h other. Assumefurthermore that both out
omes, Y1 and Y2, are di
hotomous, and that also bothrandom e�e
ts are binary. This means that (67) 
an be simpli�ed to:

∑

j

π1
y1|j

πj


 ·


∑

j,k

π1
y1|j

π2
y2|y1kπr=0|jkπjπk




=


∑

j,k

π1
y1|j

πr=0|jkπjπk


 ·


∑

j,k

π1
y1|j

π2
y2|y1kπjπk


 , (68)where the π's are probabilities pertaining to the variables indi
ated by their 
or-responding indi
es. It is 
onvenient to introdu
e some simplifying notation,making use of the fa
t that all key variables are di
hotomous: set γ = πj=0,

ϕ = πk=0, and ρjk = πr=0|jk.Expression (68) needs to be 
onsidered only for (Y1, Y2) = (0, 0) and (1, 0),sin
e spelling out the ones for (1, 0) and (1, 1) and summing them with their
ounterparts lead to tautologi
al statements. This implies that (68) produ
estwo equations, i.e.,there are two 
onstraints to be satis�ed. For the �rst equa-tion, in (Y1, Y2) = (0, 0), 
hoose x = π2
0|01 as the parameter to be determined.This means that (68) is a linear equation in x. Clearly, setting π2

0|00 = π2
0|01solves the equation, based on two observations. First, a 
onstant fa
tor π2

y2|y1is 
ommon to both sides of the equation and 
an
els. Se
ond, the remainingfa
tors are pairwise equal: the �rst fa
tor on the LHS then equals the se
ondfa
tor on the RHS; the se
ond fa
tor on the LHS equals the �rst fa
tor on theRHS. The argument for (Y1, Y2) = (1, 0) is entirely symmetri
, and hen
e theunique solution implies that k vanishes from the distribution of Y2 given Y1, inagreement with De�nition 2.Similar manipulations 
an be done for the 
ases: (1) where only gi is present;and (2) where only hi and ji are present. In these two 
ases, as well as inExample 1, a single random e�e
t des
ribes π2
y2|y1·

. This is 
ru
ial to ensurea

ordan
e with De�nition 1. The next example is di�erent in that two inde-pendent random e�e
ts will in�uen
e the probability of the se
ond 
omponentgiven the �rst one.as is 
lear from the next example.Example 2 (MAR Example Violating De�nition 1.) Retain the setting ofExample 1, but now with the pair of random e�e
ts hi and ki present. This par-ti
ular 
hoi
e leads to a di�erent simpli�
ation of (67):
(∑

h

π1
y1|h

πh

)
·


∑

h,k

π1
y1|h

π2
y2|y1hkπr=0|kπhπk



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=


∑

h,k

π1
y1|h

πr=0|kπhπk


 ·


∑

h,k

π1
y1|h

π2
y2|y1hkπhπk


 . (69)We will 
onveniently use the following notation: η = πh=0, ϕ = πk=0, and

ρk = πr=0|k.With similar logi
 as in Example 1, it easily follows that we only need to
onsider (69) for (Y1, Y2) = (0, 0) and (1, 0). Con
entrating on the �rst ofthese, and singling out π2
0|011 as the parameter to identify from the others, itfollows that

π2
0|011 =

ab − de

df − ac
, (70)with

a = π1
0|0η + π1

0|1(1 − η),

b = π1
0|0π

2
0|000ρ0ηϕ + π1

0|0π
2
0|001ρ1η(1 − ϕ) + π1

0|1π
2
0|010ρ0(1 − η)ϕ,

c = π1
0|1ρ1(1 − η)(1 − ϕ),

d = π1
0|0ρ0ηϕ + π1

0|0ρ1η(1 − ϕ) + π1
0|1ρ0(1 − η)ϕ + π1

0|1ρ1(1 − η)(1 − ϕ),

e = π1
0|0π

2
0|000ηϕ + π1

0|0π
2
0|001η(1 − ϕ) + π1

0|1π
2
0|010(1 − η)ϕ,

f = π1
0|1(1 − η)(1 − ϕ).The derivations for (Y1, Y2) = (1, 0) is entirely similar and leads to (70) withthe �rst 
onditioning argument `1' rather than `0'. A numeri
al example isprovided in Table 4, establishing that the random e�e
ts hi and ki do in�uen
ethe distribution of Y2|Y1, in the dropout pattern.Finally, the 
hara
terization of Theorem 3 allows us to 
onstru
t an MAR
ounterpart to an arbitrary SPM of the form (62). It is ne
essary to (1) retainthe �t of the model to the observed data, while (2) ensuring that (67) hold.This is easily done by a-posteriori integrating the shared random e�e
ts out ofthe densities des
ribing the unobserved measurements, given the observed ones.Here, integration takes pla
e over the densities of gi, hi, and ki, where �ttedparameters are plugged into the densities.Theorem 4 (An MAR Counterpart to a General SPM.) The MAR
ounterpart, to an arbitrary general SPM of the type (62) is found by repla
ing

f(ym
i |yo

i , gi,hi,ki,mi) with
h(ym

i |yo
i ,mi) =

∫

g
i

∫

hi

∫

ki

f(ym
i |yo

i , gi,hi,ki,mi)dgidhidki (71)



26 G. Molenberghs/MAR CounterpartsTabela 4: Bivariate binary out
ome with the �rst 
omponent fully observed andthe se
ond 
omponent partially missing. The missing data me
hanism is MAR.The model belongs to general SPM family (62), but not to the spe
i�
 MARsub-
lass (64).E�e
t `Failure (0)' `Su

ess (1)'Random h e�e
t η = πh=0 0.3000 1 − η = πh=1 0.7000Random k e�e
t ϕ = πk=0 0.4000 1 − ϕ = πk=1 0.6000
R|k = 0 ρ0 = π0|0 0.4500 1 − ρ0 = π1|0 0.5500
R|k = 1 ρ1 = π0|1 0.8000 1 − ρ1 = π1|1 0.2000
Y1|h = 0 π1

0|0 0.3000 π1
1|0 0.7000

Y1|h = 1 π1
0|1 0.2000 π1

1|1 0.8000
Y2|Y1 = 0, h = 0, & k = 0 π2

0|000 0.1500 φ2
1|000 0.8500

Y2|Y1 = 0, h = 0, & k = 1 π2
0|001 0.2500 π2

1|001 0.7500
Y2|Y1 = 0, h = 1, & k = 0 π2

0|010 0.3500 π2
1|010 0.6500

Y2|Y1 = 0, h = 1, & k = 1 π2
0|011 0.2857 π2

1|011 0.7143
Y2|Y1 = 1, h = 0, & k = 0 π2

0|100 0.2000 π2
1|100 0.8000

Y2|Y1 = 1, h = 0, & k = 1 π2
0|101 0.3000 π2

1|101 0.7000
Y2|Y1 = 1, h = 1, & k = 0 π2

0|110 0.4000 π2
1|110 0.6000

Y2|Y1 = 1, h = 1, & k = 1 π2
0|111 0.3625 π2

1|111 0.6375First, it is 
lear that this marginalization is merely des
ribing the model-basedpredi
tion of the unobserved out
omes, given the observed ones. Hen
e, the
hoi
e for h(·) does not alter the �t. Se
ond, observe that using h(·) in (67),instead of f(ym
i |yo

i , gi,hi,ki,mi), of Theorem 3, redu
es the equation to atrivial identity, and hen
e the se
ond 
ondition is also satis�ed.For 
ategori
al random e�e
ts, su
h as in Examples 1 and 2, the integral in(71) be
omes summation.7 Longitudinal Data With Dropout: Non-future Depen-den
eWhen measurements are taken longitudinally, it is good pra
ti
e to ensure thatthe implied time dependen
ies are logi
al from a substantive standpoint. Forexample, in a variety of 
ontexts, su
h as growth, regression fun
tions over timemay be 
onstrained to non-de
reasing forms.Let us turn to the nature of the missingness me
hanism. Throughout these
tion, assume that missingness is 
on�ned to dropout. From a SeM perspe
-tive, one often 
lassi�es missing data me
hanisms as (Diggle, and Kenward,
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tas do XVI Congresso Anual da SPE 271994): (1) independent of out
omes; (2) dependent on previous measurementsonly; (3) dependent on the 
urrent and perhaps previous measurements only;(4) fully arbitrary, i.e., where missingness 
an depend on previous, 
urrent, andfuture measurements. Evidently, (1) is MCAR, (2) is MAR, and (4) is MNAR,without restri
tions. (Diggle, and Kenward, 1994), for example, did not 
onsider(4) but restri
ted MNAR to me
hanism (3) only. While this is very restri
tive,it is also extremely appealing sin
e it prevents dropout at a given point in timeto depend on future measurements; these are termed non-future dependent inthe next se
tion.Clearly, the 
on
epts of the previous paragraph are very natural by virtue offraming them in the SeM. Kenward et al (2003) unders
ored that the situationis less 
lear in the PMM family and then translated the me
hanisms from theSeM to the PMM framework. We will review these in Se
tion 7.1, and thenpresent a similar taxonomy for the SPM in Se
tion 7.2.7.1 Non-future Dependen
e in the PMM FrameworkSin
e we are restri
ting attention to monotone missingness, we 
an easily indi-
ate a drop-out pattern by the numbers of observations made. In this sense, pat-tern t 
olle
ts all individuals with the �rst t measurements taken (t = 1, . . . , n).Thijs et al (2002) 
onstru
ted a general identifying-restri
tions framework inwhi
h the distribution of the (t + 1)th measurement, given the earlier mea-surements, in pattern t, yt+1 say, is set equal to a linear 
ombination of the
orresponding distributions in patterns t + 1 to n. Sin
e this family is 
hara
-terized by the use of observable distributions to identify the unobservable ones,we term it the `interior' family of identifying-restri
tions. Three members ofthis family are studied in detail by Thijs et al (2002): 
omplete-
ase missingvalue restri
tions (Little, 1993), where information is borrowed from the 
om-pleters only, available-
ase missing values, equivalent to MAR (Molenberghs etal (1998)), for whi
h a parti
ular linear 
ombination needs to be 
onsidered,and neighboring-
ase missing value restri
tions, where information is borrowedfrom the 
losest available pattern.The equivalen
e of available-
ase missing values and MAR is important inthat it enables us to make a 
lear 
onne
tion between the sele
tion and pattern-mixture frameworks. By impli
ation, the other members of the interior familyare of MNAR type, while at the same time there do exist MNAR type restri
-tions that are not 
aptured by this family.We will now 
hara
terize missing-data me
hanisms that prevent missingnessfrom depending on future unobserved measurements. To this e�e
t, it is useful to
onsider the SeM and PMM fa
torizations for the spe
i�
 
ontext of longitudinaldata. Let r = t ≤ n be the number of measurements a
tually observed. Thesele
tion model fa
torization for this 
ontext is given by
f(y1, · · · , yn, r = t) = f(y1, · · · , yn)f(r = t|y1, · · · , yn).



28 G. Molenberghs/MAR CounterpartsPattern-mixture models now take the form:
f(y1, · · · , yn, r = t)

= f(y1, · · · , yn|r = t)f(r = t)

= ft(y1, · · · , yn)f(r = t)

= ft(y1, · · · , yt)ft(yt+1|y1, · · · , yt)ft(yt+2, · · · , yn|y1, · · · , yt+1)f(r = t),(72)where ft(y1, · · · , yn) = f(y1, · · · , yn|r = t). The �rst three fa
tors in (72) arereferred to as the distributions of past, present, and future measurements, re-spe
tively. Only the �rst and the fourth fa
tors are identi�able from the data.De�nition 3 (Non-future Dependen
e (NFD).) In the SeM 
ontext, we
an formulate missing non-future dependent as
f(r = t|y1, · · · , yn) = f(r = t|y1, · · · , yt+1). (73)Note that MAR is a spe
ial 
ase of missing non-future dependent, whi
h in turnis a sub-
lass of MNAR.De�nition 4 (Non-future Dependent Missing Value (NFMV).) Withinthe PMM framework, we de�ne non-future dependent missing value restri
tionsas follows:

f(yt|y1, · · · , yt−1, r = j) = f(yt|y1, · · · , yt−1, r ≥ t − 1), (74)for all t ≥ 2 and all j < t − 1.Non-future missing values is not a 
omprehensive set of restri
tions, but ratherleaves one 
onditional distribution per in
omplete pattern unidenti�ed:
f(yt+1|y1, · · · , yt, r = t). (75)In other words, the distribution of the `
urrent' unobserved measurement, giventhe previous ones, is un
onstrained. This implies that the NFMV 
lass 
ontainsmembers outside of the interior family, where every restri
tion takes the formof a linear 
ombination of observable distributions. Conversely, (74) ex
ludessu
h me
hanisms as 
omplete-
ase missing values and neighboring-
ase missingvalues, showing that there are members of the interior family that are not of non-future missing values type. Finally, 
hoosing (75) of the same fun
tional formas (74) establishes available-
ase missing values as a member of the interse
tionof the interior and non-future missing values families. The latter is parti
ularlyimportant sin
e it shows, be
ause of the equivalen
e of ACMV and MAR, thatMAR belongs to both families.The following theorem, the proof of whi
h is to be found in Kenward etal (2003), establishes the equivalen
e between NFD and NFMV, showing theNFMV restri
tions 
orrespond to NFD, just as ACMV 
orresponds to MAR.
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e Between NFD and NFMV.) . For longitudinaldata with drop-outs, missing non-future dependen
e is equivalent to non-futuremissing values.A 
onsequen
e of using (74) is that the joint distribution will not typi
allyhave a simple analyti
al representation. This is to be understood in the sensethat 
ovariate e�e
ts would not ne
essarily be linear on an appropriate s
ale.However, this is not to say there is no analyti
al form. Moreover, it does not haveto be a major disadvantage, provided the resulting distribution is empiri
allyreasonable. Su
h a requirement may help guide the 
hoi
e for (75). Kenward etal (2003) o�ered a tra
table, sampling-based implementation and applied it tothe analysis of a set of data.7.2 Non-future Dependen
e in the SPM FrameworkIt is now parti
ularly easy to derive a general 
hara
terization of non-futuredependent SPM. First, note that (73) in De�nition 3 
an be seen as a longitudi-nal dropout-based de�nition of MAR, �one 
omponent shifted to the right,"i.e.,where yt+1, in spite of its missingness, is also allowed to in�uen
e missingness.Given that Theorem 3 was derived from the standard MAR de�nition, it imme-diately follows that a 
hara
terization of NFD-SPM is as follows.Theorem 6 (Non-future Dependent Shared-parameter Models.) Amember of the general SPM family (62) is NFD if and only if
∫

f(ypc
i |gi,hi, ji)f(yf

i |y
pc
i , gi,hi,ki)f(ri|gi, ji,ki)f(bi) dbi∫

f(ypc
i |gi, ji)f(ri|gi, ji)f(bi) dbi

=

∫
f(ypc

i |gi,hi)f(yf
i |y

pc
i , gi,hi)f(bi) dbi

f(ypc
i )

, (76)where ypc
i = (y1, · · · , yt+1)

′ and yf
i = (yt+2, · · · , yn)′.Note that the subs
ript `p
' refers to `previous and 
urrent,' while `f' refers to`future.'Likewise, the sub-
lass (64) of De�nition 2 
an be `shifted' to yield an NFDversion.De�nition 5 (A NFD Sub-
lass of SPM Models.) De�ne a sub-
lass ofshared-parameter model (62):

f(ypc
i |ji, ℓi)f(yf

i |y
pc
i ,mi)f(ri|ji, qi), (77)where ji, ℓi, mi, and qi are independent random-e�e
ts ve
tors.With similar logi
 as before, De�nition 5 o�ers a 
lass of missing-data me
h-anism that belongs to the NFD family. The relationship between the variousme
hanisms in the three families is depi
ted in Figure 3.



30 G. Molenberghs/MAR CounterpartsSeM : MCAR ⊂ MAR ⊂ NFD ⊂ general MNAR
l l l lPMM : MCAR ⊂ ACMV ⊂ NFMV ⊂ general MNAR

⊃ 6=
⊂interior

l l l lSPM : MCAR ⊂ Theorem 3 ⊂ Theorem 6 ⊂ general MNAR
∪ ∪De�nition 2 ⊂ De�nition 5Figura 3: Subset-relationships between nested families within the sele
tion model(SeM), pattern-mixture model (PMM), and shared-parameter model (SPM) fam-ilies. MCAR: missing 
ompletely at random; MAR: missing at random; MNAR:missing not at random; NFD: non-future dependen
e; ACMV: available-
asemissing values; NFMV: non-future missing values. The verti
al two-headed ar-rows indi
ate equivalen
e between me
hanisms a
ross model families.8 Analysis of The Slovenian Publi
 Opinion Survey8.1 The BRD ModelsBaker et al (1992) proposed a log-linear based family of models for the four-way 
lassi�
ation of both out
omes, together with their respe
tive missingnessindi
ators: ν10,jk = ν11,jkβjk, ν01,jk = ν11,jkαjk, and ν00,jk = ν11,jkαjkβjkγ,with

αjk =
φ01|jk

φ11|jk

, βjk =
φ10|jk

φ11|jk

, γ =
φ11|jkφ00|jk

φ10|jkφ01|jk

.Furthermore νr1r2,jk is the model for the four 
ells, indexed by j and k, inpattern (r1, r2), where (r1, r2) = (1, 1) 
orresponds to 
ompleters, et
.The α (β) parameters des
ribe missingness in the independen
e (attendan
e)question, and γ 
aptures the intera
tion between both. The subs
ripts are miss-ing from γ sin
e Baker et al (1992) have shown that this quantity is independentof j and k in every identi�able model. These authors 
onsidered nine models,based on setting αjk and βjk 
onstant in one or more indi
es, and enumeratedusing the `BRD' abbreviation:BRD1 : (α, β) BRD4 : (α, βk) BRD7 : (αk, βk)BRD2 : (α, βj) BRD5 : (αj , β) BRD8 : (αj , βk)BRD3 : (αk, β) BRD6 : (αj , βj) BRD9 : (αk, βj).Interpretation is straightforward, for example, BRD1 is MCAR, and in BRD4missingness in the �rst variable is 
onstant, while missingness in the se
ondvariable depends on its value. BRD6�BRD9 saturate the observed data degrees
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tas do XVI Congresso Anual da SPE 31Tabela 5: (Part I). Analysis of the Slovenian Publi
 Opinion Survey, restri
tedto the independen
e and attendan
e questions. The observed data are shown,as well as the �t of models BRD1, BRD2, BRD7, and BRD9, and their MAR
ounterparts, to the observed data. The 
ontingen
y tables' rows (
olumns) 
or-respond to `yes' vs. `no' on the independen
e (attendan
e) question. The fourtables in ea
h row 
orrespond to: (i) people responding to both questions; (ii)people responding to independen
e only; (iii) people responding to attendan
eonly; (iv) people responding to neither question.Observed data &�t of BRD7, BRD7(MAR), BRD9, and BRD9(MAR) to in
omplete data
1439 78

16 16
159
32

144 54 136Fit of BRD1 and BRD1(MAR) to in
omplete data
1381.6 101.7

24.2 41.4
182.9

8.1
179.7 18.3 136.0Fit of BRD2 and BRD2(MAR) to in
omplete data

1402.2 108.9
15.6 22.3

159.0
32.0

181.2 16.8 136.0

of freedom, while the lower numbered ones leave room for a non-trivial model�t to the observed data.8.2 Analysis of the Slovenian Publi
 Opinion DataThe ideas developed in this paper 
an be illustrated easily by means of 4 modelsfrom the BRD family, �tted to the independen
e and attendan
e out
omes,i.e., 
ollapsing Table 1. We sele
t models BRD1, BRD2, BRD7, and BRD9.Model BRD1 assumes missingness to be MCAR. All others are of the MNARtype. Model BRD2 has 7 free parameters, and hen
e does not saturate theobserved data degrees of freedom, while models BRD7 and BRD9 saturate the8 data degrees of freedom. The 
ollapsed data, together with the model �ts,are displayed in Table 5. Ea
h of the four models is doubled up with its MAR
ounterpart.Table 5 presents, apart from the raw data, for ea
h of the models and itsMAR 
ounterpart, the �t to the observed and the hypotheti
al 
omplete data.The �ts of models BRD7, BRD9, and their MAR 
ounterparts to the observeddata, 
oin
ide with the observed data. As the theory states, every MNAR modeland its MAR 
ounterpart produ
e exa
tly the same �t to the observed data,whi
h is therefore also seen for BRD1 and BRD2. However, while Models BRD1
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oin
ide in their �t to the hypotheti
al 
omplete data, thisis not the 
ase for the other three models. The reason is 
lear: sin
e modelBRD1 belongs to the MAR family from the start, its 
ounterpart BRD1(MAR)will not produ
e any di�eren
e, but merely 
opies the �t of BRD1 to the unob-served data, given the observed ones. Finally, while BRD7 and BRD9 produ
ea di�erent �t to the 
omplete data, BRD7(MAR) and BRD9(MAR) 
oin
ide.This is be
ause the �ts of BRD7 and BRD9 
oin
ide with respe
t to their �tto the observed data, and indeed, due to their saturation, 
oin
ide with the ob-served data as su
h. This �t is the sole basis for the models' MAR extensions.It is noteworthy that, while BRD7, BRD9, and BRD7(MAR)≡BRD9(MAR)all saturate the observed data degrees of freedom, their 
omplete-data �ts aredramati
ally di�erent.Let us return to the impli
ations of our results for the primary estimand θ,the proportion of people voting YES by simultaneously being in favor of inde-penden
e and de
iding to take part in the vote. Rubin et al (1995) 
onsidered,apart from simple models su
h as 
omplete 
ase analysis (θ̂ = 0.928) and avail-able 
ase analyses (θ̂ = 0.929), both ignorable models (θ̂ = 0.892 when based onthe two main questions and θ̂ = 0.883 when using the se
ession question as anauxiliary variable) and a non-ignorable one (θ̂ = 0.782). Sin
e the value of theplebis
ite was θpleb = 0.885, an important ben
hmark obtained four weeks afterthe SPO, they 
on
luded the MAR was preferable. Molenberghs et al (2001)supplemented these analysis with a so-
alled pessimisti
-optimisti
 interval, ob-tained from repla
ing the in
omplete data with NO and YES, respe
tively, andobtained: θ ∈ [0.694, 0.904]. Further, they 
onsidered all nine BRD models,produ
ing a range for θ from 0.741 to 0.892. Ultimately, these authors deviseda method to 
onsider overspe
i�ed models, in whi
h point estimates are repla
edby interval estimates, so-
alled intervals of ignoran
e.Let us 
onsider the results obtained from �tting ea
h of the nine BRD mod-els. Molenberghs et al (2001) presented a summary table but unfortunately therewas a small 
omputational error that had to be 
orre
ted, for whi
h reason the
orre
ted results are reprodu
ed here (Table 6). BRD1 produ
es θ̂ = 0.892,exa
tly the same estimate as the �rst MAR estimate obtained by Rubin et al(1995). This should not 
ome as a surprise, sin
e both BRD1 and Rubin'smodel assume MAR and use information from the two main questions. Before
ontinuing with the models' interpretation, it is ne
essary to assess their �t.Condu
ting likelihood ratio tests for BRD1 versus the ones with 7 parameters,BRD2�BRD5, and then in turn for BRD2�BRD5 versus the saturated modesBRD6�BRD9, suggests the lower numbered models do not �t well, leaving uswith BRD6�BRD9. The impression might be generated that the poor model �tof BRD1 might be seen as eviden
e for dis
arding the MAR-based value 0.892.However, studying the MAR values from ea
h of the models BRD1(MAR)�BRD9(MAR), as displayed in the last 
olumn of Table 6, it is 
lear that thisvalue is remarkably stable and hen
e a value of θ̂ = 0.892, based on the four
ounterparts BRD6(MAR)�BRD9(MAR), is a sensible 
hoi
e after all. Thus,
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ontribution resulting from 
onsidering the 
ounterparts in this par-ti
ular example, is the provision of a solid basis for the MAR-based estimate.Obviously, sin
e Models BRD6(MAR)�BRD9(MAR) are exa
tly the same andexhibit a perfe
t �t, the 
orresponding probabilities θ̂MAR are exa
tly equal too.In this parti
ular 
ase, even though BRD2(MAR)�BRD5(MAR) di�er amongea
h other, the probability of being in favor of independen
e and attending theplebis
ite is 
onstant a
ross these four models. This is a mere 
oin
iden
e, sin
eall three other 
ell probabilities are di�erent, but only slightly so. For example,the probability of being in favour of independen
e 
ombined with not attendingranges over 0.066�0.0685 a
ross these four models.We have made the following two-stage use of Models BRD6(MAR)�BRD9(MAR). At the �rst stage, in a 
onventional way, the fully saturatedmodel is sele
ted as the only adequate des
ription of the observed data. Atthe se
ond stage, these models are transformed into their MAR 
ounterpart,from whi
h inferen
es are drawn. As su
h, the MAR 
ounterpart usefully sup-plements the original models BRD6�BRD9 and provide one further, importants
enario to model the in
omplete data. In prin
iple, the same exer
ise 
an be
ondu
ted when the additional se
ession variable would be used.9 Analysis of the Ony
homy
osis TrialWe will �rst analyze the entire longitudinal pro�le of 
ontinuous out
omes (unaf-fe
ted nail length), and then swit
h to the binary out
ome (severity of infe
tion)and 
on�ne attention to the �rst and last time points.9.1 Continuous Una�e
ted Nail LengthConsider a general model of the form (62), with random e�e
ts 
on�ned to gi,i.e., 
ommon to all three 
omponents. For the measurement model, assume alinear mixed model (Verbeke, and Molenberghs, 2000), with general form:
Y i|gi ∼ N(Xiβ + Zigi, Σi), (78)

gi ∼ N(0, D). (79)Based on (78) and (79), the so-
alled marginal model 
an be derived
Y i ∼ N(Xiβ, ZiDZ ′

i + Σi). (80)To 
ompute the model's predi
tion for the unobserved data, given the observedmeasurements, the 
orresponding density needs to be derived. To this end, �rstde
ompose the mean and varian
e in (78) as
(
Y o

i

Y m
i

)∣∣∣∣ gi ∼ N

[(
Xo

i

Xm
i

)
β +

(
Zo

i

Zm
i

)
gi,

(
Σoo

i Σom
i

Σmo
i Σmm

i

)]
.
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an easily be used to 
onstru
t the 
onditional density:
Y m

i |yo
i , gi ∼ N

[
(Xm

i − Σmo
i {Σoo

i }−1
Xo

i )β + Σmo
i {Σoo

i }−1
yo

i

+(Zm
i − Σmo

i {Σoo
i }−1

Zo
i )gi, Σ

mm
i − Σmo

i {Σoo
i }−1

Σom
i

]
.(81)Now, (81) 
orresponds to the model as formulated, and will typi
ally be of theMNAR type. To derive the MAR 
ounterpart, we need to integrate over therandom e�e
t. With similar logi
 that leads to (80), now applied to (81), weobtain:

Y m
i |yo

i ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1
Xo

i )β + Σmo
i {Σoo

i }−1
yo

i ,

(Zm
i − Σmo

i {Σoo
i }−1

Zo
i )D(Zm

i − Σmo
i {Σoo

i }−1
Zo

i )′

+Σmm
i − Σmo

i {Σoo
i }−1

Σom
i

]
. (82)Hen
e, (82) is the MAR 
ounterpart to (81). For the una�e
ted nail length, we
hoose for (78)�(79):

E(Yij |gi, Ti, tj ,β) = β0 + gi + β1Ti + β2tj + β3Titj , (83)
gi ∼ N(0, d), and Σi = σ2I7, where I7 is a 7 × 7 identity matrix. Further,
Ti = 0 if patient i re
eived standard treatment and 1 for experimental therapy(i = 1, . . . , 298). Finally, tj is the time at whi
h the jth measurement is taken(j = 1, . . . , 7).Given these 
hoi
es, (81) and (82) simplify to

Y m
i |yo

i , gi ∼ N(Xiβ + Zm
i gi, σ

2Ii), (84)
Y m

i |yo
i ∼ N(Xiβ, dJi + σ2Ii), (85)with Ii an identity matrix and Ji a matrix of ones, with dimensions equal tothe number of missing measurements for subje
t i. Espe
ially owing to the
onditional independen
e assumption, the simpli�
ation is dramati
.Next, let us formulate a model for the missingness me
hanism in (62). Thesequen
e ri 
an take one of two forms in our 
ase. Either, it is a length-7 ve
torof ones, for a 
ompletely observed subje
t, or it is a sequen
e of k ones followedby a sole zero 1 ≤ k ≤ 6, for someone dropping out. Note that k is 1 at least,sin
e for everyone the initial measurement has been observed. It is 
onvenientto assume a logisti
 regression of the form:logit [P (Rij = 1|Ri,j−1 = 0, gi, Ti, tj ,γ)] = γ0+γ01gi+γ1Ti+γ2tj+γ3Titj , (86)(j > 1), where γ01 is a s
ale fa
tor for the shared random e�e
t in the missingnessmodel; for
ing the varian
e in the measurement and dropout indi
ator sequen
esto be equal would make no sense. As a result, γ01gi ∼ N(0, γ2

01d).
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Figura 4: Toenail Data. Individual pro�les of subje
ts with in
omplete data,for ea
h treatment arm, extended using MNAR Model (83) (dashed line) andusing the model's MAR 
ounterpart (solid line). In ea
h group, three subje
tsare highlighted.The model spe
i�ed by (83) and (86) 
an easily be �tted using, for exam-ple, the SAS pro
edure NLMIXED, details about whi
h are provided in theAppendix.Parameter estimates and standard errors are displayed in Table 7. It isnoteworthy that the s
ale fa
tor γ01 is estimated to be negative, even thoughit is not signi�
ant. While we should not overly stress its importan
e, there issome indi
ation that a higher subje
t-spe
i�
 pro�le of una�e
ted nail length
orresponds with a lower dropout probability, whi
h is not surprising. Themagnitude of the s
ale fa
tor allows us to `translate' the subje
t-spe
i�
 e�e
tfrom the 
ontinuous out
ome s
ale, expressed in mm, to the unitless logit s
aleon whi
h the probability of missingness is des
ribed. Note that the random-inter
ept varian
e is highly signi�
ant among una�e
ted nail length out
omes;the same is not true for the dropout model, with p = 0.2487, using a 50 : 50mixture of a χ2

0 and χ2
1 distribution (Verbeke, and Molenberghs, 2000).Figure 4 displays the in
omplete pro�les, extended beyond the time of dropout,using predi
tion based on: (1) the original model (dashed lines); (2) the MAR
ounterpart (solid lines). Within ea
h of the treatment arms, three pro�les arehighlighted. The MAR 
ounterpart redu
es all predi
tions to the same pro�le,whereas the MNAR model predi
ts di�erent evolutions for di�erent subje
ts,implied by the presen
e of the random e�e
t. The simple MAR-based predi
-tion stru
ture follows dire
tly from the 
onditional independen
e assumption,present in (84). When deemed less plausible, the fully general stru
ture (81)
an be implemented.9.2 Di
hotomous Severity of Infe
tionLet us turn attention to the binary severity of infe
tion out
ome, for the pair oftime points formed by the always re
orded initial measurement and the some-



36 G. Molenberghs/MAR Counterpartstimes missing �nal point in time. The data are displayed in Table 8. By way ofillustration, we will assume a single di
hotomous random e�e
t, of the gi type.This imposes a latent-
lass stru
ture. De
ompose the 
ell probabilities as:
πgi1i2rt = πgπi1|gπi2|i1gtπr|g, (87)with g = 0, 1 indi
ating the latent 
lass, i1, i2 = 0, 1 non-severe versus severeinfe
tion at the �rst and last o

asions, respe
tively, r = 0, 1 referring to thedropouts versus 
ompleters groups, and t = 0, 1 denoting standard versus ex-perimental treatment arm. The probability fa
tors on the right hand side of(87) are modeled as:

πg =
eαg

1 + eα
,

πi1|g =
e(β0+β1g)i1

1 + eβ0+β1g
, (88)

πi2|i1gt =
e(γ0+γ1i1+γ2g+γ3i1g+γ4t)i2

1 + eγ0+γ1i1+γ2g+γ3i1g+γ4t
, (89)

πr|g =
e(δ0+δ1g)r

1 + eδ0+δ1g
.In Model `Bin1', we will set β1 = 0 in (88) for reasons of identi�ability. InModel `Bin2', γ2 = γ3 = 0 in (89). This implies the latter model is of the MARtype, and hen
e its MAR 
ounterpart will equal the original model. Fitted
ounts are presented in Table 8. For the dropout group, both the �t to thepair of observed 
ounts and the predi
tion of the underlying unobserved two-by-two table is given. Note that the MAR 
ounterpart preserves the distributionof the �rst out
ome, within ea
h treatment and dropout group; the di�eren
ebetween original model and MAR 
ounterpart is 
on�ned to the distribution ofthe se
ond out
ome, given the �rst one. The �ts of the models is obtained byrepla
ing all quantities in (87) by their estimates, followed by summing over g.The MAR 
ounterpart is obtained as πgi1i2rt = πgπi1|gπ̃i2|i1tπr|g, where

π̃i2|i1t =
∑

g

πgπi2|i1gt.Parameter estimation by both maximum likelihood, as well as the EM algorithm(Dempster, Laird, and Rubin, 1977) is parti
ularly easy. For dire
t likelihood,the log-likelihood fun
tion takes the form
ℓ =

∑

i1,i2,t

Zi1i2,r=1,t ln

(∑

g

πgπi1|gπi2|i1gtπr=1|g

)

+
∑

i1,t

Zi1,r=0,t ln

(∑

g

πgπi1|gπr=0|g

)
, (90)
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ounts, with obvious no-tation. Maximization then pro
eeds by feeding (90) to a standard numeri
aloptimizer.The 
omplete-data log-likelihood, needed for the EM algorithm, takes theform:
ℓ∗ =

∑

g,i1,i2,r,t

Z∗
gi1i2rt ln

(
πgπi1|gπi2|i1gtπr|g

)

=
∑

g

Z∗
g++++ ln (πg) +

∑

g,i1

Z∗
gi1+++ ln

(
πi1|g

)

+
∑

g,i1,i2,t

Z∗
gi1i2+t ln

(
πi2|i1gt

)
+
∑

g,r

Z∗
g++r+ ln

(
πr|g

)
. (91)Here, Z∗

gi1i2rt is the (hypotheti
al) 
ount in bivariate severity 
ategory (i1, i2),in missingness group r, treatment arm t, and allo
ated to latent 
lass g. A plusin lieu of a subs
ript indi
ates summation over the 
orresponding index. Topro
eed, the expe
ted values of the 
omplete-data su�
ient statisti
s need tobe 
omputed. Thanks to the multinomial stru
ture of ℓ∗, this is straightforwardand hen
e the E step 
onsists of:
E
(
Z∗

g++++

)
= πgZ++++,

E
(
Z∗

gi1+++

)
= πgπi1|gZi1+++

E
(
Z∗

gi1i2+t

)
= πgZi1i2,r=1,t + πgπi2|i1gtZi1+,r=0,t,

E
(
Z∗

g++r+

)
= πgπr|gZ++r+.Finally, the M step takes the form of four separate logisti
 regressions, in the

α, β, γ, and δ parameters, respe
tively, i.e., for ea
h of the four terms in (91).10 Con
luding RemarksIn
omplete data are governed by a number of taxonomies and 
lassi�
ation sys-tems, two of whi
h were of relevan
e here. A �rst one is 
on
erned with the typeof missing data me
hanism (MCAR, MAR, and MNAR), whereas a se
ond one
lassi�es joint models for the out
ome and missing data pro
esses as belongingto the SeM, PMM, and SPM model families. Sin
e MCAR merely 
omes `downto independen
e between both pro
esses, perhaps 
onditional on �xed 
ovari-ates, it takes a trivial form regardless of the model family. Whereas MAR hasbeen de�ned in an SeM fashion, it has been 
hara
terized in a PMM way andstudied further for the spe
i�
 
ontext of longitudinal data by Molenberghs etal (1998). Chara
terizing MAR in the SPM family is less straightforward and,to our knowledge, had not formally been done before. As a �rst result, we have
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h a 
hara
terization in this paper, after de�ning a very general 
lassof SPM that en
ompasses many earlier, spe
i�
 instan
es. Sin
e the 
hara
ter-ization, in its full generality, may be somewhat awkward to work with, a morerestri
tive but appealing sub-
lass of SPM, satisfying MAR, has been proposedtoo.Molenberghs et al (2007) established that every MNAR model �tted to aparti
ular set of data 
an be repla
ed by a unique MAR 
ounterpart, i.e., amodel produ
ing exa
tly the same �t to the observed data but where the pre-di
tion of the unobserved out
omes given the observed ones is of the MAR type.While their result is general, they fo
used on the SeM and PMM frameworks.As a se
ond result, Creemers et al (2008) presented a generi
 format of this
ounterpart for the SPM family.Apart from 
onsiderations on the basis of taxonomy, parti
ular design as-pe
ts may be used to further fo
us one's model 
hoi
es. For example, in a lon-gitudinal study subje
t to dropout, one will often 
ast missingness me
hanismsin terms of previous, 
urrent, and future measurements, rather than simply interms of observed and unobserved measurements. There is a subtle distin
tion.While previous and observed measurements are synonymous in su
h a 
ase, theunobserved measurements are further sub-divided into 
urrent and future mea-surements. Substantively, it is usually 
on
eivable to assume that dropout isdriven by the 
urrent, perhaps unobserved measurement, but it will not alwaysbe sensible to let dropout depend on future measurements. Constraining a SeMto this e�e
t is parti
ularly straightforward, but this is less trivial for the othertwo families. While Kenward et al (2003) translated this requirement to thePMM family, this had not yet been done for the SPM. As a third result re-viewed here, Creemers et al (2008) 
hara
terize so-
alled non-future dependentme
hanisms within the SPM family.While the results reviewed in this paper are predominantly of a 
on
eptualnature, a number of them have been illustrated, for enhan
ed insight, using botha 
ontinuous and a binary out
ome from a two-armed 
lini
al trial in toenaildermatophyte ony
homy
osis. In the 
ontinuous 
ase, a linear mixed modelwas 
ombined with logisti
 regression 
ontributions for dropout. In the binary
ase, a di
hotomous random e�e
t was assumed, i.e., a latent 
lass, redu
ingthe analysis to one of in
ompletely observed 
ontingen
y tables. Evidently,within ea
h of the analyses done, a wider variety of model spe
i�
ations 
anbe entertained. Moreover, the ideas developed in this paper are generi
 andone 
ould, for example, 
onsider generalized linear mixed models for the entirebinary pro�le, et
. (Molenberghs, and Verbeke, 2005).Finally, the results of this paper open avenues for sensitivity analysis re-garding substantive 
on
lusions with respe
t to missingness (Molenberghs andKenward, 2007). Thanks to the results in this and previous papers, and theensuing 
lassi�
ation of model families versus missing data me
hanisms (Fig-ure 3), one 
ould, for example, sele
t an insightful set models a
ross families andme
hanisms, perhaps supplementing MNAR models with their MAR 
ounter-parts, and then assess formally or informally how key 
on
lusions 
hange when
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Tabela 5: (Part II). Analysis of the Slovenian Publi
 Opinion Survey, restri
tedto the independen
e and attendan
e questions. The �t of models BRD1, BRD2,BRD7, and BRD9, and their MAR 
ounterparts, to the hypotheti
al 
ompletedata is shown. The 
ontingen
y tables' rows (
olumns) 
orrespond to `yes' vs.`no' on the independen
e (attendan
e) question. The four tables in ea
h row
orrespond to: (i) people responding to both questions; (ii) people respondingto independen
e only; (iii) people responding to attendan
e only; (iv) peopleresponding to neither question.Fit of BRD1 and BRD1(MAR) to 
omplete data

1381.6 101.7
24.2 41.4

170.4 12.5
3.0 5.1

176.6 13.0
3.1 5.3

121.3 9.0
2.1 3.6Fit of BRD2 to 
omplete data

1402.2 108.9
15.6 22.3

147.5 11.5
13.2 18.8

179.2 13.9
2.0 2.9

105.0 8.2
9.4 13.4Fit of BRD2(MAR) to 
omplete data

1402.2 108.9
15.6 22.3

147.7 11.3
13.3 18.7

177.9 12.5
3.3 4.3

121.2 9.3
2.3 3.2Fit of BRD7 to 
omplete data

1439 78
16 16

3.2 155.8
0.0 32.0

142.4 44.8
1.6 9.2

0.4 112.5
0.0 23.1Fit of BRD9 to 
omplete data

1439 78
16 16

150.8 8.2
16.0 16.0

142.4 44.8
1.6 9.2

66.8 21.0
7.1 41.1Fit of BRD7(MAR) and BRD9(MAR) to 
omplete data

1439 78
16 18

148.1 10.9
11.8 20.2

141.5 38.4
2.5 15.6

121.3 9.0
2.1 3.6
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Tabela 6: Analysis of the Slovenian Publi
 Opinion Survey, restri
ted to the in-dependen
e and attendan
e questions. Summaries on ea
h of the Models BRD1�BRD9 are presented.Model Stru
ture d.f. loglik θ̂ C.I. θ̂MARBRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906℄ 0.8920BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900℄ 0.8915BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897℄ 0.8915BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856℄ 0.8915BRD5 (αj , β) 7 -2463.10 0.844 [0.806;0.882℄ 0.8915BRD6 (αj , βj) 8 -2431.06 0.819 [0.788;0.849℄ 0.8919BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832℄ 0.8919BRD8 (αj , βk) 8 -2431.06 0.741 [0.657;0.826℄ 0.8919BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884℄ 0.8919
Tabela 7: Toenail Data. Continuous, longitudinal una�e
ted-nail-length out-
ome. Parameter estimates (standard errors) for the model spe
i�ed by (83)and (86). Una�e
ted nail length DropoutE�e
t Par. Est. (s.e.) Par. Est. (s.e.)Mean stru
ture parametersInter
ept β0 2.510 (0.247) γ0 -3.127 (0.282)Treatment β1 0.255 (0.347) γ1 -0.538 (0.436)Time β2 0.558 (0.023) γ2 0.035 (0.041)Treatment-by-time β3 0.048 (0.031) γ3 0.040 (0.061)Varian
e-
ovarian
e stru
ture parametersResidual varian
e σ2 6.937(0.248)S
ale fa
tor γ01 -0.076 (0.057)Rand. int. varian
e τ2 6.507 (0.630) γ2

01τ
2 0.038 (0.056)
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Tabela 8: Toenail Data. Bivariate binary severity index at �rst and last timepoints. The observed data are shown, as well as the �t of Models `Bin1' and`Bin2', together with their 
orresponding 
ounterparts. Both the �t to the ob-served data as well as to the hypotheti
al 
omplete data are shown.Standard treatment Experimental treatmentCompleters Dropouts Completers DropoutsObserved data77 542 9 103 79 342 3 116Fit of Model `Bin1'76.85 5.6640.60 7.99 9.04 0.344.62 0.90 9.385.52 81.21 2.4345.62 3.63 9.36 0.155.19 0.41 9.515.60Fit of Model `Bin1(MAR)'77.12 5.3940.61 7.98 8.77 0.614.62 0.91 9.385.52 81.32 2.3245.63 3.63 9.24 0.265.18 0.41 9.515.59Fit of Model `Bin2'≡`Bin2(MAR)'75.86 5.5841.50 8.15 9.72 0.723.74 0.73 10.444.47 80.16 2.4046.61 3.72 10.27 0.314.20 0.34 10.584.53


