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2 G. Molenberghs/MAR CounterpartsKeywords: Contingeny table; Ignorability; Missing ompletely at random; Pattern-mixture model; Seletion model; Shared parameter model.1 IntrodutionInomplete sets of data are ommon throughout all branhes of empirial re-searh. Inomplete data have always posed problems of imbalane in the datamatrix, but more importantly inompleteness often destroys a trial's randomiza-tion justi�ation or a survey's representativeness. The extent to whih this hap-pens depends on the nature of the missing data mehanism. Rubin (1976) dis-tinguished between missing omplete at random (MCAR), where the outomesare independent of the mehanism governing missingness, missing at random(MAR), where there is dependene between both, but only in the sense thatmissingness may depend on the observed, but not further on the unobservedmeasurements. Finally, when a missing not at random (MNAR) mehanism op-erates, missingness depends on the unobserved outomes, perhaps in additionto the observed ones.During the same era, the seletion model (SeM), pattern-mixture model(PMM), and shared-parameter model (SPM) frameworks have been established.In a seletion model, the joint distribution of the ith subjet's outomes, de-noted Y i, and vetor of missingness indiators, written Ri, is fatored as themarginal outome distribution and the onditional distribution of Ri given Y i.A pattern-mixture approah starts from the reverse fatorization. In a shared-parameter model, a set of latent variables, latent lasses, and/or random e�etsis assumed to drive both the Y i and Ri proesses. An important version ofsuh a model further asserts that, onditional on the latent variables, Y i and
Ri exhibit no further dependene. Rubin (1976) ontributed the onept ofignorability , stating that under preise onditions, the missing data mehanisman be ignored when interest lies in inferenes about the measurement proess.Combined with regularity onditions, ignorability applies to MCAR and MARombined, when likelihood or Bayesian inferene routes are hosen, but thestriter MCAR ondition is required for frequentist inferenes to be generallyvalid.Traditionally, suh simple methods as a omplete ase analysis or simpleforms of imputation (e.g., last observation arried forward) have been in use.While they have the advantage of restoring balane and/or a retangular datamatrix, it is su�iently doumented that suh analyses are prone to severe biasand/or losses of e�ieny (Molenberghs et al, 2004; Jansen et al, 2006) andshould be avoided. Sine a likelihood-based or Bayesian analysis is valid whenthe missing data mehanism is MAR, as long as all observed data are inludedinto the analysis, the so-alled ignorability property, so-alled diret likelihoodanalyses, their Bayesian ounterparts, or multiple imputation (Rubin, 1987),are regarded by many as andidates for the primary analyses of a study. When



Atas do XVI Congresso Anual da SPE 3semi-parametri inferenes are desired, the methods proposed by Robins et al(1995) an be applied.However, one an never exlude the possibility that MNAR models may beoperating. Even though a variety of statistial models have been proposed forthe MNAR situation (Diggle, and Kenward, 1994; Baker, 1995; Molenberghs etal, 1997; Troxel et al, 1998), and in spite of the dramatially inreased omputa-tional power, suh models are prone to onsiderable sensitivity. This was madelear by a variety of disussants to Diggle, and Kenward (1994), suh as Laird(1994), Little (1994b), and Rubin (1994). Several authors have laid bare suhsensitivities and proposed methods for informal and formal sensitivity analysis(Kenward, 1998; Robins et al, 1998; Molenberghs et al, 2001; Van Steen et al,2001; Verbeke et al, 2001; Thijs et al, 2002; Jansen et al, 2003). Overviews areprovided in Verbeke, and Molenberghs (2000) and Molenberghs, and Verbeke(2005).One view is that testing the MAR null hypothesis against an MNAR alterna-tive is of a onventional nature. While indeed Diggle, and Kenward (1994) haveonduted suh tests, it is very important to realize that they are onditionalupon the alternative model holding.One ontribution of this paper, based on Molenberghs et al (2007), is toshow that, stritly speaking, the orretness of the alternative model an onlybe veri�ed in as far as it �ts the observed data. Thus, evidene for or againstMNAR an only be provided within a partiular, prede�ned parametri family,the plausibility of whih annot be veri�ed in empirial terms alone. We showthat an overall (omnibus) assessment of MAR versus MNAR is not possible,sine every MNAR model an be doubled up with a uniquely de�ned MARounterpart, produing exatly the same �t as the original MNAR model, in thesense that it produes exatly the same preditions to the observed data (e.g.,�tted ounts in an inomplete ontingeny table) as the original MNAR model,and depending on exatly the same parameter vetor. We show that, whilethis so-alled MAR ounterpart generally does not belong to a onventionalparametri family, its existene has important rami�ations. While this broadissue is still open to debate and even onfusion, it has been pointed out in theliterature. For example, the issue has been referred to, in general terms, byLittle, and Rubin (2002) and, in a non- and semi-parametri ontext, by Gill,van der Laan, and Robins (1997). An exellent exposition, together with relatedreferenes, an be found in Shafer and Graham (2002). Here, we fous on ageneral onstrution method for this ounterpart, whih we make expliit forthe ase of ategorial data.Now, the onept of MAR has typially been framed within the SeM frame-work, while Molenberghs et al (1998) provided a formulation in the PMM settingas well. For the partiular ase of longitudinal data with dropout, these authorsderived a set of so-alled identifying restritions, to identify the model for themissing measurements given the observed ones within a missing-data pattern,onsistent with MAR. Molenberghs et al (2007) showed that for every MNARmodel, there is an MAR ounterpart that produes exatly the same �t to the



4 G. Molenberghs/MAR Counterpartsobserved data. Hene the original model and its MAR ounterpart annot bedistinguished from one another. This an be viewed as a formalization of theideas put forward in Jansen et al (2006). These authors foused on the SeMand PMM frameworks. Another ontributed of this paper, based on Creemerset al (2008), we will haraterize MAR in the SPM framework as well and a on-netion will be made with the MAR ounterpart in the sense of Molenberghset al (2007). To this end, a broad lass of SPM will be de�ned. Impliationsfor both non-monotone missing data as well as longitudinal data with dropoutwill be onsidered. In partiular, in analogy with the PMM work by Kenwardet al (2003), onditions will be derived to ensure future, unobserved measure-ments provide no information about dropout in addition to what is availablefrom urrent and past measurements.The rest of the paper is organized as follows. Setion 2 introdues the twomotivating ase studies. In Setion 3 we outline the neessary onepts, termi-nology, and notation. Setion 4 presents our results regarding the MAR ounter-part to MNAR models. In Setion 5 the spei� ase of inomplete ontingenytables is studied. Setion 6 fouses on the spei� ase of shared-parametermodels, while Setion 7 examines what onditions need to be imposed on mod-els for inomplete longitudinal data, to ensure that the missingness mehanismdoes not depend on future oasions. In Setion 8 we apply the ideas developedto data from the Slovenian Publi Opinion Survey, analyzed before by Rubin etal (1995) and Molenberghs et al (2001). Setion 9 reports on the analysis of theonyhomyosis data.2 Motivating Case Studies2.1 The Slovenian Publi Opinion SurveyIn 1991 Slovenians voted for independene from former Yugoslavia in a plebisite.To prepare for this result, the Slovenian government olleted data in the Slove-nian Publi Opinion Survey (SPO), a month prior to the plebisite. Rubin etal (1995) studied the three fundamental questions added to the SPO and, inomparing it to the plebisite's outome, drew onlusions about the missingdata proess.The three questions added were: (1) Are you in favour of Slovenian indepen-dene? (2) Are you in favour of Slovenia's seession from Yugoslavia? (3) Willyou attend the plebisite? In spite of their apparent equivalene, questions (1)and (2) are di�erent sine independene would have been possible in onfederalform as well and therefore the seession question is added. Question (3) is highlyrelevant sine the politial deision was taken that not attending was treated asan e�etive NO to question (1). Thus, the primary estimand is the proportion θof people that will be onsidered as voting YES, whih is the fration of peopleanswering yes to both the attendane and independene question. The raw dataare presented in Table 1. We will return to this question in Setion 8.2.



Atas do XVI Congresso Anual da SPE 5Tabela 1: Data from the Slovenian Publi Opinion Survey. The Don't Knowategory is indiated by ∗. IndependeneSeession Attendane Yes No ∗Yes Yes 1191 8 21No 8 0 4
∗ 107 3 9No Yes 158 68 29No 7 14 3
∗ 18 43 31

∗ Yes 90 2 109No 1 2 25
∗ 19 8 96Molenberghs et al (2001) reanalyzed these data and used them as motivationto introdue their so-alled intervals of ignorane, a formal way of inorporatingunertainty stemming from inompleteness into the analysis of inomplete on-tingeny tables. To this end, they used the onvenient model family proposedby Baker et al (1992). We will now introdue the model family.2.2 An Onyhomyosis TrialThe data introdued in this setion were obtained from a randomized, double-blind, parallel group, multienter study for the omparison of two oral treat-ments (in the sequel oded as A and B) for toenail dermatophyte onyhomyosis(TDO), desribed in full detail by De Baker et al (1996). TDO is a ommontoenail infetion, di�ult to treat, a�eting more than 2 out of 100 persons(Roberts, 1992). Anti-fungal ompounds, lassially used for treatment of TDO,need to be taken until the whole nail has grown out healthy. The development ofnew suh ompounds, however, has redued the treatment duration to 3 months.The aim of the present study was to ompare the e�ay and safety of 12 weeksof ontinuous therapy with treatment A or with treatment B.In total, 2 × 189 patients, distributed over 36 enters, were randomized.Subjets were followed during 12 weeks (3 months) of treatment and followedfurther, up to a total of 48 weeks (12 months). Measurements were takenat baseline, every month during treatment, and every 3 months afterwards,resulting in a maximum of 7 measurements per subjet. At the �rst oasion,the treating physiian indiates one of the a�eted toenails as the target nail,the nail whih will be followed over time. We will restrit our analyses to onlythose patients for whih the target nail was one of the two big toenails. This



6 G. Molenberghs/MAR Counterparts

Figura 1: Toenail Data. Individual pro�les of 30 randomly seleted subjets ineah of the treatment groups in the toenail experiment.Tabela 2: Toenail Data. Number and perentage of patients (N) with severetoenail infetion, for eah treatment arm separately.Group A Group B# Severe N % # Severe N %Baseline 54 146 37.0% 55 148 37.2%1 month 49 141 34.7% 48 147 32.6%2 months 44 138 31.9% 40 145 27.6%3 months 29 132 22.0% 29 140 20.7%6 months 14 130 10.8% 8 133 6.0%9 months 10 117 8.5% 8 127 6.3%12 months 14 133 10.5% 6 131 4.6%redues our sample under onsideration to 146 and 148 subjets, in group Aand group B, respetively.Figure 1 shows the observed pro�les of 30 randomly seleted subjets fromtreatment group A and treatment group B, respetively.One of the responses of interest was the una�eted nail length, measuredfrom the nail bed to the infeted part of the nail, whih is always at the free endof the nail, expressed in millimeters. This outome has been studied extensivelyin Verbeke, and Molenberghs (2000). Another important outome in this studywas the severity of the infetion, oded as 0 (not severe) or 1 (severe). Thequestion of interest was whether the downward evolution of severe infetiondi�ers among treatment groups. A summary of the number of patients in thestudy at eah time-point, and the number of patients with severe infetionsis given in Table 2. A graphial representation is given in Figure 2. Due to



Atas do XVI Congresso Anual da SPE 7Tabela 3: Toenail Data. Number of available repeated measurements per subjet,for eah treatment arm separately.Group A Group B# Obs. N % N %7 107 73.29% 117 79.05%6 25 17.12% 14 9.46%5 2 1.37% 8 5.41%4 2 1.37% 4 2.70%3 4 2.74% 3 2.03%2 2 1.37% 1 0.68%1 4 2.74% 1 0.68%Total: 146 100% 148 100%a variety of reasons, the outome has been measured at all 7 sheduled timepoints, for only 224 (76%) out of the 298 partiipants. Table 3 summarizesthe number of available repeated measurements per subjet, for both treatmentgroups separately. We see that the ourrene of missingness is similar in bothtreatment groups.3 Notation and ConeptsLet the random variable Yij denote the response of interest, for the ith studysubjet, designed to be measured at oasions tij , i = 1, . . . , N , j = 1, . . . , ni.Independene aross subjets is assumed. This setting overs both the longi-tudinal as well as the multivariate settings. In the latter ase, tij = tj wouldmerely be indiators for the various variables studied, and typially ni ≡ n. Theoutomes an onveniently be grouped into a vetor Y i = (Yi1, . . . , Yini
)′. Inaddition, de�ne a vetor of missingness indiators Ri = (Ri1, . . . , Rini

)′ with
Rij = 1 if Yij is observed and 0 otherwise. In the spei� ase of dropout, Rian usefully be replaed by the dropout indiator

Di =

ni∑

j=1

Rij .Note that the onept of dropout refers to time-ordered variables, suh as inlongitudinal studies. For a omplete sequene, Ri = 1 and/or Di = ni. It isustomary to split the vetor Y i into observed (Y o
i ) and missing (Y m

i ) om-ponents, respetively. When Ri is onditioned up, Y o
i and Y m

i expliitly referto the observed and missing omponents. In the reverse ase, they refer to anarbitrary partition of the outome vetor.In priniple, one would like to onsider the density of the full data f(yi, ri|θ,ψ),where the parameter vetors θ and ψ desribe the measurement and missingness



8 G. Molenberghs/MAR Counterparts

Figura 2: Toenail Data. Evolution of the observed perentage of severe toenailinfetions in the two treatment groups separately.proesses, respetively. Covariates are assumed to be measured and grouped ina vetor xi but, throughout, are suppressed from notation. Although unusual,it is in priniple possible for θ and ψ to have omponents in ommon.This full density funtion an be fatored in di�erent ways, eah leading toa di�erent framework. They were mentioned brie�y in the introdution. Here,we will present them more formally but in their standard form of appearane.In subsequent setions, they will be tailored to our needs, in partiular theshared-parameter model.The seletion model (SeM) framework is based on the following fatorization(Rubin, 1976; Little, and Rubin, 2002):
f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ). (1)The �rst fator is the marginal density of the measurement proess and the se-ond one is the density of the missingness proess, onditional on the outomes.As an alternative, one an onsider so-alled pattern-mixture models (PMM;Little (1993, 1994a)) using the reversed fatorization
f(yi, ri|θ,ψ) = f(yi|ri,θ)f(ri|ψ). (2)This an be seen as a mixture density over di�erent populations, eah of whihis de�ned by the observed pattern of missingness.Instead of using the seletion modeling or pattern-mixture modeling frame-works, the measurement and the dropout proess an be jointly modeled usinga shared-parameter model (Wu, and Carroll, 1988; Wu, and Bailey, 1988, 1989;



Atas do XVI Congresso Anual da SPE 9TenHave et al, 1998; Follmann, and Wu, 1995; Little, 1995). One then mightassume there exists a vetor of random e�ets bi, onditional upon whih themeasurement and dropout proesses are independent. This shared-parametermodel (SPM) is formulated by way of the following fatorization
f(yi, ri|bi,θ,ψ) = f(yi|bi,θ)f(ri|bi,ψ), (3)and hene

f(yi, ri|θ,ψ) =

∫
f(yi|bi,θ)f(ri|bi,ψ)f(bi) dbi. (4)Here, bi are shared parameters, often onsidered to be random e�ets and fol-lowing a spei� parametri distribution. There are various other forms an SPMan take, and a more thorough disussion an be found in Setion 6.The taxonomy of missing data mehanisms, introdued by Rubin (1976)and informally desribed in the introdution, is ustomarily formalized usingthe seond fator on the right hand side of seletion-model fatorization (1). Amehanism is MCAR if

f(ri|yi,ψ) = f(ri|ψ), (5)i.e., when the measurement and missingness proesses are independent, perhapsonditional on ovariates. For a given set of data, MAR holds when
f(ri|yi,ψ) = f(ri|y

o
i ,ψ), (6)stritly weaker than the MCAR ondition, but still a simpli�ation of the MNARase, where missingness depends on the unobserved outomes ym

i , regardless ofthe observed outomes and the ovariates.Note that MCAR is equally trivial in the pattern-mixture model frame-work, where ri does not in�uene the mixture omponents, and in the shared-parameter model framework, where no random-e�ets are shared among the twofators in (3). The onept of MAR in the other framework is a di�erent matter.As reviewed in the next setion, a PMM haraterization has been proposed byMolenberghs et al (1998). In Setion 6, an SPM-based haraterization will beprovided, one of the ontributions of this manusript.A �nal useful onept we need is ignorability. Note that the ontribution tothe likelihood of subjet i, based on (1), equals
Li =

∫
f(yi|θ)f(ri|y

o
i ,y

m
i ,ψ) dym

i . (7)In general, (7) does not simplify, but under MAR, we obtain:
Li = f(yo

i |θ)f(ri|y
o
i ,ψ). (8)Hene, likelihood and Bayesian inferenes for the measurement model parame-ters θ an be made without expliitly formulating the missing data mehanism,



10 G. Molenberghs/MAR Counterpartsprovided the parameters θ and ψ are distint, meaning that their joint param-eter spae is the Cartesian produt of the two omponent parameter spaes(Rubin, 1976). For Bayesian inferenes, additionally the priors need to be in-dependent (Little, and Rubin, 2002). It is preisely this result whih makesso-alled diret likelihood analyses, valid under MAR, viable andidates forthe status of primary analysis in linial trials and a variety of other settings(Molenberghs et al, 2004).4 Every MNAR Model Has Got a MAR CounterpartIn this setion, we will show that for every MNAR model �tted to a set ofdata, there is an MAR ounterpart providing exatly the same �t to the data.Here, the onept of model �t should be understood as measured using suhonventional methods as deviane measures and, of ourse, in as far as theobserved data are onerned. The following steps are involved: (1) �tting anMNAR model to the data; (2) reformulating the �tted model in PMM form; (3)replaing the density or distribution of the unobserved measurements given theobserved ones and given a partiular response pattern by its MAR ounterpart;(4) establishing that suh an MAR ounterpart uniquely exists. Throughoutthis setion, we will suppress ovariates xi from notation, but assume them tobe present.In the �rst step, we �t an MNAR model to the observed set of data. Theobserved data likelihood is:
L =

∏

i

∫
f(yi

o,yi
m, ri|θ,ψ)dyi

m. (9)Upon denoting the obtained parameter estimates, e.g., obtained by likelihood-based or Bayesian methods, by θ̂ and ψ̂ respetively, the �t to the hypothetialfull data is
f(yi

o,yi
m, ri|θ̂, ψ̂) = f(yi

o,yi
m|θ̂)f(ri|yi

o,yi
m, ψ̂). (10)To undertake the seond step, full density (10) an be re-expressed in PMMform as:

f(yi
o,yi

m|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)

= f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi

m|yi
o, ri, θ̂, ψ̂). (11)A similar reformulation an be onsidered for an SPM. In a PMM, the modelwill have been expressed in this form to begin with.Note that, in line with PMM theory, the �nal term on the right hand side of(11), f(yi

m|yi
o, di, θ̂, ψ̂), is not identi�ed from the observed data. In this ase, itis determined solely from modelling assumptions. Within the PMM framework,



Atas do XVI Congresso Anual da SPE 11identifying restritions have to be onsidered (Little, 1994a; Molenberghs et al,1998; Kenward et al, 2003).The third step requires replaing this fator by the appropriate MAR oun-terpart. To this end, we need the following lemma, formulating MAR equiva-lently within the PMM framework.Lemma 1 In the PMM framework, the missing data mehanism is MAR if andonly if
f(ym

i |yo
i , ri,θ) = f(ym

i |yo
i ,θ). (12)This means that, in a given pattern, the onditional distribution of the unob-served omponents given the observed ones equals the orresponding distribu-tion marginalized over the patterns. The proof, whih is rather straightforwardand similar to what an be found in Molenberghs et al (1998), is reported inMolenberghs et al (2007). Note that, owing to this result, MAR an be formu-lated in terms of R given Y , but also in terms of Y given R.Using Lemma 1, it is lear that f(yi

m|yi
o, ri, θ̂, ψ̂) needs to be replaedwith

h(yi
m|yi

o, ri) = h(yi
m|yi

o) = f(yi
m|yi

o, θ̂, ψ̂), (13)where the h(·) notation is used for shorthand purposes. Note that the densityin (13) follows from the SeM-type marginal density of the omplete data vetor.Sometimes, therefore, it may be more onvenient to replae the notation yi
oand yi

m by one that expliitly indiates whih omponents are observed andmissing in pattern ri under onsideration:
h(yi

m|yi
o, ri) = h(yi

m|yi
o) = f [(yij)rj=0|(yij)rj=1, θ̂, ψ̂]. (14)Thus, (14) provides a unique way of extending the model �t to the observeddata, belonging to the MAR family. As stated before, the above onstrutiondoes not lead to a member of a onventional parametri family. While thisobviously implies limitations on its use, suh is not dissimilar to the onstrutionof some semi- and non-parametri estimators. Also, it helps to understand thatan overall, de�nitive onlusion about the nature of the missing data mehanismis not possible, even though one an make progress if attention is on�ned to agiven parametri family, in whih one puts su�iently strong prior belief. Toshow formally that the �t remains the same, we onsider the observed-datalikelihood based on (9) and (11):

L̂ =
∏

i

∫
f(yi

o,yi
m|θ̂)f(ri|yi

o,yi
m, ψ̂)dyi

m

=
∏

i

∫
f(yi

o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi
m|yi

o, ri, θ̂, ψ̂)dyi
m

=
∏

i

f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)



12 G. Molenberghs/MAR Counterparts
=

∏

i

∫
f(yi

o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)h(yi
m|yi

o)dyi
m.The above results justify the following theorem:Theorem 1 Every �t to the observed data, obtained from �tting an MNARmodel to a set of inomplete data, is exatly reproduible from an MAR deom-position.The key omputational onsequene is the need to ompute h(yi

m|yi
o) in(13) or (14). This means, for eah pattern, the onditional density of the un-observed measurements given the observed ones needs to be extrated from themarginal distribution of the omplete set of measurements. Molenberghs et al(1998) have shown that, for the ase of dropout, the so-alled available asemissing value restritions (ACMV) provide a pratial omputational sheme.Preisely, ACMV states that

∀t ≥ 2, ∀s < t : f(yit|yi1, · · · , yi,t−1, di = s) = f(yit|yi1, · · · , yi,t−1, di ≥ t). (15)In other words, the density of a missing measurement, onditional on the mea-surement history, is determined from the orresponding density over all patternsfor whih all of these measurements are observed. For example, the density ofthe third measurement in a sequene, given the �rst and seond ones, in pat-terns with only 1 or 2 measurements taken, is determined from the orrespond-ing density over all patterns with 3 or more measurements. Thijs et al (2002)and Verbeke, and Molenberghs (2000)(p. 347) derived a pratial omputationalmethod for the fators in (15):
f(yit|yi1, · · · , yi,t−1, di = s)

=

∑n
d=s αdfd(yi1, . . . , yis)∑n

d=s αdfd(yi1, . . . , yi,s−1)
(16)

=

n∑

d=s

(
αdfd(yi1, . . . , yi,s−1)∑ni

d=s αdfd(yi1, . . . , yi,s−1)

)
fd(ys|yi1, . . . , yi,s−1). (17)Here, αd is the probability to belong to pattern d.The above identi�ations for the monotone ase are useful in ase an MNARpattern-mixture model has been �tted to begin with, sine then the identi�a-tions under MAR an be alulated from the pattern-spei� marginal distribu-tions. When a seletion model has been �tted in the initial step, f(yi1, . . . , yini

|θ̂)has been estimated, from whih all onditional distributions, needed in (14), anbe derived. When the initial model is an MNAR PMM model and the miss-ing data patterns are non-monotone, then it is neessary to �rst rewrite thePMM in SeM form, and derive the required onditional distributions from theso-obtained SeM measurement model. This essentially omes down to alulat-ing a weighted average of the pattern-spei� measurement models. In some



Atas do XVI Congresso Anual da SPE 13ases, suh as for ontingeny tables, this step an be done in an alternativeway by �tting a saturated MAR seletion model to the �t obtained from thePMM model.We will illustrate and ontrast the monotone and non-monotone ases usinga bivariate and trivariate outome with dropout on the one hand and a bivariatenon-monotone outome on the other hand. While the theorem applies to boththe monotone and non-monotone settings, it is insightful to see that only for theformer relatively simple and intuitively appealing expressions arise, while thelatter setting involves the need for iterative omputation. In the next setion,the aforementioned general ontingeny table setting to whih a PMM has been�tted, will be studied.4.1 A Bivariate Outome With DropoutHere and in the following examples, we will present and equate the SeM andPMM deompositions, enabling us to derive expressions for the MAR ounter-parts. It is interesting and straightforward to derive results for the MCAR ase,and hene these will be presented, too.Dropping ovariates, parameters, and the subjet index i from notation, theSeM-PMM equivalene for the ase of two outomes, the �rst of whih is alwaysobserved but the seond one partially missing, is given by:
f(y1, y2)g̃(d = 2|y1, y2) = f2(y1, y2)α̃(d = 2),

f(y1, y2)g̃(d = 1|y1, y2) = f1(y1, y2)α̃(d = 1).Note that this is the setting onsidering by Glynn et al (1986). Here, g̃(·) isused for the SeM dropout model, with α̃(·) denoting the PMM probabilities tobelong to one of the patterns. Sine α̃(d = 1) + α̃(d = 2) = 1 and a similarresult holds for the g̃(·) funtions, it is onvenient to write:
f(y1, y2)g(y1, y2) = f2(y1, y2)α (18)

f(y1, y2)[1 − g(y1, y2)] = f1(y1, y2)[1 − α]. (19)Assuming MCAR, it is lear that α = g(y1, y2), produing, without any di�-ulty:
f(y1, y2) = f2(y1, y2) = f1(y1, y2). (20)Under MAR, y2 has to be removed from g(·) for inomplete observations, butsine we assume a single parametri funtion for the missingness model, it followsthat g(y1, y2) = g(y1) and hene (18) produes

f(y1)f(y2|y1)g(y1) = f2(y1)f2(y2|y1)α.Upon reordering, we �nd:
f(y1)g(y1)

f2(y1)α
=

f2(y2|y1)

f(y2|y1)
. (21)



14 G. Molenberghs/MAR CounterpartsThe same arguments an be applied to (19), from whih we derive:
f(y2|y1) = f2(y2|y1) = f1(y2|y1). (22)Note that (22) is stritly weaker than (20). The last term in (22) is not identi�edby itself, and hene, we see it needs to be set equal to its ounterpart from theompleters whih, in turn, is equal to the marginal distribution. This is inagreement with (14) as well as with the spei� identi�ations appliable in themonotone and hene ACMV setting.4.2 A Trivariate Outome With DropoutNote that identi�ation (22) does not involve mixtures. This hanges as soon asthere are three or more outomes. The equations orresponding to (18)�(19),speialized to the MAR ase, are:

f(y1, y2, y3)g0 = f0(y1, y2, y3)α0, (23)
f(y1, y2, y3)g1(y1) = f1(y1, y2, y3)α1, (24)

f(y1, y2, y3)g2(y1, y2) = f2(y1, y2, y3)α2, (25)
f(y1, y2, y3)g3(y1, y2) = f3(y1, y2, y3)α3. (26)We have hosen to inlude pattern 0, the one without follow-up measurements,as well, and will return to this one. We ould write g3(·) as a funtion of y3 aswell, but beause the sum of the gd(·) equals one, it is lear that g3(·) ought tobe independent of y3. With arguments similar to the ones developed in the aseof two measurements, we an rewrite (26) as:

f(y1, y2)

f3(y1, y2)
·
g3(y1, y2)

α3
=

f3(y3|y1, y2)

f(y3|y1, y2)
.Exatly the same onsideration an be made based on (25), and hene

f3(y3|y1, y2) = f(y3|y1, y2) = f2(y3|y1, y2). (27)The �rst fator identi�es the seond one, and hene also the third one. Startingfrom (24), we obtain:
f1(y2, y3|y1) = f(y2, y3|y1),whih produes, in fat, two separate identities:

f1(y2|y1) = f(y2|y1), (28)
f1(y3|y1, y2) = f(y3|y1, y2) = f3(y3|y1, y2) = f2(y3|y1, y2). (29)For the latter one, identity (27) has been used as well. The density f(y2|y1),needed in (28), is determined from the general ACMV result (17):

f(y2|y1) =
α2f2(y2|y1) + α3f3(y2|y1)

α2 + α3
.



Atas do XVI Congresso Anual da SPE 15Finally, turning attention to (23), it is lear that g0 = α0 and hene also
f0(y1, y2, y3) = f(y1, y2, y3). From the latter density, only f(y1) has not beendetermined yet, but this one follows again very easily from the general ACMVresult:

f(y1) =
α1f1(y1) + α2f2(y1) + α3f3(y1)

α1 + α2 + α3
.In summary, the neessary MAR identi�ations easily follow from both thePMM and the SeM formulations of the model.4.3 A Bivariate Outome With Non-Monotone MissingnessThe ounterparts to (18)�(19) and (23)�(26) for a bivariate outome with non-monotone missingness are

f(y1, y2)g00(y1, y2) = f00(y1, y2)α00, (30)
f(y1, y2)g10(y1, y2) = f10(y1, y2)α10, (31)
f(y1, y2)g01(y1, y2) = f01(y1, y2)α01, (32)
f(y1, y2)g11(y1, y2) = f11(y1, y2)α11. (33)Clearly, under MCAR, the gr1r2

(·) funtions do not depend on the outomesand hene fr1r2
(y1, y2) = f(y1, y2) for all four patterns. For the MAR ase,(30)�(33) simplify to

f(y1, y2)g00 = f00(y1, y2)α00, (34)
f(y1, y2)g10(y1) = f10(y1, y2)α10, (35)
f(y1, y2)g01(y2) = f01(y1, y2)α01, (36)

f(y1, y2)g11(y1, y2) = f11(y1, y2)α11. (37)Observe there are four identi�ations aross the gr1r2
(y1, y2) funtions:

g00 + g10(y1) + g01(y2) + g11(y1, y2) = 1,for eah (y1, y2). Also ∑r1,r2
αr1,r2

= 1. Applying the usual algebra to (34)�(37), we obtain three identi�ations for the unobservable densities:
f00(y1, y2) = f(y1, y2), (38)
f10(y1|y2) = f(y1|y2), (39)
f01(y2|y1) = f(y2|y1). (40)Using these in onjuntion with the identi�able parts of the distributions yieldsthe MAR ounterpart.



16 G. Molenberghs/MAR Counterparts5 Inomplete Contingeny TablesIn Setions 4.1�4.3 we have derived general identi�ation shemes for an MARextension of a �tted model to a binary or trivariate outome with dropout, aswell as to a bivariate outome with non-monotone missingness. Whereas themonotone ases provide expliit expressions in terms of the pattern-spei� den-sities, (38)�(40) provide an identi�ation only in terms of the marginal prob-ability. This in itself is not a problem, sine the marginal density is alwaysavailable, either diretly when a SeM is �tted, or through marginalization whena PMM or an SPM is �tted.In the spei� ase of ontingeny tables, further progress an be made.Indeed, we an show a saturated MAR model is always available, for any in-omplete ontingeny table setting. This implies one an start from the �t ofan MNAR model to the observed data, and then extend it, using this result,towards MAR. We will present the general result and then disuss its preiseimpliations for pratie.Assume we have a ∏n
k=1 ck ontingeny table with supplemental margins,where k indexes the n dimensions in the table and ck is the number of alterna-tives the kth ategorial variable an take. The table of ompleters is indexedby r = 1 = (1, . . . , 1). A partiular inomplete table is indexed by a r 6= 1. Thefull set of tables an but does not have to be present. The number of ells is:

#ells =
∑

r

n∏

k=1

crk

k . (41)Denote the measurement model probabilities by pj = pj1...jn
for jk = 1, . . . ckand k = 1, . . . , n. Clearly, these probabilities sum to one. The missingnessprobabilities, assuming MAR, are:

p(r|j) =

{
p(r|jk with rk = 1) if r 6= 1,

1 −
∑
r 6=1 p(r|j) if r = 1.

(42)Summing over r implies summing over those patterns for whih atual observa-tions are available. The number of parameters in the saturated model is
#parameters =

(
n∏

k=1

ck − 1

)
+
∑

r 6=1

n∏

k=1

crk

k . (43)The �rst term in (43) is for the measurement model, the seond one is for themissingness model. Clearly, the number of parameters equals one less thanthe number of ells, establishing the laim. The situation where ovariates arepresent is overed automatially, merely by onsidering one extra dimension inthe ontigeny table, j = 0 say, with c0 referring to the total number of ovariatelevels in the set of data.We will now study the impliations for the simple but important settingsstudied in Setions 4.1 and 4.3.



Atas do XVI Congresso Anual da SPE 175.1 A Bivariate Contingeny Table With DropoutIn Setion 4.1 identi�ations have been derived for the bivariate ase with mono-tone missingness. For ontingeny tables, these an be derived as well by further�tting the saturated MAR model, desribed in the previous setion, to the �t ob-tained from the original MNAR model. Denote the ounts obtained from the �tof the original model by z2,jk and z1,j , for the ompleters and dropouts, respe-tively. Denote the measurement model probabilities by pjk and the dropoutprobabilities by qj . Then, due to ignorability, the likelihood fators into twoomponents:
ℓ1 =

∑

j,k

z2,jk ln pjk +
∑

j

z1,j ln pj+ − λ


∑

j,k

pjk − 1


 , (44)

ℓ2 =
∑

j,k

z2,jk ln qj +
∑

j

z1,j ln(1 − qj). (45)We have used an undetermined Lagrange multiplier λ to inorporate the sumonstraint on the marginal probabilities. Solving the sore equations for (44)and (45) produes, with simple and well-known algebra:
p̂jk =

1

n
z2,jk

(
z2,j+ + z1,j

z2,j+

)
, (46)

q̂j =
z2,j+

z2,j+ + z1,j

, (47)where n is the total sample size. Combining parameter estimates leads to thenew, MAR-based, �tted ounts:
ẑ2,jk = np̂jk q̂j = z2,jk, (48)
ẑ1,jk = np̂jk(1 − q̂j) = z1,j

z2,jk

z2,j+
, (49)

ẑ1,j+ = z1,j+. (50)From (48) and (50) it is lear that the �t in terms of the observed data has nothanged. The expansion of the inomplete data into a omplete one is desribedby (49). Equations (48) and (49) an be used to produe the MAR ounterpartto the original model, without any additional alulations. This is not so simplefor the non-monotone ase, as we will show next.



18 G. Molenberghs/MAR Counterparts5.2 A Bivariate Contingeny Table With Non-Monotone Missing-nessThe ounterparts to (44)�(45) for this ase are:
ℓ1 =

∑

j,k

z11,jk ln pjk +
∑

j

z10,j ln pj+ +
∑

k

z01,k ln p+k

+z00 ln p++ − λ


∑

j,k

pjk − 1


 , (51)

ℓ2 =
∑

j,k

z11,jk ln(1 − q10,j − q01,k − q00) +
∑

j

z10,j ln q10,j

+
∑

k

z01,k ln q01,k + z00 ln g00. (52)Notation has been modi�ed in aordane with the design. The q quantitiesorrespond to the g(·) model in Setion 4.3.While p++ = 1 and hene z00 does not ontribute information to the mea-surement probabilities, it does add to the estimation of the missingness model.Deriving the sore equations from (51) and (52) is straightforward but, unlikein the previous setion, no losed form exists. Chen, and Fienberg (1974) derivedan iterative sheme for the probabilities pjk, based on setting the expetedsu�ient statistis equal to their omplete-data ounterparts:
npjk = z11,jk + z10,j

pjk

pj+
+ z01,k

pjk

p+k

+ z00
pjk

p++
,(with p++ = 1) and hene

(n − z00)pjk = z11,jk + z10,j

pjk

pj+
+ z01,k

pjk

p+k

. (53)The same equation is obtained from the �rst derivative of (51). Chen andFienberg's iterative sheme results from initiating the proess with a set ofstarting values for the pjk, e.g., from the ompleters, and then evaluating theright hand side of (53). Equating it to the left hand side provides an update forthe parameters. The proess is repeated until onvergene.While there are no losed-form ounterparts to (46) and (47), the expressionsequivalent to (48)�(50) are
̂z11,jk = z11,jk, (54)
̂z10,jk = z10,j

pjk

pj+
, (55)

̂z01,jk = z01,k

pjk

p+k

, (56)
̂z00,jk = z00pjk. (57)



Atas do XVI Congresso Anual da SPE 19However, there is an important di�erene between (48)�(50) on the one handand (54)�(57) on the other hand. In the monotone ase, the expressions on theright hand side are in terms of the ounts z only, whereas here the marginalprobabilities pjk intervene, whih have to be determined from a numerial �t.The pratial use of the results in this setion are illustrated next on datafrom the Slovenian Publi Opinion Survey.6 Shared-parameter Models and Missingness at RandomSPM's are losely linked to the joint modeling of longitudinal and time-to-eventdata, a lass of models onsidered for at least three reasons. First, a time-to-event outome may be measured in terms of a longitudinal ovariate. Suh ajoint model then allows, in a natural way, for inorporation of measurementerror present in the longitudinal ovariate into the model. Seond, a number ofresearhers have used joint modeling methods to exploit longitudinal markers assurrogates for survival (Tsiatis, DeGruttola, and Wulfsohn, 1995; Xu and Zeger,2001a; Henderson, Diggle, and Dobson, 2000; Renard et al, 2002).Third, and of most relevane here, suh joint models an be used wheninomplete longitudinal data are olleted. Important early referenes to suhmodels are Wu, and Carroll (1988), Wu, and Bailey (1988), and Wu, and Bailey(1989). Wu, and Bailey (1988) proposed suh a model for what they termedinformative right ensoring. For a ontinuous response, Wu, and Carroll (1988)suggested using a onventional Gaussian random-oe�ient model ombinedwith an appropriate model for to time to dropout, suh as proportional hazards,logisti or probit regression. The ombination of probit and Gaussian responsesallows expliit solution of the integral and was used in their appliation.In a slightly di�erent approah to modeling dropout time as a ontinuousvariable in the latent variable setting, Shluhter (1992) and DeGruttola andTu (1994) proposed joint multivariate Gaussian distributions for the latent vari-able(s) of the response proess and a variable representing time to dropout. Theorrelation between these variables indues dependene between dropout andresponse. Rizopoulos, Verbeke, and Molenberghs (2007) study the impat ofrandom-e�ets misspei�ation in a shared parameter model. Beunkens et al(2007a) ombine ontinuous random e�ets with latent lasses, leading to thesimultaneous use of mixture and mixed-e�ets models ideas. It is very nat-ural to handle random-oe�ient models, and in partiular shared-parametermodels, in a Bayesian framework. Examples in the missing value setting areprovided by Best et al (1996) and Carpenter, Pook, and Lamm (2002). Fur-ther referenes inlude Pawitan and Self (1993); Taylor et al (1994); Fauettand Thomas (1996); Lavalley and DeGruttola (1996); Hogan and Laird (1997,1998); Wulfsohn and Tsiatis (1997) and Xu and Zeger (2001b).Models of this type handle non-monotone missingness quite onvenientlythrough random e�ets. There are many ways in whih suh models an beextended and generalized. Nevertheless, these models seem to defy an easy,



20 G. Molenberghs/MAR Counterpartselegant haraterization of MAR, whih is the topi of what follows.In Setion 3, the ommonly used de�nition (3) of an SPM is presented.However, the preeding review makes lear that not all authors employ thesame de�nition. Before passing on to the de�nition we will employ here, it istherefore instrutive to take a more general position, also onsidered by Little(1995), based on augmenting the joint density of (yi, ri) with a vetor of randome�ets bi:
f(yi, ri, bi|θ,ψ,xi), (58)where xi is now expliitly inluded to parametrize the random-e�ets distri-bution. As before, ovariates are allowed to be present, perhaps taking theform of di�erent sets that eah desribe one of the three omponents. Again,they are suppressed from notation. Based on (58), one an still onsider theseletion-model fatorization:

f(yi, ri, bi|θ,ψ) = f(yi|bi,θ)f(ri|yi, bi,ψ)f(bi|xi) (59)and, likewise, the pattern-mixture model fatorization:
f(yi, ri, bi|θ,ψ,xi) = f(yi|ri, bi,θ)f(ri|bi,ψ)f(bi|xi). (60)The notation is the same as in Setion 3, with in addition xi parameters desrib-ing the random-e�ets distribution. Little (1995) refers to suh deompositionsas random-oe�ient seletion and pattern-mixture models, respetively. Obvi-ously, SeM (1) and PMM (2) follow by removing the random e�ets from (59)and (60), respetively or, at least, not having them in ommon between themodels for Y i and Ri.An important simpli�ation, leading to the already-de�ned SPM (3), ariseswhen Y i and Ri are assumed independent, given the random e�ets, i.e., whenonditional independene assumptions are made. Spelling out the model in fullprodues:

f(yi, ri, bi|θ,ψ,xi) = f(yi|bi,θ)f(ri|bi,ψ)f(bi|xi). (61)Model (61) orresponds to (3), but now also the distribution of the randome�ets has been spelled out expliitly. This model was entertained by Follmann,and Wu (1995). Note that, when bi is assumed to be disrete, a latent-lass ormixture model follows.We are now in a position to introdue the SPM framework needed for ourpurposes. Note that most formulations assume that a single, ommon set bidrives the entire proess. Whilst holding on to the onditional-independeneassumption, we will expand bi to a set of latent strutures, as in the followingde�nition.De�nition 1 (A General Shared-parameter Model Family.) We de�ne ageneral shared-parameter model as one of the form
f(yo

i |gi,hi, ji, ℓi)f(ym
i |yo

i , gi,hi,ki,mi)f(ri|gi, ji,ki qi), (62)



Atas do XVI Congresso Anual da SPE 21where gi, hi, ji, ki, ℓi, mi, and qi are independent random-e�ets vetors(vetors of latent variables).For onveniene, write
bi = (gi,hi, ji,ki, ℓi,mi, qi). (63)Several remarks are in plae. First, this is the most general random-e�etsmodel that an be onsidered in the sense that gi is ommon to all three fatorsin (62), hi, ji, and ki are shared between a pair of fators, and ℓi, mi, and qiare restrited to a single fator. Depending on the appliation, one may hooseto either retain all random e�ets or to omit some. It will then be useful tohave a perspetive on the impliations of suh simpli�ations, preferably also interms of the missing data mehanism operating. This is why we will establishonditions under whih MAR operates on the one hand, and missingness doesnot depend on future, unobserved measurements in a longitudinal ontext onthe other hand. Seond, in full generality, model (62) may ome aross assomewhat ontrived. Our objetive is not to postulate (62) as a model of usein every possible appliation of SPM, but rather as the most general SPM fromwhih substantively appropriate models follow as sub-lasses. Related to this,it appears (62) assumes two di�erent distributions for the outome vetor, i.e.,divoring the observed from the missing omponents. This is not entirely thease beause gi and hi still tie both fators together. The impat of ji, ki, ℓi,andmi is to modify one's latent proess in terms of missingness. In other words,the most general model assumes that observed and missing omponents aregoverned in part by ommon proesses and partly by separate proesses. Third,in priniple, we ould expand (62) with the densities of the random e�ets. Thisis generally not neessary for our purposes, though. Fourth, the assumptionof independent random-e�ets vetors is not restritive, beause assoiation isaptured through the sets ommon to at least two fators. Fifth, onventionalSPM formulation (61) follows by removing all random e�ets but gi.De�nition (62) will allow us to derive a general haraterization of MAR inthe SPM framework. It is instrutive to set out by deriving an elegant set ofsu�ient onditions. Thereafter, neessity will be addressed. To this end, wean start from either the SeM-based de�nition (6) or the PMM haraterizationas laid out in Lemma 1.Starting from the SeM de�nition, and assuming gi, hi, and ki are zero, wean show that MAR follows:
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=

∫
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i |yo

i ,mi)f(ri|ji, qi)f(bi) dbi∫
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i ,mi)f(bi) dbi
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=

∫
f(ym

i |yo
i ,mi) dmi ·

∫
f(yo

i |ji, ℓi)f(ri|ji, qi)f(bi) dbi∫
f(ym

i |yo
i ,mi) dmi ·

∫
f(yo

i |ji, ℓi)f(bi) dbi

=
f(yo

i , ri)

f(yo
i )

= f(ri|y
o
i ),where integration over bi is shorthand for integration over all omponent vetorsmaking up bi, listed in (63), or an appropriate subset thereof. Hene, a su�-ient ondition for the SPM to be MAR is that the random e�ets driving theobserved measurements and/or the missing-data proess do not in�uene themissing measurements, given the observed ones. In other words, all informationabout the missing measurements, apart from ovariates, stems from the ob-served measurements only. Clearly, the random e�ets mi are not identi�able;they are inluded for ompleteness only.It is instrutive to study the same set of su�ient onditions from the PMMperspetive (Lemma 1), sine it will lead us, at the end of the setion, to theonstrution of an MAR ounterpart:
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f(yo

i |ji, ℓi)f(ri|ji, qi)f(bi) dbi

= f(ym
i |yo

i ),not surprisingly leading to the same result.These onsiderations at the same time de�ne an important sub-lass, estab-lishing the ensuing result:De�nition 2 (A Sub-lass of SPM Models.) De�ne a sub-lass of shared-parameter model (62):
f(yo

i |ji, ℓi)f(ym
i |yo

i ,mi)f(ri|ji, qi), (64)where ji, ℓi, mi, and qi are independent random-e�ets vetors.In other words, De�nition 2 follows as a speial ase from De�nition 1 by omit-ting the random e�ets gi, hi, and ki. The key rationale for this de�nition is,of ourse, the following result:Theorem 2 (A Class of MAR-based SPM Models.) The shared-parametermodel (64) is missing at random.



Atas do XVI Congresso Anual da SPE 23We have not addressed neessity thus far. To this e�et, we need to derivegeneral expressions for the left hand side and right hand side of (12), respetively.First, for the left hand side:
f(ym

i |yo
i , ri)
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∫
f(yo

i |gi,hi, ji, ℓi)f(ym
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i , gi,hi,ki,mi)f(ri|gi, ji,ki, qi)f(bi) dbi∫
f(yo

i |gi,hi, ji, ℓi)f(ri|gi, ji,ki, qi)f(bi) dbi

.(65)Seond, for the right hand side, onsider:
f(ym

i |yo
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∫
f(yo

i |gi,hi, ji, ℓi)f(ym
i |yo

i , gi,hi,ki,mi)f(bi) dbi∫
f(yo

i |gi,hi, ji, ℓi)f(bi) dbi

. (66)Equating (65) and (66) and, for brevity, integrating over random e�ets thatour in one omponent only, produes the general onditions, laid out in thenext theorem.Theorem 3 (Charaterization of MAR in SPM Family.) A member of thegeneral SPM family (62) is MAR if and only if
∫

f(yo
i |gi,hi, ji)f(ym

i |yo
i , gi,hi,ki)f(ri|gi, ji,ki)f(bi) dbi∫

f(yo
i |gi, ji)f(ri|gi, ji)f(bi) dbi
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∫
f(yo

i |gi,hi)f(ym
i |yo

i , gi,hi)f(bi) dbi

f(yo
i )

. (67)Evidently, again assuming that gi, hi, and ki anel, redues (67) to atautologial statement, showing that (64) satis�es Theorem 3.There are situations where (67) is satis�ed, without the triplet (gi,hi,ki)vanishing, but these will neessarily be more ad ho and less intuitively appealingthan these laid out in Theorem 2. The existene of suh singular solutions isnot straightforward to establish, as is lear from the following pair of examples.Example 1 (MAR Example in Line With De�nition 1.) For the purposeof the examples, drop the index i from notation. Consider a bivariate outome
(Y1, Y2), where the �rst one is always observed, and the seond omponent some-times missing. This neessitates a salar missing-data variable R only, leadingto full-data vetor (Y1, Y2, R). Let R = 0 if the seond omponent is missing and
1 otherwise. For R = 1, ondition (67) is always ful�lled, sine the key ompo-nent, desribing the distribution of the missing observations given the observedones, is then empty. Therefore, we an onentrate on R = 0.For simpliity, assume that all random e�ets, desribing one fator only,are absent, i.e., remove ℓi,mi, and qi. From the four remaining random-e�ets,retain only ji and ki, implying that the missing-data proess is onneted to both



24 G. Molenberghs/MAR Counterpartsresponse-related fators whih, in turn, are unrelated to eah other. Assumefurthermore that both outomes, Y1 and Y2, are dihotomous, and that also bothrandom e�ets are binary. This means that (67) an be simpli�ed to:

∑

j

π1
y1|j

πj


 ·


∑

j,k

π1
y1|j

π2
y2|y1kπr=0|jkπjπk




=


∑

j,k

π1
y1|j

πr=0|jkπjπk


 ·


∑

j,k

π1
y1|j

π2
y2|y1kπjπk


 , (68)where the π's are probabilities pertaining to the variables indiated by their or-responding indies. It is onvenient to introdue some simplifying notation,making use of the fat that all key variables are dihotomous: set γ = πj=0,

ϕ = πk=0, and ρjk = πr=0|jk.Expression (68) needs to be onsidered only for (Y1, Y2) = (0, 0) and (1, 0),sine spelling out the ones for (1, 0) and (1, 1) and summing them with theirounterparts lead to tautologial statements. This implies that (68) produestwo equations, i.e.,there are two onstraints to be satis�ed. For the �rst equa-tion, in (Y1, Y2) = (0, 0), hoose x = π2
0|01 as the parameter to be determined.This means that (68) is a linear equation in x. Clearly, setting π2

0|00 = π2
0|01solves the equation, based on two observations. First, a onstant fator π2

y2|y1is ommon to both sides of the equation and anels. Seond, the remainingfators are pairwise equal: the �rst fator on the LHS then equals the seondfator on the RHS; the seond fator on the LHS equals the �rst fator on theRHS. The argument for (Y1, Y2) = (1, 0) is entirely symmetri, and hene theunique solution implies that k vanishes from the distribution of Y2 given Y1, inagreement with De�nition 2.Similar manipulations an be done for the ases: (1) where only gi is present;and (2) where only hi and ji are present. In these two ases, as well as inExample 1, a single random e�et desribes π2
y2|y1·

. This is ruial to ensureaordane with De�nition 1. The next example is di�erent in that two inde-pendent random e�ets will in�uene the probability of the seond omponentgiven the �rst one.as is lear from the next example.Example 2 (MAR Example Violating De�nition 1.) Retain the setting ofExample 1, but now with the pair of random e�ets hi and ki present. This par-tiular hoie leads to a di�erent simpli�ation of (67):
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=


∑
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 ·
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y1|h

π2
y2|y1hkπhπk


 . (69)We will onveniently use the following notation: η = πh=0, ϕ = πk=0, and

ρk = πr=0|k.With similar logi as in Example 1, it easily follows that we only need toonsider (69) for (Y1, Y2) = (0, 0) and (1, 0). Conentrating on the �rst ofthese, and singling out π2
0|011 as the parameter to identify from the others, itfollows that

π2
0|011 =

ab − de

df − ac
, (70)with

a = π1
0|0η + π1

0|1(1 − η),

b = π1
0|0π

2
0|000ρ0ηϕ + π1

0|0π
2
0|001ρ1η(1 − ϕ) + π1

0|1π
2
0|010ρ0(1 − η)ϕ,

c = π1
0|1ρ1(1 − η)(1 − ϕ),

d = π1
0|0ρ0ηϕ + π1

0|0ρ1η(1 − ϕ) + π1
0|1ρ0(1 − η)ϕ + π1

0|1ρ1(1 − η)(1 − ϕ),

e = π1
0|0π

2
0|000ηϕ + π1

0|0π
2
0|001η(1 − ϕ) + π1

0|1π
2
0|010(1 − η)ϕ,

f = π1
0|1(1 − η)(1 − ϕ).The derivations for (Y1, Y2) = (1, 0) is entirely similar and leads to (70) withthe �rst onditioning argument `1' rather than `0'. A numerial example isprovided in Table 4, establishing that the random e�ets hi and ki do in�uenethe distribution of Y2|Y1, in the dropout pattern.Finally, the haraterization of Theorem 3 allows us to onstrut an MARounterpart to an arbitrary SPM of the form (62). It is neessary to (1) retainthe �t of the model to the observed data, while (2) ensuring that (67) hold.This is easily done by a-posteriori integrating the shared random e�ets out ofthe densities desribing the unobserved measurements, given the observed ones.Here, integration takes plae over the densities of gi, hi, and ki, where �ttedparameters are plugged into the densities.Theorem 4 (An MAR Counterpart to a General SPM.) The MARounterpart, to an arbitrary general SPM of the type (62) is found by replaing
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26 G. Molenberghs/MAR CounterpartsTabela 4: Bivariate binary outome with the �rst omponent fully observed andthe seond omponent partially missing. The missing data mehanism is MAR.The model belongs to general SPM family (62), but not to the spei� MARsub-lass (64).E�et `Failure (0)' `Suess (1)'Random h e�et η = πh=0 0.3000 1 − η = πh=1 0.7000Random k e�et ϕ = πk=0 0.4000 1 − ϕ = πk=1 0.6000
R|k = 0 ρ0 = π0|0 0.4500 1 − ρ0 = π1|0 0.5500
R|k = 1 ρ1 = π0|1 0.8000 1 − ρ1 = π1|1 0.2000
Y1|h = 0 π1

0|0 0.3000 π1
1|0 0.7000

Y1|h = 1 π1
0|1 0.2000 π1

1|1 0.8000
Y2|Y1 = 0, h = 0, & k = 0 π2

0|000 0.1500 φ2
1|000 0.8500

Y2|Y1 = 0, h = 0, & k = 1 π2
0|001 0.2500 π2

1|001 0.7500
Y2|Y1 = 0, h = 1, & k = 0 π2

0|010 0.3500 π2
1|010 0.6500

Y2|Y1 = 0, h = 1, & k = 1 π2
0|011 0.2857 π2

1|011 0.7143
Y2|Y1 = 1, h = 0, & k = 0 π2

0|100 0.2000 π2
1|100 0.8000

Y2|Y1 = 1, h = 0, & k = 1 π2
0|101 0.3000 π2

1|101 0.7000
Y2|Y1 = 1, h = 1, & k = 0 π2

0|110 0.4000 π2
1|110 0.6000

Y2|Y1 = 1, h = 1, & k = 1 π2
0|111 0.3625 π2

1|111 0.6375First, it is lear that this marginalization is merely desribing the model-basedpredition of the unobserved outomes, given the observed ones. Hene, thehoie for h(·) does not alter the �t. Seond, observe that using h(·) in (67),instead of f(ym
i |yo

i , gi,hi,ki,mi), of Theorem 3, redues the equation to atrivial identity, and hene the seond ondition is also satis�ed.For ategorial random e�ets, suh as in Examples 1 and 2, the integral in(71) beomes summation.7 Longitudinal Data With Dropout: Non-future Depen-deneWhen measurements are taken longitudinally, it is good pratie to ensure thatthe implied time dependenies are logial from a substantive standpoint. Forexample, in a variety of ontexts, suh as growth, regression funtions over timemay be onstrained to non-dereasing forms.Let us turn to the nature of the missingness mehanism. Throughout thesetion, assume that missingness is on�ned to dropout. From a SeM perspe-tive, one often lassi�es missing data mehanisms as (Diggle, and Kenward,



Atas do XVI Congresso Anual da SPE 271994): (1) independent of outomes; (2) dependent on previous measurementsonly; (3) dependent on the urrent and perhaps previous measurements only;(4) fully arbitrary, i.e., where missingness an depend on previous, urrent, andfuture measurements. Evidently, (1) is MCAR, (2) is MAR, and (4) is MNAR,without restritions. (Diggle, and Kenward, 1994), for example, did not onsider(4) but restrited MNAR to mehanism (3) only. While this is very restritive,it is also extremely appealing sine it prevents dropout at a given point in timeto depend on future measurements; these are termed non-future dependent inthe next setion.Clearly, the onepts of the previous paragraph are very natural by virtue offraming them in the SeM. Kenward et al (2003) undersored that the situationis less lear in the PMM family and then translated the mehanisms from theSeM to the PMM framework. We will review these in Setion 7.1, and thenpresent a similar taxonomy for the SPM in Setion 7.2.7.1 Non-future Dependene in the PMM FrameworkSine we are restriting attention to monotone missingness, we an easily indi-ate a drop-out pattern by the numbers of observations made. In this sense, pat-tern t ollets all individuals with the �rst t measurements taken (t = 1, . . . , n).Thijs et al (2002) onstruted a general identifying-restritions framework inwhih the distribution of the (t + 1)th measurement, given the earlier mea-surements, in pattern t, yt+1 say, is set equal to a linear ombination of theorresponding distributions in patterns t + 1 to n. Sine this family is hara-terized by the use of observable distributions to identify the unobservable ones,we term it the `interior' family of identifying-restritions. Three members ofthis family are studied in detail by Thijs et al (2002): omplete-ase missingvalue restritions (Little, 1993), where information is borrowed from the om-pleters only, available-ase missing values, equivalent to MAR (Molenberghs etal (1998)), for whih a partiular linear ombination needs to be onsidered,and neighboring-ase missing value restritions, where information is borrowedfrom the losest available pattern.The equivalene of available-ase missing values and MAR is important inthat it enables us to make a lear onnetion between the seletion and pattern-mixture frameworks. By impliation, the other members of the interior familyare of MNAR type, while at the same time there do exist MNAR type restri-tions that are not aptured by this family.We will now haraterize missing-data mehanisms that prevent missingnessfrom depending on future unobserved measurements. To this e�et, it is useful toonsider the SeM and PMM fatorizations for the spei� ontext of longitudinaldata. Let r = t ≤ n be the number of measurements atually observed. Theseletion model fatorization for this ontext is given by
f(y1, · · · , yn, r = t) = f(y1, · · · , yn)f(r = t|y1, · · · , yn).



28 G. Molenberghs/MAR CounterpartsPattern-mixture models now take the form:
f(y1, · · · , yn, r = t)

= f(y1, · · · , yn|r = t)f(r = t)

= ft(y1, · · · , yn)f(r = t)

= ft(y1, · · · , yt)ft(yt+1|y1, · · · , yt)ft(yt+2, · · · , yn|y1, · · · , yt+1)f(r = t),(72)where ft(y1, · · · , yn) = f(y1, · · · , yn|r = t). The �rst three fators in (72) arereferred to as the distributions of past, present, and future measurements, re-spetively. Only the �rst and the fourth fators are identi�able from the data.De�nition 3 (Non-future Dependene (NFD).) In the SeM ontext, wean formulate missing non-future dependent as
f(r = t|y1, · · · , yn) = f(r = t|y1, · · · , yt+1). (73)Note that MAR is a speial ase of missing non-future dependent, whih in turnis a sub-lass of MNAR.De�nition 4 (Non-future Dependent Missing Value (NFMV).) Withinthe PMM framework, we de�ne non-future dependent missing value restritionsas follows:

f(yt|y1, · · · , yt−1, r = j) = f(yt|y1, · · · , yt−1, r ≥ t − 1), (74)for all t ≥ 2 and all j < t − 1.Non-future missing values is not a omprehensive set of restritions, but ratherleaves one onditional distribution per inomplete pattern unidenti�ed:
f(yt+1|y1, · · · , yt, r = t). (75)In other words, the distribution of the `urrent' unobserved measurement, giventhe previous ones, is unonstrained. This implies that the NFMV lass ontainsmembers outside of the interior family, where every restrition takes the formof a linear ombination of observable distributions. Conversely, (74) exludessuh mehanisms as omplete-ase missing values and neighboring-ase missingvalues, showing that there are members of the interior family that are not of non-future missing values type. Finally, hoosing (75) of the same funtional formas (74) establishes available-ase missing values as a member of the intersetionof the interior and non-future missing values families. The latter is partiularlyimportant sine it shows, beause of the equivalene of ACMV and MAR, thatMAR belongs to both families.The following theorem, the proof of whih is to be found in Kenward etal (2003), establishes the equivalene between NFD and NFMV, showing theNFMV restritions orrespond to NFD, just as ACMV orresponds to MAR.



Atas do XVI Congresso Anual da SPE 29Theorem 5 (Equivalene Between NFD and NFMV.) . For longitudinaldata with drop-outs, missing non-future dependene is equivalent to non-futuremissing values.A onsequene of using (74) is that the joint distribution will not typiallyhave a simple analytial representation. This is to be understood in the sensethat ovariate e�ets would not neessarily be linear on an appropriate sale.However, this is not to say there is no analytial form. Moreover, it does not haveto be a major disadvantage, provided the resulting distribution is empiriallyreasonable. Suh a requirement may help guide the hoie for (75). Kenward etal (2003) o�ered a tratable, sampling-based implementation and applied it tothe analysis of a set of data.7.2 Non-future Dependene in the SPM FrameworkIt is now partiularly easy to derive a general haraterization of non-futuredependent SPM. First, note that (73) in De�nition 3 an be seen as a longitudi-nal dropout-based de�nition of MAR, �one omponent shifted to the right,"i.e.,where yt+1, in spite of its missingness, is also allowed to in�uene missingness.Given that Theorem 3 was derived from the standard MAR de�nition, it imme-diately follows that a haraterization of NFD-SPM is as follows.Theorem 6 (Non-future Dependent Shared-parameter Models.) Amember of the general SPM family (62) is NFD if and only if
∫
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i |gi,hi, ji)f(yf
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i , gi,hi,ki)f(ri|gi, ji,ki)f(bi) dbi∫

f(ypc
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i , gi,hi)f(bi) dbi

f(ypc
i )

, (76)where ypc
i = (y1, · · · , yt+1)

′ and yf
i = (yt+2, · · · , yn)′.Note that the subsript `p' refers to `previous and urrent,' while `f' refers to`future.'Likewise, the sub-lass (64) of De�nition 2 an be `shifted' to yield an NFDversion.De�nition 5 (A NFD Sub-lass of SPM Models.) De�ne a sub-lass ofshared-parameter model (62):

f(ypc
i |ji, ℓi)f(yf

i |y
pc
i ,mi)f(ri|ji, qi), (77)where ji, ℓi, mi, and qi are independent random-e�ets vetors.With similar logi as before, De�nition 5 o�ers a lass of missing-data meh-anism that belongs to the NFD family. The relationship between the variousmehanisms in the three families is depited in Figure 3.



30 G. Molenberghs/MAR CounterpartsSeM : MCAR ⊂ MAR ⊂ NFD ⊂ general MNAR
l l l lPMM : MCAR ⊂ ACMV ⊂ NFMV ⊂ general MNAR

⊃ 6=
⊂interior

l l l lSPM : MCAR ⊂ Theorem 3 ⊂ Theorem 6 ⊂ general MNAR
∪ ∪De�nition 2 ⊂ De�nition 5Figura 3: Subset-relationships between nested families within the seletion model(SeM), pattern-mixture model (PMM), and shared-parameter model (SPM) fam-ilies. MCAR: missing ompletely at random; MAR: missing at random; MNAR:missing not at random; NFD: non-future dependene; ACMV: available-asemissing values; NFMV: non-future missing values. The vertial two-headed ar-rows indiate equivalene between mehanisms aross model families.8 Analysis of The Slovenian Publi Opinion Survey8.1 The BRD ModelsBaker et al (1992) proposed a log-linear based family of models for the four-way lassi�ation of both outomes, together with their respetive missingnessindiators: ν10,jk = ν11,jkβjk, ν01,jk = ν11,jkαjk, and ν00,jk = ν11,jkαjkβjkγ,with

αjk =
φ01|jk

φ11|jk

, βjk =
φ10|jk

φ11|jk

, γ =
φ11|jkφ00|jk

φ10|jkφ01|jk

.Furthermore νr1r2,jk is the model for the four ells, indexed by j and k, inpattern (r1, r2), where (r1, r2) = (1, 1) orresponds to ompleters, et.The α (β) parameters desribe missingness in the independene (attendane)question, and γ aptures the interation between both. The subsripts are miss-ing from γ sine Baker et al (1992) have shown that this quantity is independentof j and k in every identi�able model. These authors onsidered nine models,based on setting αjk and βjk onstant in one or more indies, and enumeratedusing the `BRD' abbreviation:BRD1 : (α, β) BRD4 : (α, βk) BRD7 : (αk, βk)BRD2 : (α, βj) BRD5 : (αj , β) BRD8 : (αj , βk)BRD3 : (αk, β) BRD6 : (αj , βj) BRD9 : (αk, βj).Interpretation is straightforward, for example, BRD1 is MCAR, and in BRD4missingness in the �rst variable is onstant, while missingness in the seondvariable depends on its value. BRD6�BRD9 saturate the observed data degrees



Atas do XVI Congresso Anual da SPE 31Tabela 5: (Part I). Analysis of the Slovenian Publi Opinion Survey, restritedto the independene and attendane questions. The observed data are shown,as well as the �t of models BRD1, BRD2, BRD7, and BRD9, and their MARounterparts, to the observed data. The ontingeny tables' rows (olumns) or-respond to `yes' vs. `no' on the independene (attendane) question. The fourtables in eah row orrespond to: (i) people responding to both questions; (ii)people responding to independene only; (iii) people responding to attendaneonly; (iv) people responding to neither question.Observed data &�t of BRD7, BRD7(MAR), BRD9, and BRD9(MAR) to inomplete data
1439 78

16 16
159
32

144 54 136Fit of BRD1 and BRD1(MAR) to inomplete data
1381.6 101.7

24.2 41.4
182.9

8.1
179.7 18.3 136.0Fit of BRD2 and BRD2(MAR) to inomplete data

1402.2 108.9
15.6 22.3

159.0
32.0

181.2 16.8 136.0

of freedom, while the lower numbered ones leave room for a non-trivial model�t to the observed data.8.2 Analysis of the Slovenian Publi Opinion DataThe ideas developed in this paper an be illustrated easily by means of 4 modelsfrom the BRD family, �tted to the independene and attendane outomes,i.e., ollapsing Table 1. We selet models BRD1, BRD2, BRD7, and BRD9.Model BRD1 assumes missingness to be MCAR. All others are of the MNARtype. Model BRD2 has 7 free parameters, and hene does not saturate theobserved data degrees of freedom, while models BRD7 and BRD9 saturate the8 data degrees of freedom. The ollapsed data, together with the model �ts,are displayed in Table 5. Eah of the four models is doubled up with its MARounterpart.Table 5 presents, apart from the raw data, for eah of the models and itsMAR ounterpart, the �t to the observed and the hypothetial omplete data.The �ts of models BRD7, BRD9, and their MAR ounterparts to the observeddata, oinide with the observed data. As the theory states, every MNAR modeland its MAR ounterpart produe exatly the same �t to the observed data,whih is therefore also seen for BRD1 and BRD2. However, while Models BRD1



32 G. Molenberghs/MAR Counterpartsand BRD1(MAR) oinide in their �t to the hypothetial omplete data, thisis not the ase for the other three models. The reason is lear: sine modelBRD1 belongs to the MAR family from the start, its ounterpart BRD1(MAR)will not produe any di�erene, but merely opies the �t of BRD1 to the unob-served data, given the observed ones. Finally, while BRD7 and BRD9 produea di�erent �t to the omplete data, BRD7(MAR) and BRD9(MAR) oinide.This is beause the �ts of BRD7 and BRD9 oinide with respet to their �tto the observed data, and indeed, due to their saturation, oinide with the ob-served data as suh. This �t is the sole basis for the models' MAR extensions.It is noteworthy that, while BRD7, BRD9, and BRD7(MAR)≡BRD9(MAR)all saturate the observed data degrees of freedom, their omplete-data �ts aredramatially di�erent.Let us return to the impliations of our results for the primary estimand θ,the proportion of people voting YES by simultaneously being in favor of inde-pendene and deiding to take part in the vote. Rubin et al (1995) onsidered,apart from simple models suh as omplete ase analysis (θ̂ = 0.928) and avail-able ase analyses (θ̂ = 0.929), both ignorable models (θ̂ = 0.892 when based onthe two main questions and θ̂ = 0.883 when using the seession question as anauxiliary variable) and a non-ignorable one (θ̂ = 0.782). Sine the value of theplebisite was θpleb = 0.885, an important benhmark obtained four weeks afterthe SPO, they onluded the MAR was preferable. Molenberghs et al (2001)supplemented these analysis with a so-alled pessimisti-optimisti interval, ob-tained from replaing the inomplete data with NO and YES, respetively, andobtained: θ ∈ [0.694, 0.904]. Further, they onsidered all nine BRD models,produing a range for θ from 0.741 to 0.892. Ultimately, these authors deviseda method to onsider overspei�ed models, in whih point estimates are replaedby interval estimates, so-alled intervals of ignorane.Let us onsider the results obtained from �tting eah of the nine BRD mod-els. Molenberghs et al (2001) presented a summary table but unfortunately therewas a small omputational error that had to be orreted, for whih reason theorreted results are reprodued here (Table 6). BRD1 produes θ̂ = 0.892,exatly the same estimate as the �rst MAR estimate obtained by Rubin et al(1995). This should not ome as a surprise, sine both BRD1 and Rubin'smodel assume MAR and use information from the two main questions. Beforeontinuing with the models' interpretation, it is neessary to assess their �t.Conduting likelihood ratio tests for BRD1 versus the ones with 7 parameters,BRD2�BRD5, and then in turn for BRD2�BRD5 versus the saturated modesBRD6�BRD9, suggests the lower numbered models do not �t well, leaving uswith BRD6�BRD9. The impression might be generated that the poor model �tof BRD1 might be seen as evidene for disarding the MAR-based value 0.892.However, studying the MAR values from eah of the models BRD1(MAR)�BRD9(MAR), as displayed in the last olumn of Table 6, it is lear that thisvalue is remarkably stable and hene a value of θ̂ = 0.892, based on the fourounterparts BRD6(MAR)�BRD9(MAR), is a sensible hoie after all. Thus,



Atas do XVI Congresso Anual da SPE 33a main ontribution resulting from onsidering the ounterparts in this par-tiular example, is the provision of a solid basis for the MAR-based estimate.Obviously, sine Models BRD6(MAR)�BRD9(MAR) are exatly the same andexhibit a perfet �t, the orresponding probabilities θ̂MAR are exatly equal too.In this partiular ase, even though BRD2(MAR)�BRD5(MAR) di�er amongeah other, the probability of being in favor of independene and attending theplebisite is onstant aross these four models. This is a mere oinidene, sineall three other ell probabilities are di�erent, but only slightly so. For example,the probability of being in favour of independene ombined with not attendingranges over 0.066�0.0685 aross these four models.We have made the following two-stage use of Models BRD6(MAR)�BRD9(MAR). At the �rst stage, in a onventional way, the fully saturatedmodel is seleted as the only adequate desription of the observed data. Atthe seond stage, these models are transformed into their MAR ounterpart,from whih inferenes are drawn. As suh, the MAR ounterpart usefully sup-plements the original models BRD6�BRD9 and provide one further, importantsenario to model the inomplete data. In priniple, the same exerise an beonduted when the additional seession variable would be used.9 Analysis of the Onyhomyosis TrialWe will �rst analyze the entire longitudinal pro�le of ontinuous outomes (unaf-feted nail length), and then swith to the binary outome (severity of infetion)and on�ne attention to the �rst and last time points.9.1 Continuous Una�eted Nail LengthConsider a general model of the form (62), with random e�ets on�ned to gi,i.e., ommon to all three omponents. For the measurement model, assume alinear mixed model (Verbeke, and Molenberghs, 2000), with general form:
Y i|gi ∼ N(Xiβ + Zigi, Σi), (78)

gi ∼ N(0, D). (79)Based on (78) and (79), the so-alled marginal model an be derived
Y i ∼ N(Xiβ, ZiDZ ′

i + Σi). (80)To ompute the model's predition for the unobserved data, given the observedmeasurements, the orresponding density needs to be derived. To this end, �rstdeompose the mean and variane in (78) as
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.(81)Now, (81) orresponds to the model as formulated, and will typially be of theMNAR type. To derive the MAR ounterpart, we need to integrate over therandom e�et. With similar logi that leads to (80), now applied to (81), weobtain:
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. (82)Hene, (82) is the MAR ounterpart to (81). For the una�eted nail length, wehoose for (78)�(79):

E(Yij |gi, Ti, tj ,β) = β0 + gi + β1Ti + β2tj + β3Titj , (83)
gi ∼ N(0, d), and Σi = σ2I7, where I7 is a 7 × 7 identity matrix. Further,
Ti = 0 if patient i reeived standard treatment and 1 for experimental therapy(i = 1, . . . , 298). Finally, tj is the time at whih the jth measurement is taken(j = 1, . . . , 7).Given these hoies, (81) and (82) simplify to
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i gi, σ

2Ii), (84)
Y m

i |yo
i ∼ N(Xiβ, dJi + σ2Ii), (85)with Ii an identity matrix and Ji a matrix of ones, with dimensions equal tothe number of missing measurements for subjet i. Espeially owing to theonditional independene assumption, the simpli�ation is dramati.Next, let us formulate a model for the missingness mehanism in (62). Thesequene ri an take one of two forms in our ase. Either, it is a length-7 vetorof ones, for a ompletely observed subjet, or it is a sequene of k ones followedby a sole zero 1 ≤ k ≤ 6, for someone dropping out. Note that k is 1 at least,sine for everyone the initial measurement has been observed. It is onvenientto assume a logisti regression of the form:logit [P (Rij = 1|Ri,j−1 = 0, gi, Ti, tj ,γ)] = γ0+γ01gi+γ1Ti+γ2tj+γ3Titj , (86)(j > 1), where γ01 is a sale fator for the shared random e�et in the missingnessmodel; foring the variane in the measurement and dropout indiator sequenesto be equal would make no sense. As a result, γ01gi ∼ N(0, γ2

01d).
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Figura 4: Toenail Data. Individual pro�les of subjets with inomplete data,for eah treatment arm, extended using MNAR Model (83) (dashed line) andusing the model's MAR ounterpart (solid line). In eah group, three subjetsare highlighted.The model spei�ed by (83) and (86) an easily be �tted using, for exam-ple, the SAS proedure NLMIXED, details about whih are provided in theAppendix.Parameter estimates and standard errors are displayed in Table 7. It isnoteworthy that the sale fator γ01 is estimated to be negative, even thoughit is not signi�ant. While we should not overly stress its importane, there issome indiation that a higher subjet-spei� pro�le of una�eted nail lengthorresponds with a lower dropout probability, whih is not surprising. Themagnitude of the sale fator allows us to `translate' the subjet-spei� e�etfrom the ontinuous outome sale, expressed in mm, to the unitless logit saleon whih the probability of missingness is desribed. Note that the random-interept variane is highly signi�ant among una�eted nail length outomes;the same is not true for the dropout model, with p = 0.2487, using a 50 : 50mixture of a χ2

0 and χ2
1 distribution (Verbeke, and Molenberghs, 2000).Figure 4 displays the inomplete pro�les, extended beyond the time of dropout,using predition based on: (1) the original model (dashed lines); (2) the MARounterpart (solid lines). Within eah of the treatment arms, three pro�les arehighlighted. The MAR ounterpart redues all preditions to the same pro�le,whereas the MNAR model predits di�erent evolutions for di�erent subjets,implied by the presene of the random e�et. The simple MAR-based predi-tion struture follows diretly from the onditional independene assumption,present in (84). When deemed less plausible, the fully general struture (81)an be implemented.9.2 Dihotomous Severity of InfetionLet us turn attention to the binary severity of infetion outome, for the pair oftime points formed by the always reorded initial measurement and the some-



36 G. Molenberghs/MAR Counterpartstimes missing �nal point in time. The data are displayed in Table 8. By way ofillustration, we will assume a single dihotomous random e�et, of the gi type.This imposes a latent-lass struture. Deompose the ell probabilities as:
πgi1i2rt = πgπi1|gπi2|i1gtπr|g, (87)with g = 0, 1 indiating the latent lass, i1, i2 = 0, 1 non-severe versus severeinfetion at the �rst and last oasions, respetively, r = 0, 1 referring to thedropouts versus ompleters groups, and t = 0, 1 denoting standard versus ex-perimental treatment arm. The probability fators on the right hand side of(87) are modeled as:

πg =
eαg

1 + eα
,
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1 + eβ0+β1g
, (88)
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1 + eγ0+γ1i1+γ2g+γ3i1g+γ4t
, (89)

πr|g =
e(δ0+δ1g)r

1 + eδ0+δ1g
.In Model `Bin1', we will set β1 = 0 in (88) for reasons of identi�ability. InModel `Bin2', γ2 = γ3 = 0 in (89). This implies the latter model is of the MARtype, and hene its MAR ounterpart will equal the original model. Fittedounts are presented in Table 8. For the dropout group, both the �t to thepair of observed ounts and the predition of the underlying unobserved two-by-two table is given. Note that the MAR ounterpart preserves the distributionof the �rst outome, within eah treatment and dropout group; the di�erenebetween original model and MAR ounterpart is on�ned to the distribution ofthe seond outome, given the �rst one. The �ts of the models is obtained byreplaing all quantities in (87) by their estimates, followed by summing over g.The MAR ounterpart is obtained as πgi1i2rt = πgπi1|gπ̃i2|i1tπr|g, where

π̃i2|i1t =
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πgπi2|i1gt.Parameter estimation by both maximum likelihood, as well as the EM algorithm(Dempster, Laird, and Rubin, 1977) is partiularly easy. For diret likelihood,the log-likelihood funtion takes the form
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Atas do XVI Congresso Anual da SPE 37where Zi1i2,r=1,t and Zi1,r=0,t are the observed-data ounts, with obvious no-tation. Maximization then proeeds by feeding (90) to a standard numerialoptimizer.The omplete-data log-likelihood, needed for the EM algorithm, takes theform:
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gi1i2rt is the (hypothetial) ount in bivariate severity ategory (i1, i2),in missingness group r, treatment arm t, and alloated to latent lass g. A plusin lieu of a subsript indiates summation over the orresponding index. Toproeed, the expeted values of the omplete-data su�ient statistis need tobe omputed. Thanks to the multinomial struture of ℓ∗, this is straightforwardand hene the E step onsists of:
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= πgπr|gZ++r+.Finally, the M step takes the form of four separate logisti regressions, in the

α, β, γ, and δ parameters, respetively, i.e., for eah of the four terms in (91).10 Conluding RemarksInomplete data are governed by a number of taxonomies and lassi�ation sys-tems, two of whih were of relevane here. A �rst one is onerned with the typeof missing data mehanism (MCAR, MAR, and MNAR), whereas a seond onelassi�es joint models for the outome and missing data proesses as belongingto the SeM, PMM, and SPM model families. Sine MCAR merely omes `downto independene between both proesses, perhaps onditional on �xed ovari-ates, it takes a trivial form regardless of the model family. Whereas MAR hasbeen de�ned in an SeM fashion, it has been haraterized in a PMM way andstudied further for the spei� ontext of longitudinal data by Molenberghs etal (1998). Charaterizing MAR in the SPM family is less straightforward and,to our knowledge, had not formally been done before. As a �rst result, we have



38 G. Molenberghs/MAR Counterpartsprovided suh a haraterization in this paper, after de�ning a very general lassof SPM that enompasses many earlier, spei� instanes. Sine the harater-ization, in its full generality, may be somewhat awkward to work with, a morerestritive but appealing sub-lass of SPM, satisfying MAR, has been proposedtoo.Molenberghs et al (2007) established that every MNAR model �tted to apartiular set of data an be replaed by a unique MAR ounterpart, i.e., amodel produing exatly the same �t to the observed data but where the pre-dition of the unobserved outomes given the observed ones is of the MAR type.While their result is general, they foused on the SeM and PMM frameworks.As a seond result, Creemers et al (2008) presented a generi format of thisounterpart for the SPM family.Apart from onsiderations on the basis of taxonomy, partiular design as-pets may be used to further fous one's model hoies. For example, in a lon-gitudinal study subjet to dropout, one will often ast missingness mehanismsin terms of previous, urrent, and future measurements, rather than simply interms of observed and unobserved measurements. There is a subtle distintion.While previous and observed measurements are synonymous in suh a ase, theunobserved measurements are further sub-divided into urrent and future mea-surements. Substantively, it is usually oneivable to assume that dropout isdriven by the urrent, perhaps unobserved measurement, but it will not alwaysbe sensible to let dropout depend on future measurements. Constraining a SeMto this e�et is partiularly straightforward, but this is less trivial for the othertwo families. While Kenward et al (2003) translated this requirement to thePMM family, this had not yet been done for the SPM. As a third result re-viewed here, Creemers et al (2008) haraterize so-alled non-future dependentmehanisms within the SPM family.While the results reviewed in this paper are predominantly of a oneptualnature, a number of them have been illustrated, for enhaned insight, using botha ontinuous and a binary outome from a two-armed linial trial in toenaildermatophyte onyhomyosis. In the ontinuous ase, a linear mixed modelwas ombined with logisti regression ontributions for dropout. In the binaryase, a dihotomous random e�et was assumed, i.e., a latent lass, reduingthe analysis to one of inompletely observed ontingeny tables. Evidently,within eah of the analyses done, a wider variety of model spei�ations anbe entertained. Moreover, the ideas developed in this paper are generi andone ould, for example, onsider generalized linear mixed models for the entirebinary pro�le, et. (Molenberghs, and Verbeke, 2005).Finally, the results of this paper open avenues for sensitivity analysis re-garding substantive onlusions with respet to missingness (Molenberghs andKenward, 2007). Thanks to the results in this and previous papers, and theensuing lassi�ation of model families versus missing data mehanisms (Fig-ure 3), one ould, for example, selet an insightful set models aross families andmehanisms, perhaps supplementing MNAR models with their MAR ounter-parts, and then assess formally or informally how key onlusions hange when
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Tabela 5: (Part II). Analysis of the Slovenian Publi Opinion Survey, restritedto the independene and attendane questions. The �t of models BRD1, BRD2,BRD7, and BRD9, and their MAR ounterparts, to the hypothetial ompletedata is shown. The ontingeny tables' rows (olumns) orrespond to `yes' vs.`no' on the independene (attendane) question. The four tables in eah roworrespond to: (i) people responding to both questions; (ii) people respondingto independene only; (iii) people responding to attendane only; (iv) peopleresponding to neither question.Fit of BRD1 and BRD1(MAR) to omplete data

1381.6 101.7
24.2 41.4

170.4 12.5
3.0 5.1

176.6 13.0
3.1 5.3

121.3 9.0
2.1 3.6Fit of BRD2 to omplete data

1402.2 108.9
15.6 22.3

147.5 11.5
13.2 18.8

179.2 13.9
2.0 2.9

105.0 8.2
9.4 13.4Fit of BRD2(MAR) to omplete data

1402.2 108.9
15.6 22.3

147.7 11.3
13.3 18.7

177.9 12.5
3.3 4.3

121.2 9.3
2.3 3.2Fit of BRD7 to omplete data

1439 78
16 16

3.2 155.8
0.0 32.0

142.4 44.8
1.6 9.2

0.4 112.5
0.0 23.1Fit of BRD9 to omplete data

1439 78
16 16

150.8 8.2
16.0 16.0

142.4 44.8
1.6 9.2

66.8 21.0
7.1 41.1Fit of BRD7(MAR) and BRD9(MAR) to omplete data

1439 78
16 18

148.1 10.9
11.8 20.2

141.5 38.4
2.5 15.6

121.3 9.0
2.1 3.6
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Tabela 6: Analysis of the Slovenian Publi Opinion Survey, restrited to the in-dependene and attendane questions. Summaries on eah of the Models BRD1�BRD9 are presented.Model Struture d.f. loglik θ̂ C.I. θ̂MARBRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906℄ 0.8920BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900℄ 0.8915BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897℄ 0.8915BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856℄ 0.8915BRD5 (αj , β) 7 -2463.10 0.844 [0.806;0.882℄ 0.8915BRD6 (αj , βj) 8 -2431.06 0.819 [0.788;0.849℄ 0.8919BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832℄ 0.8919BRD8 (αj , βk) 8 -2431.06 0.741 [0.657;0.826℄ 0.8919BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884℄ 0.8919
Tabela 7: Toenail Data. Continuous, longitudinal una�eted-nail-length out-ome. Parameter estimates (standard errors) for the model spei�ed by (83)and (86). Una�eted nail length DropoutE�et Par. Est. (s.e.) Par. Est. (s.e.)Mean struture parametersInterept β0 2.510 (0.247) γ0 -3.127 (0.282)Treatment β1 0.255 (0.347) γ1 -0.538 (0.436)Time β2 0.558 (0.023) γ2 0.035 (0.041)Treatment-by-time β3 0.048 (0.031) γ3 0.040 (0.061)Variane-ovariane struture parametersResidual variane σ2 6.937(0.248)Sale fator γ01 -0.076 (0.057)Rand. int. variane τ2 6.507 (0.630) γ2

01τ
2 0.038 (0.056)
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Tabela 8: Toenail Data. Bivariate binary severity index at �rst and last timepoints. The observed data are shown, as well as the �t of Models `Bin1' and`Bin2', together with their orresponding ounterparts. Both the �t to the ob-served data as well as to the hypothetial omplete data are shown.Standard treatment Experimental treatmentCompleters Dropouts Completers DropoutsObserved data77 542 9 103 79 342 3 116Fit of Model `Bin1'76.85 5.6640.60 7.99 9.04 0.344.62 0.90 9.385.52 81.21 2.4345.62 3.63 9.36 0.155.19 0.41 9.515.60Fit of Model `Bin1(MAR)'77.12 5.3940.61 7.98 8.77 0.614.62 0.91 9.385.52 81.32 2.3245.63 3.63 9.24 0.265.18 0.41 9.515.59Fit of Model `Bin2'≡`Bin2(MAR)'75.86 5.5841.50 8.15 9.72 0.723.74 0.73 10.444.47 80.16 2.4046.61 3.72 10.27 0.314.20 0.34 10.584.53


