
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Deciding Well-Definedness of First-Order, Object-Creating Operations

over Tree-Structured

Non Peer-reviewed author version

VANSUMMEREN, Stijn (2005) Deciding Well-Definedness of First-Order,

Object-Creating Operations over Tree-Structured.

Handle: http://hdl.handle.net/1942/964

Deciding Well-Definedness of First-Order,

Object-Creating Operations over Tree-Structured

Data

Stijn Vansummeren
Limburgs Universitair Centrum

Universitaire Campus
B-3590 Diepenbeek.

April 28, 2005

Abstract

The well-definedness problem for a database query language con-
sists of checking, given an expression and an input type, whether the
semantics of the expression is defined for all inputs adhering to the
input type. In this paper we study the well-definedness problem for a
family of first-order, object-creating query languages which are evalu-
ated in a tree-structured, list-based data model. We identify properties
of base operations which can make the problem undecidable and give
restrictions which are sufficient to ensure decidability. As a direct re-
sult, we obtain a large fragment of XQuery for which well-definedness
is decidable.

1 Introduction

The operations of a general-purpose programming language such as C or
Java are only defined on certain kinds of inputs. For example, if a is an array,
then the array indexation a[i] is only defined if i lies within the boundaries
of the array. If, during the execution of a program, an operation is supplied
with the wrong kind of input, then the output of the program is undefined.
Indeed, the program may exit with a runtime error, or worse yet, it may
compute the wrong output.

To detect such programming errors as early as possible, it is hence nat-
ural to ask whether we can solve the well-definedness problem: given an
expression and an input type, decide whether the semantics of the expres-
sion is defined for all inputs adhering to the input type. Unfortunately, this
problem is undecidable for any computationally complete programming lan-
guage, by Rice’s Theorem. Most programming languages therefore provide
a static type system to detect programming errors [30, 34]. These systems

1

ensure “type safety” in the sense that every expression which passes the type
system’s tests is guaranteed to be well-defined. Due to the undecidability of
the well-definedness problem, these systems are necessarily incomplete, i.e.,
there are expressions which are well-defined, but do not type-check. Such
expressions are problematic from a programmer’s point of view, as he must
rewrite his code in order to get it to type-check. As such, a major quest
in the theory of programming languages consists of finding static type sys-
tems for which the set of well-defined but ill-typed expressions is as small
as possible.

Although the Holy Grail in this quest (i.e., a static type system which
is both sound and complete) can never be found for general-purpose pro-
gramming languages, this does not mean it cannot be found for smaller,
specific-purpose programming languages. In this paper we therefore study
the well-definedness problem for a family of query languages QL(B) which
are evaluated in a tree-structured, list-based data model. Here, B is a set
of base operations (such as an equality test, taking the children of a cer-
tain node in a tree, creating a new node, . . .) and QL(B) is the query
language obtained from B by adding variables, constants, conditional tests,
let-bindings, and for-loops. Since base operations are free to create new
nodes, every QL(B) is hence a first-order, object-creating query language.

Concretely, we study the well-definedness problem for such QL(B) in
the presence of bounded-depth regular expression types. Regular expression
types are based on regular tree languages [6, 11, 31, 32] and are widely used in
general-purpose programming languages manipulating tree-structured data,
such as XDuce [18, 19, 20], CDuce [15], and XQuery [5, 13]. The bounded-
depth restriction is motivated by the fact that most tree-structured data
(such as for example found in XML documents [39]) in practice has nesting
depth at most five or six, and that unbounded-depth nesting is hence often
not needed.

Specifically, we identify properties of base operations which can make the
well-definedness problem undecidable and give corresponding restrictions
which are sufficient to ensure decidability. In essence, we hence identify a
broad class of QL(B) for which a sound and complete static type system
does exist.

Our study is motivated by XQuery, the XML query language currently
under development by the World Wide Web Consortium [5, 13]. Expressions
in XQuery can be undefined. As an example, consider the following variation
on one of the XQuery use cases [9]:

<bib> {
for $b in $bib/book
where $b/publisher = ’ACM’
return element{$b/author}{$b/title}

} </bib>

2

This expression should create, for each book published by ACM, a node
whose name equals the author of the book and whose child is the title of
the book. If there is a book with more than one author node however, then
the result of this expression is undefined because the XQuery specification
requires that the first argument to the element constructor is a singleton
list.

Since XQuery is in fact a full-fledged programming language, its well-
definedness problem is of course undecidable. The typical XQuery expression
does not use the whole of XQuery’s computational power however. For ex-
ample, sixty-two out of the seventy-seven XQuery uses cases [9] can be writ-
ten as a “for-let-where-return” expression without recursive function defini-
tions. It is hence natural to ask whether we can solve the well-definedness
problem for such expressions.

We will show that XQuery’s basic functions and operators [24] are in
fact base operations. As such, “for-let-where-return” XQuery fits nicely into
our family of studied query languages. The decidability of well-definedness
for a large fragment of “for-let-where-return” XQuery immediately follows
as we show that, in the absence of automatic coercions, the various axis
movements, node constructors, value and node comparisons, and node-
name and text-content inspections satisfy our restrictions. In contrast, well-
definedness for this fragment with automatic coercions is undecidable.

We note that the above decidability result cannot be obtained simply by
using the existing XQuery static type system [13] on this restricted fragment.
Indeed, consider the following expression which is trivially well-defined since
the then-branch of the if-test will never be executed.

if false then element{()}{()} else ()

In the general setting for which the XQuery type system is designed, it
is undecidable to check that an expression always evaluates to true. The
XQuery type system is therefore “conservative” in the sense that it requires
both branches of an if-test to type-check. Since the then-branch in our
example is always undefined, it cannot type-check, and hence the whole
expression is ill-typed. This example clearly illustrates that in order to solve
well-definedness one also has to solve “satisfiability”. We will see, however,
that this alone is not sufficient to solve well-definedness.

In a companion paper [37] we study the well-definedness problem for
the Nested Relational Calculus (NRC), a well-known query language for the
complex object data model [1, 8, 38]. Although both the NRC and QL(B)
are first-order languages, this does not mean that their well-definedness
problems are the same. Indeed, QL(B) operates on a tree-structured, list-
based data model, has object identity, and can create new objects, whereas
the NRC operates on a set-based data model without object identity. More-
over, regular expression types are capable of specifying both lower-bound

3

and upper-bound constraints on the input, while the complex object types
for which we study well-definedness in the NRC can only specify upper-
bound constraints. For example, it is possible to give a regular expression
type which only recognizes those inputs which contain at least three and at
most five atomic data values. Such a complex object type does not exist,
however.

As a result of these differences we will show that the presence of base
operations which are undefined on non-singleton inputs has no impact on
the decidability of the well-definedness problem for QL(B), whereas such
base operations already cause the well-definedness problem for the positive-
existential fragment of the NRC to become undecidable [37]. That such
operations are not problematic with regard to well-definedness for QL(B)
is entirely due to its list-based data model. Indeed, we will show that well-
definedness for the positive-existential NRC equipped with such a base op-
eration, interpreted in a list-based data model, is decidable.

Related work. A problem reminiscent to the well-definedness problem
is semantic type-checking : check that the output of a given expression is
always in a given output type for every input adhering to a given input type.
This problem has already been studied extensively for XML-related query
languages [2, 3, 25, 26, 29, 35]. Most of these approaches restrict themselves
to the setting where the set of possible tree labels is finite. Semantic type-
checking can then be realized by a reduction to the satisfiability problem of
monadic second-order logic over trees [36], which is known to be decidable.
In contrast, Alon et al. [2, 3] study the problem in the presence of an infinite
set of data values, which often causes the problem to become undecidable.
This is the setting which is closest to ours, as we study the well-definedness
problem in the presence of such data values. We will show however, that
there are QL(B) for which well-definedness is decidable, but semantic type-
checking is not.

We will also see that in order to solve well-definedness it is necessary (but
not sufficient) to solve the satisfiability problem (i.e., non-empty output of
a well-defined expression on at least one input). This problem has also been
studied extensively for XML-related query languages both in the setting of
a finite set of labels [10, 16, 28, 33] and an infinite set of data values [23].

Organization. This paper is further organized as follows. We introduce
our data model in Section 2. In Section 3 we introduce the notion of a
base operation and show how to extend these to a query language QL(B).
In Section 4 we state the well-definedness problem and introduce bounded-
depth regular expression types. In Sections 5, 6, and 7 we identify several
properties of base operations which may render the well-definedness prob-
lem undecidable and propose corresponding restrictions on base operations.

4

We show that these restrictions are sufficient to ensure decidability in Sec-
tion 8. In that section we also show that the well-definedness problem for
the positive-existential NRC equipped with a base operation which is unde-
fined on non-singleton inputs is decidable if we interpret this language in a
list-based data model. We conclude in Section 9.

2 Data model

Intuitively, every value in our data model is a finite list of atomic data values
and nodes. Nodes are grouped in “stores” (lists of trees). We distinguish
between nodes that define the structure of a tree (called element nodes)
and nodes that hold actual data information (called text nodes). This tree-
structured, list-based data model can be used to encode the traditional
relational data model (as we show in Section 5), a list-based version of
the complex object data model (as we show in Section 8.2), and the tree-
structured data found in XML documents. For example, Figure 1(a) depicts
a store where the first tree represents the XML fragment in Figure 1(b) and
the second tree represents the XML fragment in Figure 1(c). Here we use
circles to depict element nodes and boxes to depict text nodes. In fact, our
data model is quite close to the one employed by XQuery. Indeed, XQuery
expressions do not operate directly on XML text, but on instances of the
XQuery data model [14]. Every value in this data model is a list of items,
where every item is an atomic value or a node. There are seven node kinds,
the most prominent being the element, attribute, and text nodes. Nodes
are grouped in lists of trees. Granted, we distinguish fewer node kinds than
XQuery, but this is done solely for simplicity. If desired, we could add
additional node types without sacrificing any of our results.

We note that every item in the XQuery data model also carries a type
annotation. Examples of such annotations are integer (for atoms) and
element of type Bibliography (for element nodes). Potentially, these
type annotations can also be untypedAtomic (for atoms) or untyped (for
nodes) indicating that the item was not validated against a schema. XQuery
uses the type annotations of validated inputs during (1) static and dynamic
type-checking1 and (2) the evaluation of type-tests (such as instance-of and
typeswitch). In our context, such type annotations are irrelevant however.
Indeed, the aim of this paper is to study well-definedness, which is more
fundamental than static or dynamic type-checking. Furthermore, we do not
consider type-tests, as these are already known to quickly turn the well-
definedness problem undecidable [37]. Values in our data model therefore
correspond to unvalidated values in the XQuery data model. All references
to the semantics of XQuery should hence also be understood to mean “the

1Static type-checking is an optional feature in XQuery. All XQuery processors have to
perform dynamic type-checking however.

5

n1

beer

n2name

n3Duvel

n4

blond

n5

name

n6first

n7John

n8 last

n9 Doe

(a)

<beer>
<name>Duvel</name>
<blond/>

</beer>

(b)

<name>
<first>John</first>
<last>Doe</last>

</name>

(c)

Figure 1: A store and the XML fragments it represents.

semantics of XQuery when the input is unvalidated”.

2.1 Atoms and nodes

Formally, we assume to be given a recursively enumerable set A = {a, b, . . . }
of atoms, which contains the booleans true and false. In practice A will
also contain the other usual data values such as integers, strings, and so
on. We further assume to be given an infinite set N = {n,m, . . . } of nodes,
disjoint with A, which is partitioned into a recursively enumerable infinite
set N e of element nodes and a recursively enumerable infinite set N t of text
nodes. Elements of A ∪N are called items.

2.2 Stores

Nodes are given an interpretation inside a store, which is essentially a list
of ordered node-labeled trees.2 Formally, a store Σ is a tuple (V,E, λ,<,≺)
where

• V is a finite set of nodes;

• E is the edge relation: a binary relation on V such that (V,E) is an
acyclic directed graph where every node has in-degree at most one and
text nodes have out-degree zero (hence (V,E) is composed of trees);

2The notion of a store was first developed for the XQuery data model [17, 22].

6

• λ : V → A is the labeling function which associates each node in V
with its label ;3

• < is the sibling order : a strict partial order on V that compares exactly
the different children of a common node:

(n<n′) ∨ (n′<n) ⇔ ∃m ∈ V : E(m,n) ∧ E(m,n′);

and

• ≺ is the root order : a strict total order on the roots (i.e., the nodes
with in-degree zero).

As an example, Figure 1(a) depicts the store (V,E, λ,<,≺) where

V = {n1, n2, n3, n4, n5, n6, n7, n8, n9}
E = {(n1, n2), (n1, n4), (n2, n3), (n5, n6), (n5, n8), (n6, n7), (n8, n9)}
< = {(n2, n4), (n6, n8)}
≺ = {(n1, n5)},

and where λ is defined by

λ(n1) := beer λ(n2) := name λ(n3) := Duvel
λ(n4) := blond λ(n5) := name λ(n6) := first
λ(n7) := John λ(n8) := last λ(n9) := Doe.

Document order Using the sibling and root order, we define the doc-
ument order � on Σ which intuitively equals the left-to-right, pre-order
traversal of a list of trees. As an example, for the store in Figure 1(a) we
have ni�nj if, and only if, i is smaller than j.

Formally, the document order � is the strict total order on V such
that (1) if E(n, n′) then n�n′, and (2) if m<n or m≺n, E∗(m,m′), and
E∗(n, n′), then m′�n′. Here we write E∗ for the reflexive transitive closure
of E.

Terminology We will use the standard terminology for trees on stores.
That is, if E(m,n) then m is the parent of n and n is a child of m. A node
n ∈ V is a root node of Σ if it has in-degree zero. We write roots(Σ) for the
set of all root nodes in Σ. If Σ has at most one root node, then we say that
Σ is a tree. Note that the empty store is hence also a tree. For convenience
we will denote the empty store by ∅.

3The label of a text node is called the node’s content in XQuery terminology.

7

Concatenation Two stores Σ and Σ′ are disjoint when VΣ ∩ VΣ′ = ∅. If
Σ and Σ′ are disjoint stores then the concatenation of Σ and Σ′, denoted by
Σ ◦Σ′, is the store with node set VΣ∪VΣ′ , edges EΣ∪EΣ′ , labeling function
λΣ ∪ λΣ′ , sibling order <Σ ∪<Σ′ , and root order

≺Σ ∪≺Σ′ ∪ roots(Σ)× roots(Σ′).

Clearly, all stores can be written as a concatenation of trees.

Sub-trees Finally, if n is a node in Σ, then the sub-tree of Σ rooted at
n, denoted by Σ|n, is the store with nodes V ′ = {m | E∗(n,m)}, edges
E ∩ (V ′ × V ′), labeling function λ|V ′ , sibling order <∩(V ′ × V ′), and the
empty root order.

2.3 Values

A value-tuple of arity p is a tuple (Σ; s1, . . . , sp) where Σ is a store and every
sj is a finite list of atoms and nodes in Σ. A value is a value-tuple of arity
one. We write Vp for the set of all value-tuples with arity p and abbreviate
V1 by V.

We denote the empty list by 〈〉, non-empty lists by for example 〈a, b, c〉,
and the concatenation of two lists s1 and s2 by s1 ◦ s2. In addition, we will
write s(j) for the j-th item of a list s, |s| for the width of s, and rng(s) for
the set of items occurring in s.

2.4 Renamings

A renaming ρ is a permutation of A∪N that is the identity on the booleans
and maps atoms to atoms, element nodes to element nodes, and text nodes
to text nodes. A node-renaming is a renaming that is the identity on atoms.
Renamings are extended to sets, tuples, and lists in the canonical way:

ρ(S) = {ρ(v) | v ∈ S}
ρ((v1, . . . , vp)) = (ρ(v1), . . . , ρ(vp))
ρ(〈v1, . . . , vp〉) = 〈ρ(v1), . . . , ρ(vp)〉

Note that in particular ρ is thus also extended to stores and value-tuples.
Two value-tuples v and v′ are isomorphic, denoted by v ≡ v′, when there

exists a renaming ρ such that ρ(v) = v′. Two value-tuples v an v′ are node-
isomorphic, denoted by v ≡node v

′, when there exists a node-renaming such
that ρ(v) = v′.

2.5 Conventions

We will use the following conventions throughout this paper. We will abbre-
viate tuples such as t1, . . . , tp by ~t, write [k, l] for the subset {i | k ≤ i ≤ l}

8

of the natural numbers, and write |S| for the cardinality of a set S. Fur-
thermore, if g is a function from set S to set T , then we write dom(g) for
S and rng(g) for {g(i) | i ∈ S}. If S′ is a subset of S then we write g|S′

for the function from S′ to T which equals g on S. Finally, if g is injective
and j ∈ rng(g), then we write g−1(j) for the unique element i ∈ S for which
g(i) = j.

3 Syntax and semantics

3.1 Base operations

A base operation of arity p is a relation R ⊆ Vp × V which is

1. Computable: it is effectively decidable, given a value-tuple v, whether
there exists a w such that R(v, w), and if so, such a w is effectively
computable from v.

2. Store-increasing : R only relates value-tuples (Σ;~s) to values of the
form (Σ ◦Σ′; s′) with Σ′ possibly empty. Hence, R can add trees to a
store, but cannot modify existing trees.

3. Node-generic: for every node-renaming ρ we have R(v, w) if, and only
if, R(ρ(v), ρ(w)). As such, R can only interpret nodes by the informa-
tion given in the input store. Furthermore, nodes that are added to
the input store are chosen non-deterministically.

4. a Semi-function: R is a function up to node-isomorphism, i.e., if
R(v, w) and R(v, z), then w ≡node z.

5. Reachable-only : R only uses information of those trees in the input
store whose nodes are mentioned in one of the input lists. That is,
for all list-tuples ~s, all (possibly empty) trees Θ1, . . . ,Θk,Θ′1, . . . ,Θ

′
k

such that Θj = Θ′j if a node of Θj is mentioned in ~s, and all stores Σ
disjoint with Θ1, . . . ,Θk,Θ′1, . . . ,Θ

′
k, we have

R((Θ1 ◦ · · · ◦Θk;~s), (Θ1 ◦ · · · ◦Θk ◦Σ; s′))
⇔

R((Θ′1 ◦ · · · ◦Θ′k;~s), (Θ
′
1 ◦ · · · ◦Θ′k ◦Σ; s′)).

We write R(v) for the set of all values w for which R(v, w) holds. The first
four properties above capture the notion of a “determinate” transformation
from the theory of object-creating queries [1]. As such, R(v) is finitely
representable and this representation can effectively be computed from v.

Many of the basic functions and operators found in programming and
query languages are in fact base operations. Since our study was motivated
by XQuery, we clarify this claim by some of XQuery’s basic functions and
operators.

9

• XQuery’s concatenation operator is the binary base operation that
relates (Σ; s, s′) to (Σ; s ◦ s′). Although this operator is denoted by a
comma in XQuery, we will denote it by concat .

• XQuery’s children axis is a unary base operation that relates (Σ; s),
with s a list of nodes, to (Σ; s′) where s′ is the unique list containing
the children of nodes in s in document order. Formally this means
that

rng(s′) = {n | ∃m ∈ rng(s) : E(m,n)},

and that if i < j, then s′(i)� s′(j). Note that there are no repeated
nodes in s′, since � is a strict order. XQuery’s other axes (i.e., parent ,
descendant , following-sibling , . . .) can similarly be viewed as unary
base operations.

• XQuery’s atomization function data can be modeled as a unary base
operation that relates (Σ; s) to (Σ; s′) where s′ has the same width as
s, and s′(j) is the coercion of s(j) to an atom. That is, s′(j) = s(j)
when s(j) is an atom, s′(j) = λ(s(j)) if s(j) is a text node, and
s′(j) = fold(r) if s(j) is an element node. Here, r is the unique list
containing all text node descendants of s(j) in document order and
fold is an abstract function mapping lists of text nodes to atoms. In
XQuery, fold returns the string concatenation of the text nodes’ labels.
Figure 2 illustrates the behavior of data under this interpretation of
fold .

• The atomic value comparison eq is a binary base operation that relates
(Σ; s, s′) to (Σ; 〈〉) if s or s′ is the empty list, and relates (Σ; 〈a〉, 〈b〉)
to (Σ; 〈a = b〉). We will use a C-style notation for comparisons: a = b
evaluates to true when a equals b, and evaluates to false otherwise.
We note that in XQuery, eq will actually first atomize its arguments
using the data function described earlier, and then compare the ob-
tained lists according to our semantics. We show how this behavior
can be simulated in our query language QL(B) in Example 2.

• XQuery’s node comparisons is and � are binary base operations
that relate (Σ; s, s′) to (Σ; 〈〉) if s or s′ is the empty list, and relate
(Σ; 〈n〉, 〈m〉) to (Σ; 〈n = m〉) respectively (Σ; 〈n�m〉).

• XQuery’s kind tests is-element and is-text are unary base operations
that relate (Σ; 〈n〉) to (Σ; 〈n ∈ N e〉) respectively (Σ; 〈n ∈ N t〉).4 We
will also consider a kind test is-atom which relates (Σ; 〈i〉) with i an
item to (Σ; 〈i ∈ A〉).

4Kind tests are part of XPath expressions in XQuery, and are written as for example
$x/self::element() or $x/self::text().

10

• XQuery’s node-name function is a unary base operation that relates
(Σ; 〈〉) to (Σ; 〈〉), relates (Σ; 〈n〉) to (Σ; 〈λ(n)〉) when n ∈ N e, and
relates (Σ; 〈n〉) to (Σ; 〈〉) when n ∈ N t. We will also consider a base
operation content which behaves like node-name, but then on text
nodes.

• The element node constructor element is the most involved operation
in XQuery. In order to simplify our proofs later on, we here present
a simplified version of this constructor as a base operation. By com-
position with other base operations we are capable of simulating the
XQuery version in our query language QL(B), as we show in Exam-
ple 3.

The element node constructor element is a binary base operation that
relates (Σ; 〈a〉, 〈n1, . . . , nk〉) to (Σ ◦Θ, 〈m〉) where Θ is a tree, disjoint
with Σ whose root element node m is labeled by a such that

– m has exactly k children, and

– if mj is the j-th child of m (in sibling order), then Σ|nj ≡node

Θ|mj .

Note that there can be duplicates in n1, . . . , nk. Figure 2 illustrates
the behavior of element .

• XQuery’s text node constructor text is a unary base operation that
relates (Σ; 〈a〉) to (Σ ◦Θ, 〈m〉) where Θ is a tree, disjoint with Σ, whose
root text node m is labeled by a.

• After constructing a new element node, XQuery merges adjacent text
node children into a single text node whose label is the concatena-
tion of the labels of the original text nodes. This behavior can be
modeled as a unary base operation merge-text that relates (Σ; 〈n〉)
to (Σ ◦Θ; 〈m〉) where Θ is a tree with root node m, disjoint with Σ,
which is isomorphic to Σ|n after we merge all adjacent text nodes in
Σ|n into a single text node by means of the abstract fold function in-
troduced above for the atomization function data. Figure 2 illustrates
the behavior of merge-text .

• A final example of a unary base operation is XQuery’s emptiness test
function empty that relates (Σ; s) to (Σ; 〈true〉) when s = 〈〉, and
relates (Σ; s) to (Σ; 〈false〉) otherwise.

3.2 Expressions

We create a query language QL(B) out of a finite set of base operations B by
adding variables, constants, and basic control-flow as follows. For each base

11

〈Dagstuhl, n3, n5〉

n1

beer

n2

name

n3

Duvel

n4

blond

n5

name

n6

first

n7

John

n8

last

n9

Doe

(a) Value u

〈Dagstuhl,Duvel, John Doe〉

n1

beer

n2

name

n3

Duvel

n4

blond

n5

name

n6

first

n7

John

n8

last

n9

Doe

(b) Value in data(u)

〈bought〉

〈n2, n4, n4〉

n1

likes

n2

name

n3

J.D.

n4

beer

n5

Duvel

(c) Value-tuple v

〈m1〉

n1

likes

n2

name

n3

J.D.

n4

beer

n5

Duvel

m1

bought

m2

name

m3

J.D.

m4

m5

Duvel

m6

beer

m7

Duvel

b
ee

r

(d) Value in element(v)

〈n1〉

n1

person

n2

John

n3

Doe

n4

email

n5

jd@cs.com

(e) Value w

〈m1〉

n1

person

n2

John

n3

Doe

n4

email

n5

jd@cs.com

m1

person

m2

John Doe

m3

email

m4

jd@cs.com

(f) Value in merge-text(w)

Figure 2: Illustration of the base operations data, element , and merge-text .

12

operation R we assume to be given a base expression f : a unique syntactical
entity which denotes R. For ease of notation we will often not distinguish
between a base operation and its associated base expression. As such we
will write for example v ∈ f(w) to denote v ∈ R(w).

The syntax of QL(B) is defined by the following grammar:5

e ::= x | a | () | f(e1, . . . , ep)
| if e1 then e2 else e3
| let x := e1 return e2
| for x in e1 return e2

Here, e ranges over expressions, x ranges over variables, a ranges over atoms,
f ranges over base expressions in B, and p is the arity of f . We view
expressions as abstract syntax trees and omit parentheses. The set FV (e)
of free variables of an expression e is defined as usual. That is, the free
variables of x is {x}, the free variables of a and () is the empty set, the
free variables of f(e1, . . . , ep) and if e1 then e2 else e3 is the union of
the free variables of their immediate subexpressions, and the free variables
of let x := e1 return e2 and for x in e1 return e2 is

FV (e1) ∪ (FV (e2) \ {x}).

3.3 Semantics

The input to an expression e is described by a context (Σ;σ) on e, consisting
of a store Σ and a function σ from a finite superset {x, . . . , y} of the free
variables of e to lists of items such that (Σ;σ(x), . . . , σ(y)) is a value-tuple.
A function from a finite set of variables to lists of items is called an environ-
ment. We write x : s, σ for the environment σ′ with domain dom(σ) ∪ {x}
such that σ′(x) = s and σ′(y) = σ(y) for y 6= x.

The semantics of an expression e is described by means of the evaluation
relation, as defined in Figure 3. Here, we write (Σ;σ) |= e ⇒ (Σ′; s) to
denote the fact that e evaluates to value (Σ′; s) on context (Σ;σ) on e.
We note that the disjointness requirements in the rules for base operation
invocation and for loop ensure that different invocations of a subexpression
add different nodes to the input store. We will write e(Σ;σ) for the set of
all values to which e can evaluate on context (Σ;σ). It is easy to see that
the semantics of an expression only depends on its free variables: if two
environments σ and σ′ are equal on FV (e), then (Σ;σ) |= e ⇒ (Σ′; s) if,
and only if, (Σ;σ′) |= e⇒ (Σ′; s).

5One may wonder why we consider let-expressions of the form let x := e1 return e2.
As will become clear from the semantics as defined in Section 3.3, such expressions are
not redundant. This is due to the fact that base operations can create new nodes. Hence,
let x := e1 return e2 is not necessarily equivalent to the expression we obtain by re-
placing every free occurrence of x in e2 by e1.

13

σ(x) = s

(Σ;σ) |= x⇒ (Σ; s) (Σ;σ) |= a⇒ (Σ; 〈a〉) (Σ;σ) |= () ⇒ (Σ; 〈〉)

(Σ;σ) |= e1 ⇒ (Σ1; 〈true〉)
(Σ;σ) |= e2 ⇒ (Σ2; s2)

(Σ;σ) |= if e1 then e2 else e3 ⇒ (Σ2; s2)

(Σ;σ) |= e1 ⇒ (Σ1; 〈false〉)
(Σ;σ) |= e3 ⇒ (Σ3; s3)

(Σ;σ) |= if e1 then e2 else e3 ⇒ (Σ3; s3)

(Σ;σ) |= e1 ⇒ (Σ1; s1)
(Σ1;x : s1, σ) |= e2 ⇒ (Σ2; s2)

(Σ;σ) |= let x := e1 return e2 ⇒ (Σ2; s2)

(Σ;σ) |= ej ⇒ (Σ ◦Σj ; sj) j ∈ [1, p]
Σj is disjoint with Σj′ when j 6= j′

(Σ′; s′) ∈ f(Σ ◦Σ1 ◦ · · · ◦Σp; s1, . . . , sp)
(Σ, σ) |= f(e1, . . . , ep) ⇒ (Σ′, s′)

(Σ;σ) |= e1 ⇒ (Σ0; s) (Σ0;x : 〈s(j)〉, σ) |= e2 ⇒ (Σ0 ◦Σj ; sj) j ∈ [1, |s|]
Σj is disjoint with Σj′ when j 6= j′

(Σ;σ) |= for x in e1 return e2 ⇒ (Σ0 ◦ · · · ◦Σ|s|; s1 ◦ · · · ◦ s|s|)

Figure 3: The evaluation relation.

14

Example 1. XPath expressions like $bib/child::book can be simulated
in QL(children, is-element ,node-name, eq) as follows:

for b in children(bib) return
if is-element(b) then

if eq(node-name(b), ’book’) then b else ()
else ()

Example 2. In Section 3.1 we noted that XQuery’s value comparison first
atomizes its arguments and then compares them using the semantics of our
base operation eq . Since QL(B) allows composition of base operations, we
can simulate this behavior. For example, $x eq ’ACM’ can be simulated by
eq(data(x), ’ACM’). Note that there is actually no need to apply data to
the constant ’ACM’, as this returns ’ACM’ itself.

Example 3. In Section 3.1 we also noted that XQuery’s element construc-
tor is more complex than our base operation element . Indeed, the XQuery
expression element{$x}{$y} will create a new tree whose root node is la-
beled by x (after atomization) and whose children are copies of the items in
y where new text nodes are created for the atoms, and where adjacent text
nodes are merged. Using the base operations element , text , is-atom, data,
and merge-text we can simulate this behavior as follows:

let z:= for u in y return
if is-atom(u) then text(u) else u

return merge-text(element(data(x), z))

Example 4. XQuery’s quantified expressions can be simulated using the
emptiness test. For example,

some $x in data($pubs) satisfies $x eq ’ACM’

can be expressed in QL(eq , data, empty) as follows:

let z :=
for x in data(pubs) return
if eq(x, ’ACM’) then x else ()

return
if empty(z) then false else true

It immediately follows that XQuery’s generalized comparisons (such as for
example $pubs = "ACM") can also be simulated using the emptiness test, as
such comparisons are just syntactic sugar for quantified expressions like the
one shown above.

Example 5. We can simulate the XQuery expression

15

for $b in $bib/book
where $b/publisher eq ’ACM’
return element{$b/author}{$b/title}

in QL(children, data, eq , is-element , node-name, element , merge-text) as
follows. For the sake of brevity we will not expand XPath expressions such
as $bib/book, as we have already shown how to simulate these in Example 1.

for b in bib/book return
if eq(data(b/publisher), ’ACM’) then

merge-text(element(data(b/author), b/title))
else ()

Here we omit the creation of new text nodes for atoms returned by b/title,
as XPath expressions always return nodes, never atoms.

When we fix some order on the set of all variables, a context (Σ;σ) with
dom(σ) = {x, . . . , y} is fully determined by the value-tuple

(Σ;σ(x), . . . , σ(y)).

Since the semantics of an expression only depends on its free variables, every
expression e hence defines a relation on Vp × V, where p is the number of
free variables in e.

In the remainder of this section we will prove the following proposition.

Proposition 6. Every expression e in QL(B) defines a base operation.

The store-increasing and node-generic properties follow by an easy in-
duction on e. For the reachable-only property we first state the following
lemma.

Lemma 7. If R is a reachable-only relation relating value-tuples to values
and

(Θ1 ◦ · · · ◦Θk ◦Σ′; s′) ∈ R(Θ1 ◦ · · · ◦Θk;~s),

then s′ only contains a node in Θj if ~s contains a node in Θj, for every
j ∈ [1, k].

Proof. Let j ∈ [1, k], let Π1 = Θ1 ◦ · · · ◦Θj−1, and let Π2 = Θj+1 ◦ · · · ◦Θk.
Suppose, for the purpose of contradiction, that s′ contains a node n in Θj ,
but ~s does not. Since Θ1, . . . ,Θk, and Σ′ all have pairwise disjoint sets
of nodes, n cannot be a node of Π1 ◦Π2 ◦Σ′. Hence, (Π1 ◦Π2 ◦Σ′; s′) is
not a value. Since (Π1 ◦Θj ◦Π2 ◦Σ′; s′) ∈ R(Π1 ◦Θj ◦Π2;~s) and since R is
reachable-only, we also should have

(Π1 ◦Π2 ◦Σ′; s′) ∈ R(Π1 ◦Π2;~s).

This is a contradiction, since R relates value-tuples to values.

16

Proposition 8. Every expression in QL(B) defines a reachable-only rela-
tion.

Proof. Let e be an expression in QL(B) and let σ be an environment on e.
Let Θ1, . . . ,Θk and Θ′1, . . . ,Θ

′
k be trees such that Θ1, . . . ,Θk are all pairwise

disjoint, Θ′1, . . . ,Θ
′
k are all pairwise disjoint, and Θj = Θ′j if a node of Θj

is mentioned in σ. Let Π = Θ1 ◦ · · · ◦Θk, Π′ = Θ′1 ◦ · · · ◦Θ′k, and let Σ be a
store disjoint with Θ1, . . . ,Θk,Θ′1, . . . ,Θ

′
k. We prove by induction on e that

(Π ◦Σ; s) ∈ e(Π;σ) if, and only if, (Π′ ◦Σ; s) ∈ e(Π′;σ). In every step we
only show the “only if” direction, the “if” direction is similar.

• The cases where e = x, e = a, or e = () are trivial.

• If e = if e1 then e2 else e3, then (Π ◦Σ; s) ∈ e(Π;σ) only if there
exists (Π ◦Σ′; 〈b〉) ∈ e1(Π;σ) with b = true or b = false such that
(Π ◦Σ; s) ∈ e2(Π ◦Σ; s) if b = true and (Π ◦Σ; s) ∈ e3(Π ◦Σ; s) if
b = false. The result then readily follows by the induction hypothesis:

(Π ◦Σ; s) ∈ e(Π;σ)
⇒ (Π ◦Σ′; 〈b〉) ∈ e1(Π;σ) and (Π ◦Σ; s) ∈ e2(Π;σ) ∪ e3(Π;σ)
⇒ (Π′ ◦Σ′; 〈b〉) ∈ e1(Π′;σ) and (Π′ ◦Σ; s) ∈ e2(Π′;σ) ∪ e3(Π′;σ)
⇒ (Π′ ◦Σ; s) ∈ e(Π′;σ)

• If e = let x := e1 return e2, then (Π ◦Σ; s) ∈ e(Π;σ) only if, there
exists (Π ◦Σ1; s1) ∈ e1(Π;σ) such that (Π ◦Σ; s) ∈ e2(Π ◦Σ1;x : s1, σ).
Since e1 defines a reachable-only relation by the induction hypothe-
sis, it follows from Lemma 7 that s1 contains a node in Θj only if σ
contains a node in Θj , for every j ∈ [1, k]. Hence, Θ′j = Θj when the
environment (x : s1, σ) contains a node in Θj . The result then readily
follows by the induction hypothesis:

(Π ◦Σ; s) ∈ e(Π;σ)
⇒ (Π ◦Σ1; s1) ∈ e1(Π;σ) and (Π ◦Σ; s) ∈ e2(Π ◦Σ1;x : s1, σ)
⇒ (Π′ ◦Σ1; s1) ∈ e1(Π′;σ) and (Π′ ◦Σ; s) ∈ e2(Π′ ◦Σ1;x : s1, σ)
⇒ (Π′ ◦Σ; s) ∈ e(Π′;σ)

• If e = f(e1, . . . , ep), then (Π ◦Σ; s) ∈ e(Π;σ) only if for every i ∈ [1, p]
there exists (Π ◦Σi; si) ∈ ei(Π;σ) such that the Σi are all pairwise
disjoint and

(Π ◦Σ; s) ∈ f(Π ◦Σ1 ◦ · · · ◦Σp; s1, . . . , sp).

By Lemma 7 it follows that si contains a node in Θj only if σ contains
a node in Θj , for every i ∈ [1, p] and every j ∈ [1, k]. Hence, Θj = Θ′j

17

when the list-tuple s1, . . . , sp contains a node in Θj . Let us abbreviate
Σ1 ◦ · · · ◦Σp by Σ′ and let us write ~s for s1, . . . , sp. The result then
readily follows by the induction hypothesis and the fact that f itself
is reachable-only:

(Π ◦Σ; s) ∈ e(Π;σ)
⇒ (Π ◦Σi; si) ∈ ei(Π;σ) for every i ∈ [1, p]

and (Π ◦Σ; s) ∈ f(Π ◦Σ′;~s)
⇒ (Π′ ◦Σi; si) ∈ ei(Π′;σ) for every i ∈ [1, p]

and (Π′ ◦Σ; s) ∈ f(Π′ ◦Σ′;~s)
⇒ (Π′ ◦Σ; s) ∈ e(Π′;σ)

• If e = for x in e1 return e2, then (Π ◦Σ; s) ∈ e(Π;σ) only if there
exists a value (Π ◦Σ0; s0) ∈ e1(Π;σ) such that for every i ∈ [1, |s0|]
there exists (Π ◦Σ0 ◦Σi; si) ∈ e2(Π ◦Σ0;x : 〈s0(i)〉, σ), with the Σi’s
pairwise disjoint, Σ = Σ0 ◦ · · · ◦Σ|s0|, and s = s1 ◦ · · · ◦ s|s0|. Since e1
defines a reachable-only relation by the induction hypothesis, it follows
from Lemma 7 that s0 contains a node in Θj only if σ contains a node
in Θj , for every j ∈ [1, k]. Hence, Θj = Θ′j when the environment
(x : 〈s0(i)〉, σ) contains a node in Θj , for every j ∈ [1, k] and every i ∈
[1, |s0|]. The result then readily follows by the induction hypothesis:

(Π ◦Σ; s) ∈ e(Π;σ)
⇒ (Π ◦Σ0; s0) ∈ e1(Π;σ)

and ∀i ∈ [1, |s0|] : (Π ◦Σ0 ◦Σi; si) ∈ e1(Π;x : 〈s0(i)〉, σ)
⇒ (Π′ ◦Σ0; s0) ∈ e1(Π′;σ)

and ∀i ∈ [1, |s0|] : (Π′ ◦Σ0 ◦Σi; si) ∈ e1(Π′;x : 〈s0(i)〉, σ)
⇒ (Π′ ◦Σ; s) ∈ e(Π′;σ)

In order to prove that every expression e defines a semi-function, we first
state the following lemmas.

Lemma 9. Let ρ1, . . . , ρk be node-renamings and let N1, . . . , Nk be pairwise
disjoint finite sets of nodes such that ρj(Nj) ∩ ρj′(Nj′) = ∅ when j 6= j′.
There exists a node-renaming ρ such that ρ|Nj = ρj |Nj for all j ∈ [1, k].

Proof. Let X = N1 ∪ · · · ∪ Nk and let Y = ρ1(N1) ∪ · · · ∪ ρk(Nk). Let
γ be the function on X which equals ρj on Nj for every j ∈ [1, k]. Note
that, since the Nj are pairwise disjoint, γ is indeed a function. Further note
that γ is injective since every ρj is injective and since ρj(Nj) ∩ ρj′(Nj′) = ∅
when j 6= j′. Hence, γ is a bijection from X to Y . Hence, |X| = |Y |,

18

and consequently, |Y − X| = |X − Y |. We can therefore extend γ to a
permutation γ′ of X ∪ Y by picking for each n ∈ Y −X a unique element
γ′(n) in X − Y . Let π be a permutation of N − (X ∪ Y). Then π ∪ γ′ is
a permutation of N which equals ρj on Nj for every j ∈ [1, k]. Hence, the
node-renaming ρ which equals π ∪ γ′ on N also has this property.

Lemma 10. Let Σ1 ◦Σ2 and Σ3 ◦Σ4 be two stores such that Σ1 is node-
isomorphic to Σ3 and let ρ be a node-renaming such that ρ(Σ1 ◦Σ2) =
(Σ3 ◦Σ4). Then ρ(Σ1) = Σ3 and ρ(Σ2) = Σ4.

Proof. It is easy to see that node-renamings commute with concatenation.
Hence, ρ(Σ1) ◦ ρ(Σ2) = ρ(Σ1 ◦Σ2) = Σ3 ◦Σ4, which implies that the first j
trees of ρ(Σ1) ◦ ρ(Σ2) equal the first j trees of Σ3 ◦Σ4. Since Σ1 is node-
isomorphic to Σ3 it follows that they consists of exactly the same number
of trees. Hence, ρ(Σ1) = Σ3 and thus ρ(Σ2) = Σ4.

Lemma 11. Let (Σ ◦Σ1; ~s1), . . . , (Σ ◦Σk; ~sk), (Σ′ ◦Σ′1; ~s
′
1), . . . , (Σ

′ ◦Σ′k;
~s′k)

be value-tuples such that Σ, Σ1, . . . , Σk are all pairwise disjoint, Σ′, Σ′1,
. . . , Σ′k are all pairwise disjoint, Σ is node-isomorphic to Σ′, and such that
(Σ ◦Σj ; ~sj) is node-isomorphic to (Σ′ ◦Σ′j ; ~s

′
j), for every j ∈ [1, k]. Then

(Σ ◦©k
j=1 Σj ; ~s1, . . . , ~sk) ≡node (Σ′ ◦©k

j=1 Σ′j ; ~s′1, . . . , ~s
′
k).

Proof. Since (Σ ◦Σj ; ~sj) and (Σ′ ◦Σ′j ; ~s
′
j) are node-isomorphic value-tuples

for every j ∈ [1, k], there exist node-renamings ρj such that

ρj(Σ ◦Σj ; ~sj) = (Σ′ ◦Σ′j ; ~s′j).

Since Σ is node-isomorphic to Σ′, it follows from Lemma 10 that ρj(Σ) = Σ′

and that ρj(Σj) = Σ′j . Let N be the set of nodes in Σ. Then in particular
we have that ρj |N = ρj′ |N for every j and j′ in [1, k] (as the nodes in a store
are ordered). Let π = ρ1|N . Since Σ,Σ1, . . . ,Σk are all pairwise disjoint and
since Σ′,Σ′1, . . . ,Σ

′
k are also all pairwise-disjoint it follows from Lemma 9

that there exists a node-renaming ρ such that ρ equals π on nodes in Σ and
equals ρj on nodes in Σj , for every j ∈ [1, k]. Hence,

ρ(Σ ◦©k
j=1 Σj ; ~s1, . . . , ~sk) = (ρ(Σ) ◦©k

i=1 ρj(Σj); ρ(~s1), . . . , ρ(~sk))

= (Σ′ ◦©k
j=1 Σ′j ; ~s′1, . . . , ~s

′
k),

as desired.

Corollary 12. If R ⊆ Vp×V is a store-increasing semi-function and (Σ1; s1)
and (Σ2; s2) are two values in R(Σ;~s), then (Σ1; s1, ~s) is node-isomorphic to
(Σ2; s2, ~s).

19

Proof. Since R is store-increasing, there exist stores Σ′1 and Σ′2 such that
Σ1 = Σ ◦Σ′1 and Σ2 = Σ ◦Σ′2. Since R is a semi-function, (Σ ◦Σ′1; s1)
and (Σ ◦Σ′2; s2) are node-isomorphic. Furthermore, Σ is certainly node-
isomorphic to itself. We then apply Lemma 11 on (Σ;~s), (Σ ◦Σ′1; s1) and
(Σ;~s), (Σ ◦Σ′2; s2), from which the result follows.

In a similar way we obtain:

Corollary 13. If R ⊆ Vp×V is a store-increasing semi-function and (Σ1; s1)
and (Σ2; s2) are two values in R(Σ;~s), then |s1| = |s2| and (Σ1; 〈s1(j)〉, ~s)
is node-isomorphic to (Σ2; 〈s2(j)〉, ~s), for every j ∈ [1, |s1|].

Proposition 14. The relation defined by an expression in QL(B) is a semi-
function.

Proof. The proof goes by induction on e.

• The cases where e = x, e = a, or e = () are trivial.

• If e = if e1 then e2 else e3, then it follows from the induction
hypothesis that e1, e2 and e3 are all semi-functions. Therefore, if
(Σ1; 〈true〉) ∈ e1(Σ;σ), then all values in e1(Σ;σ) are of the form
(Σ′1; 〈true〉), and if (Σ1; 〈false〉) ∈ e1(Σ;σ), then all values in e1(Σ;σ)
are of the form (Σ′1; 〈false〉). Consequently, if e1(Σ;σ) is defined, then
either e(Σ;σ) = e2(Σ;σ) or e(Σ;σ) = e3(Σ;σ). Since e2 and e3 are
semi-functions it follows that e is also a semi-function.

• If e = let x := e1 return e2, then it follows from the induction
hypothesis that e1 and e2 are semi-functions. Suppose that v and w
are two values in e(Σ;σ). Then there exists (Σ1; s1) ∈ e1(Σ;σ) such
that v ∈ e2(Σ1;x : s1, σ) and there exists (Σ′1; s

′
1) ∈ e1(Σ;σ) such that

w ∈ e2(Σ′1;x : s′1, σ). Since e1 is a store-increasing semi-function it
follows from Corollary 12 that there exists a node-renaming ρ such
that ρ(Σ1;x : s1, σ) = (Σ′1;x : s′1, σ). Since e1 is node-generic, we have

ρ(v) ∈ e2(ρ(Σ1;x : s1, σ)) = e2(Σ′1;x : s′1, σ).

Since we also have w ∈ e2(Σ′1;x : s′1, σ) and since e2 is a semi-function
there exists a node-renaming π such that π(ρ(v)) = w, from which the
result follows.

• If e = f(e1, . . . , ep), then it follows from the induction hypothesis that
e1, . . . , ep are all semi-functions. Suppose that v and w are two values
in e(Σ;σ). Then there exist (Σ ◦Σj ; sj) and (Σ ◦Σ′j ; s

′
j) in ej(Σ;σ) for

every j ∈ [1, p] such that the Σj are all pairwise disjoint, the Σ′j are
all pairwise disjoint, and

v ∈ f(Σ ◦©p
j=1 Σj ; s1, . . . , sp)

w ∈ f(Σ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p).

20

Since every ej is a semi-function we know that (Σ ◦Σj ; sj) is node-
isomorphic to (Σ ◦Σ′j ; sj), for every j ∈ [1, p]. By Lemma 11 it follows
that there exists a node-renaming ρ such that

ρ(Σ ◦©k
j=1 Σj ; s1, . . . , sk) = (Σ ◦©k

j=1 Σ′j ; s
′
1, . . . , s

′
k).

Since f is node-generic we hence have

ρ(v) ∈ f(ρ(Σ ◦©k
j=1 Σj ; s1, . . . , sk)) = f(Σ ◦©k

j=1 Σ′j ; s
′
1, . . . , s

′
k).

Since we also have w ∈ f(Σ ◦©k
j=1 Σ′j ; s

′
1, . . . , s

′
k) and since f is a

semi-function, there exists a node-renaming π such that π(ρ(v)) = w,
from which the result follows.

• If e = for x in e1 return e2, then it follows from the induction
hypothesis that e1 and e2 are semi-functions. Suppose that v and w
are two values in e(Σ;σ). Then there exists (Σ0; s) ∈ e1(Σ;σ) and
values (Σ0 ◦Σj ; sj) ∈ e2(Σ0;x : 〈s(j)〉, σ) for every j ∈ [1, |s|] such that
the Σj are all pairwise disjoint and

v = (Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj).

Moreover, there exists (Σ′0; s
′) ∈ e1(Σ;σ) and values (Σ′0 ◦Σ′j ; s

′
j) ∈

e2(Σ′0;x : 〈s′(j)〉, σ) for every j ∈ [1, |s′|] such that the Σ′j are all pair-
wise disjoint and

w = (Σ′0 ◦©
|s′|
j=1 Σ′j ;©

|s′|
j=1 s

′
j).

Since e1 is a store-increasing semi-function, it follows from Corollary 13
that |s| = |s′| and that there exists a node-renaming ρj for every
j ∈ [1, |s|] such that

ρj(Σ0;x : 〈s(j)〉, σ) = (Σ′0;x : 〈s′(j)〉, σ). (1)

Since e2 is node-generic it follows that

ρj(Σ0 ◦Σj ; sj) ∈ e2(ρj(Σ0;x : 〈s(j)〉, σ)) = e2(Σ′0;x : 〈s′(j)〉, σ).

Since also (Σ′0 ◦Σ′j ; s
′
j) ∈ e2(Σ′0;x : 〈s′(j)〉, σ) and since e2 is a semi-

function there exists, for every j ∈ [1, |s|], a node-renaming πj such
that πj(ρj(Σ0 ◦Σj ; sj)) = (Σ′0 ◦Σ′j ; s

′
j). Hence, (Σ0 ◦Σj ; sj) is node-

isomorphic to (Σ′0 ◦Σ′j ; s
′
j) for every j ∈ [1, |s|]. As in addition, (1)

implies that Σ0 is node-isomorphic to Σ′0, it follows from Lemma 11
that

(Σ0 ◦©|s|j=1 Σj ; s1, . . . , s|s|) ≡node (Σ′0 ◦©
|s|
j=1 Σ′j ; s

′
1, . . . , s

′
|s|).

It is now easy to see that this implies

(Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj) ≡node (Σ′0 ◦©
|s|
j=1 Σ′j ;©

|s|
j=1 s

′
j),

from which the result follows.

21

Using the fact that every e ∈ QL(B) is a node-generic, store-increasing
semi-function, an easy induction shows that e is also computable. Hence, e
defines a base operation.

4 Well-definedness

The evaluation of an expression e on an input (Σ;σ) may be undefined, i.e.,
potentially e(Σ;σ) = ∅. For example, the expression

if eq(publisher , ’ACM’) then element(authors, title) else ()

returns the empty set when

1. publisher is the empty list (as the subexpression eq(publisher , ’ACM’)
then returns the empty list, on which the conditional test is undefined);

2. publisher is not a singleton atom and not the empty list (as the subex-
pression eq(publisher , ’ACM’) is then undefined); or

3. publisher is the singleton atom 〈ACM〉 and authors is not a singleton
atom (as the element constructor is then evaluated on a value-tuple of
the form (Σ; s, s′) with s not a singleton atom, which is undefined).

Since the fact that e is undefined on (Σ;σ) models the situation where
an actual implementation would produce a runtime error, it is a natural
question to ask whether we can decide, given an expression e and a (possibly
infinite) set S of contexts on e, whether e is defined on every context in
S. The answer to this problem clearly depends on both the set B of base
operations and the class of context sets used as inputs. For the purpose of
this paper we will focus on the class of context sets specified by bounded-
depth regular expression types. Regular expression types are widely used in
general-purpose programming languages manipulating tree-structured data,
such as XDuce [18, 19, 20], CDuce [15], and XQuery [5, 13]. The bounded-
depth restriction is motivated by the fact that most tree-structured data
(such as for example found in XML documents [39]) in practice has nesting
depth at most five or six, and that unbounded-depth nesting is hence often
not needed.

Formally, a type is a term generated by the following grammar:

τ ::= atom | text | element(a, τ)
| empty | τ + τ | τ ◦ τ | τ∗

A type denotes a set of values, as defined in Figure 4. Here we denote trees
by Θ. For ease of notation we will not distinguish between a type and the
set of values it denotes. A type assignment Γ on an expression e is a function

22

a ∈ A
(∅; 〈a〉) ∈ atom

n ∈ N t is Θ’s root
(Θ, 〈n〉) ∈ text

n ∈ N e is Θ’s root λΘ(n) = a
children of n in Θ are n1< . . .<nk
(Θ|n1 ◦ · · · ◦Θ|nk

; 〈n1, . . . , nk〉) ∈ τ
(Θ, 〈n〉) ∈ element(a, τ) (∅, 〈〉) ∈ empty

(Σ, s) ∈ τ1 or (Σ, s) ∈ τ2
(Σ, s) ∈ τ1 + τ2

(Σ1, s1) ∈ τ1 (Σ2, s2) ∈ τ2
Σ1 is disjoint with Σ2

(Σ1 ◦Σ2, s1 ◦ s2) ∈ τ1 ◦ τ2

(Σ1, s1) ∈ τ · · · (Σp, sp) ∈ τ p ≥ 0
Σj is disjoint with Σj′ when j 6= j′

(Σ1 ◦ · · · ◦Σp, s1 ◦ . . . ◦ sp) ∈ τ∗

Figure 4: The denotation of types.

from a finite superset {x, . . . , y} of the free variables of e to types. A type
assignment denotes the set of contexts

{(Σx ◦ · · · ◦Σy;σ) | (Σz;σ(z)) ∈ Γ(z) for all z ∈ {x, . . . , y}}.

Again we will not distinguish between a type assignment and the set of
contexts it denotes.

Definition 15. Let B be a finite set of base operations. We say that
e ∈ QL(B) is well-defined under a type assignment Γ on e if e(Σ;σ) 6= ∅ for
every context (Σ;σ) ∈ Γ. The well-definedness problem for QL(B) consists
of checking, for a given expression e ∈ QL(B) and a given type assignment
Γ on e, whether e is well-defined under Γ.

It is not obvious that the well-definedness problem is decidable. Indeed,
we will next identify several properties of B which can make the problem
undecidable.

5 Satisfiability and the restriction to monotone
base operations

Definition 16. Let B be a finite set of base operations. Let e be an expres-
sion in QL(B) and let Γ be a type assignment under which e is well-defined.

23

We say that e is satisfiable under Γ if there exists a context (Σ;σ) ∈ Γ such
that s is non-empty for every value (Σ′; s) ∈ e(Σ;σ). The satisfiability prob-
lem for QL(B) consists of checking, given e and Γ, whether e is satisfiable
under Γ.

Since every expression defines a semi-function by Proposition 6, s is non-
empty for some (Σ′; s) ∈ e(Σ;σ) if, and only if, all values in e(Σ;σ) have a
non-empty list. Hence, e is satisfiable under Γ if, and only if, there exists a
context (Σ;σ) ∈ Γ and a value (Σ′; s) in e(Σ;σ) such that s is non-empty.

The satisfiability problem is reducible to the well-definedness problem.
Indeed, let e be an expression in QL(B) and let Γ be a type assignment
under which e is well-defined. It is easy to see that e is satisfiable under Γ
if, and only if, the expression

for x in e return (if () then () else ())

is not well-defined under Γ (as the subexpression if () then () else () is
always undefined). We have hence shown:

Proposition 17. If the satisfiability problem for QL(B) is undecidable, then
the well-definedness problem for QL(B) is also undecidable.

The converse is not true however. Indeed, in Section 7.1 we will give a set
of base operations B for which the well-definedness of QL(B) is undecidable,
but the satisfiability problem of QL(B) is nevertheless decidable.

Unsurprisingly, there are QL(B) for which satisfiability is undecidable,
as exemplified by the following proposition.

Proposition 18. If B includes the base operations concat, children, eq,
node-name, content, element, and empty, then QL(B) can simulate the re-
lational algebra. Concretely, for every relational algebra expression φ over
database schema S there exists an expression eφ ∈ QL(B) and a type as-
signment Γ such that

• every database over S can be encoded as a context in Γ,

• eφ is well-defined under Γ, and,

• eφ evaluated on an encoding of database D equals an encoding of φ(D).

Consequently, satisfiability for QL(B) is undecidable, as it is already unde-
cidable for the relational algebra.

Proof. We use a well-known, straightforward, one-to-many encoding of rela-
tions as values. For example, the relation R in Figure 5(a) can be encoded as
the value (Σ; s) in Figure 5(b). Specifically, we encode each tuple t in R as
a tree in Σ. The root node n of this tree is labeled by some arbitrarily fixed
atom T . Furthermore, n has one element child node mA for every attribute

24

A B

a1 b1
a2 b2
a3 b3

(a)

〈n1, n6, n11〉

n1

T

n2

A

n3

a1

n4

B

n5

b1

n6

T

n7

A

n8

a2

n9

B

n10

b2

n11

T

n12

B

n13

b3

n14

A

n15

a3

(b)

〈n11, n1, n6, n16, n11〉

n1

T

n2

A

n3

a1

n4

B

n5

b1

n6

T

n7

A

n8

a2

n9

B

n10

b2

n11

T

n12

B

n13

b3

n14

A

n15

a3

n16

T

n17

B

n18

b1

n19

A

n20

a1

(c)

Figure 5: Encoding relations as values.

name A in the schema of R, and this child is labeled by A. The node mA

itself has exactly one child, which is a text node labeled by the value of t on
A. The whole relation is then encoded by the value (Σ; s) such that

1. for each tuple t ∈ R the root node of a tree encoding t is mentioned
in s, and

2. each node mentioned in s is the root node of an encoding of a tuple
in R.

The order in which these root nodes are mentioned in s does not matter and
there can be multiple nodes whose trees encode the same tuple. As such, the
value in Figure 5(c) is also a valid encoding of the relation in Figure 5(a).

Let S be a database schema. A database D over S can then be encoded
as a context (Σ;σ) such that (Σ;σ(r)) is an encoding of the relation assigned
to relation name r by D, for every relation name r in S. Let Γ be the type

25

assignment on the relation names in S such that

Γ(r) := element(T, element(A1, text) ◦ · · · ◦ element(Ak, text))∗

where {A1, . . . , Ak} is the relation schema assigned to r by S. It is easy
to see that for every database D over S there exists a context in Γ which
encodes it and that every context in Γ encodes a database over S.

We will now show how to construct, for every relational algebra expres-
sion φ over S, an expression eφ ∈ QL(B) such that eφ(Σ;σ) is an encoding
of φ(D) whenever (Σ;σ) is an encoding of a database D over S. Note that
in particular, eφ(Σ;σ) is hence well-defined on Γ. In order to simplify pre-
sentation, we will allow to bind multiple variables in one for loop. We will
also allow boolean combinations in the condition of an if test. Both features
can clearly be simulated in QL(B). The construction is by induction on φ:

• If φ is the relation name r, then eφ = r.

• If φ = σA1=A2(ψ), then eφ is defined as follows:

for t in eψ return
for x1, x2 in children(t) return

if eq(node-name(x1), A1)
and eq(node-name(x2), A2)
and eq(content(children(x1)), content(children(x2)))

then t else ()

• If φ = πA1,...,Ak
(ψ), then eφ is defined as follows:

for t in eψ return
element(T,

for x in children(t) return
if eq(node-name(x1), A1)
or ...
or eq(node-name(xk), Ak)

then x else ()
)

• If φ = ρB←A(ψ), then eφ is defined as follows:

for t in eψ return
element(T,

for x in children(t) return
if eq(node-name(x), A)
then element(B, children(x)) else x

)

26

• If φ = ψ1 × ψ2, then eφ is defined as follows:

for t1 in eψ1 return
for t2 in eψ2 return

element(T, concat(children(t1), children(t2)))

• If φ = ψ1 ∪ ψ2, then eφ = concat(eψ1 , eψ2).

• If φ = ψ1 − ψ2, then we note that ψ1 and ψ2 have the same output
schema {A1, . . . , Ak}. We define eφ as follows:

for t1 in eψ1 return
let z:= for t2 in eψ2 return

if same-tuple(t1,t2) then t2 else ()
return
if empty(z) then t1 else ()

Here, same-tuple(t1,t2) is an abbreviation for the following expres-
sion, which returns true if t1 and t2 encode the same tuple over
{A1, . . . , Ak}, and false otherwise.

let z :=
for x1, . . . , xk in children(t1) return
for y1, . . . , yk in children(t2) return

if eq(node-name(x1), A1)
and ...
and eq(node-name(xk), Ak)
and eq(node-name(y1), A1)
and ...
and eq(node-name(yk), Ak)
and eq(content(children(x1)), content(children(y1)))
and ...
and eq(content(children(xk)), content(children(yk)))

then t1 else ()
return

if empty(z) then false else true

In eφ we hence compute, for each node t1 returned by eψ1 , the nodes
returned by eψ2 which encode the same tuple as t1. If there are no
such encodings, then t1 is returned (as it’s encoding is hence not in
the result of ψ2), otherwise it is filtered out.

It is easy to verify that eφ indeed returns an encoding of φ(D) when evaluated
on an encoding of D. In particular, eφ is hence defined on such encodings,
as desired.

27

Corollary 19. If B includes the base operations concat, children, eq, node-
name, concat, element, and empty, then the well-definedness problem for
QL(B) is undecidable.

We note that the fact that XQuery’s atomic value comparison and ele-
ment constructor are more complex than the eq and element base operations
we use above has no effect on the undecidability of the well-definedness
problem. Indeed, it is easily verified that the simulation in the proof of
Proposition 18 still works if we replace eq and element by their XQuery
counterparts (whose semantics was given in Examples 2 and 3).

5.1 Monotone base operations

Note that satisfiability for the monotone fragment of the relational algebra
(i.e., the relational algebra without difference) is trivially decidable. Indeed,
it is easy to see that every relational algebra expression in this fragment is
decidable. 6 In the hope of finding QL(B) for which the well-definedness
is decidable, it is therefore worthwhile to restrict ourselves to those base
operations which are in a sense also “monotone”. For this purpose, we
adapt the notion of (unordered) complex object containment [4] to (ordered)
values.

Containment of stores Intuitively, a store Σ is contained in a store Σ′ if
Σ can be obtained by removing nodes from Σ′ in such a way that if we remove
a node, we also remove all of its descendants. Formally, Σ is contained in
Σ′ when every component of Σ is a subset of the corresponding component
of Σ′, i.e., VΣ ⊆ VΣ′ , EΣ ⊆ EΣ′ , λΣ ⊆ λΣ′ , <Σ ⊆ <Σ′ , ≺Σ ⊆ ≺Σ′ , and
roots(Σ) ⊆ roots(Σ′).

As an example of store containment, consider the three stores depicted
in Figure 6. It is easy to verify that Σ2 is contained in Σ3. Store Σ1 is
not contained in Σ2 however, as n1 is a root in Σ1, but not in Σ2. It can
similarly be seen that Σ1 is also not contained in Σ3.

We note that store-containment is closely related to the notion of simu-
lation [7]: there exists a simulation from Σ to Π which respects document
order and relates all roots of Σ to roots of Π if, and only if, there exists a
store Σ′, node-isomorphic to Π, such that Σ is contained in Σ′.

Containment of lists Intuitively, a list s is contained in a list s′ if s can
be obtained from s′ by deleting items in it. Formally, s is contained in s′

if there exists a strictly increasing function h : [1, |s|] → [1, |s′|] such that
6Here we are referring to the standard version of the relational algebra where selec-

tion only tests equality between attributes. When other selection predicates are allowed,
expressions in the positive-existential fragment of the relational algebra need not be sat-
isfiable.

28

n1a n2b

n3a n4c

(a) Store Σ1

n1a

n2b

n3a n4c

n5a

n6b

n7a n8b

n9a

(b) Store Σ2

n1a

n2b

n3a m1b n4c

n5a

m2b

m3c

m4a m5a

n6b

n7a

m6b m7c

n8b

n9a

(c) Store Σ3

Figure 6: Containment of stores. Store Σ1 is not contained in Σ2 or in Σ3.
Store Σ2 is contained in Σ3.

s(j) = s′(h(j)) for every j ∈ [1, |s|]. Such a function h is called a witness of
the fact that s is contained in s′.

As an example, consider the lists s = 〈a, b, c〉 and s′ = 〈a, b, b, a, c〉.
Then s is contained s′, as witnessed by the function h : [1, 3] → [1, 5] with
h(1) = 1, h(2) = 2, and h(3) = 5. In contrast, when s = 〈a, a, b, c〉 then s is
not contained in s′, as we cannot obtain s from s′ simply by deleting items
in s′.

Containment of value-tuples Finally, containment extends naturally
to value-tuples: a value-tuple (Σ; s1, . . . , sp) is contained in a value-tuple
(Σ′; s′1, . . . , s

′
p) if Σ is contained in Σ′ and every sj is contained in the corre-

sponding s′j . We are now ready to introduce the notion of a monotone base
operation.

Monotonicity A set of value-tuples S is contained in a set of value-tuples
S′ if for every v′ ∈ S′ there exists v ∈ S such that v is contained in v′. In
what follows we will denote the containment relation on stores, lists, value-
tuples and sets of value-tuples by v. A relation R ⊆ Vp × V is monotone
if for all v and w in Vp with R(v) 6= ∅, R(w) 6= ∅, and vvw, we have
R(v)vR(w).

Example 20. Let us give some examples of monotone base operations:

• The concatenation operator concat is clearly monotone.

29

• The children axis is also monotone. Indeed, let (Σ; s)v(Σ′; s′) and
suppose that children is defined on (Σ; s) and (Σ′; s′). Since sv s′ we
know that every node mentioned in s is also mentioned in s′. Fur-
thermore, since ΣvΣ′ we know the set of children of a node n in Σ
is a subset of the set of children of n in Σ′. Finally, since ΣvΣ′ we
know that if n precedes m in document order in Σ, it also precedes m
in document order in Σ′. Hence, if (Σ; t) is the result of children on
(Σ, s) and (Σ′; t′) is the result of children on (Σ′; s′), then it is easily
seen that tv t′. Therefore,

children(Σ; s) = {(Σ; t)}v{(Σ′; t′)} = children(Σ′; s′).

• The atomic value comparison eq is another example of a monotone
base operation. Indeed, let (Σ; s, s′)v(Π; t, t′) and suppose that eq is
defined on (Σ; s, s′) and (Π; t, t′). There are two possibilities:

1. If s or s′ is the empty list, then eq relates (Σ; s, s′) only to (Σ; 〈〉).
Monotonicity is immediate, since 〈〉 is contained in every other
list.

2. Otherwise, we know that s = 〈a〉 and s′ = 〈b〉 with a and b
atoms since eq is defined on (Σ; s, s′). Since sv t and s′v t′, it
follows that t and t′ cannot be empty. Since eq is also defined
on (Π; t, t′), it hence follows that t = 〈c〉 and t′ = 〈d〉 with c and
d atoms. Since 〈a〉v〈c〉 and 〈b〉v〈d〉, it follows that a = c and
b = d. Hence,

eq(Σ; s, s′) = {(Σ; 〈a = b〉)}v{(Π; 〈c = d〉} = eq(Σ; t, t′).

• Finally, the element constructor element is also a monotone base op-
eration. Indeed, suppose that vvw and that element is defined on v
and w. Then v and w must be of the form:

v = (Σ; 〈a〉, 〈n1, . . . , nk〉)
w = (Σ′; 〈a〉, 〈n′1, . . . , n′l〉).

Let (Σ′ ◦Θ′; 〈m′〉) be a value in element(w). We show that there ex-
ists a value in element(v) which is contained in (Σ′ ◦Θ′; 〈m′〉). By
definition of element , we know that the root element node m′ of the
tree Θ′ is labeled by a, that m′ has exactly l children, and that if m′j
is the j-th child of m′ (in sibling order), then there exists a node-
renaming ρj such that ρj(Σ′|n′

j
) = Θ′|m′

j
. Let h be a witness of

〈n1, . . . , nk〉v〈n′1, . . . , n′l〉. Since ΣvΣ′ it follows that Σ|nj vΣ′|n′
h(j)

for every j ∈ [1, k]. Hence, we also have

ρh(j)(Σ|nj)v ρh(j)(Σ′|n′
h(j)

) = Θ′|m′
h(j)

.

30

Then let Θ be the tree whose root element node m′ is labeled by a
such that m′ has k children and that the j-th child of m′ (in docu-
ment order) is ρh(j)(Σ|nj). It is clear that (Σ ◦Θ; 〈m′〉) ∈ element(v).
Moreover, it is easy to see that (Θ; 〈m′〉)v(Θ′; 〈m′〉). It follows that
(Σ ◦Θ; 〈m′〉)v(Σ′ ◦Θ′; 〈m′〉), as desired.

Using similar reasonings as the ones employed in Example 20 we obtain:

Proposition 21. The base operations concat, children, descendant, parent,
ancestor, preceding-sibling, following-sibling, eq, is, �, is-element, is-text,
is-atom, node-name, content, element, and text are all monotone.

Note that if our restriction to monotone base operations is to have any
chance of leading to QL(B) for which well-definedness is decidable, empty
must be non-monotone. Indeed, all other base operations mentioned in
Corollary 19 are monotone by Proposition 21. Fortunately:

Example 22. The emptiness test is not monotone. Indeed, let Σ be a store.
The emptiness test relates (Σ; 〈〉) only to (Σ; 〈true〉) and (Σ; 〈a〉) only to
(Σ; 〈false〉). However, 〈true〉 6v 〈false〉, although (Σ; 〈〉)v(Σ; 〈a〉).

5.2 The impact of automatic coercions

We note that the atomization function data, depending on the concrete
interpretation of the abstract function fold which maps lists of text nodes to
atoms, is potentially not monotone. Indeed, suppose for example that fold ,
when viewed as a base operation, relates (Σ; 〈n〉) with n a text node labeled
by a to (Σ; 〈a〉) and relates (Σ; 〈n1, . . . , nk〉) with k ≥ 2 and n1, . . . , nk text
nodes labeled by a to (Σ; 〈b〉) for some b 6= a.7 Then clearly fold (and hence
data) is not monotone. Note that with this interpretation of fold we can
simulate the emptiness test in QL(B). Indeed, empty(e) is simulated by

let y := (for x in e return text(a)) return
let z := concat(text(a), y) return

eq(data(element(c,z)), a)

Here, c is an arbitrary atom. In y we first compute a list of text nodes,
all labeled by a. Note that y is empty if, and only, if e is empty. Hence,
z contains a single text node labeled by a if, and only if, e is empty. The
atomization of a newly created element node with z as children hence returns
a if, and only if, e is empty.

Note that, since fold is also used to merge adjacent text nodes into
a single text node in the merge-text base operation, it follows that hence

7The actual interpretation of fold in XQuery (i.e., string concatenation of the text
nodes’ labels) has this kind of behavior: concatenating a non-empty string k times does
not produce the string itself.

31

merge-text is also not monotone. Also note that with this interpretation
of merge-text we can again simulate the emptiness test in QL(B). Indeed,
empty(e) is simulated by

let y := (for x in e return text(a)) return
let z := concat(text(a), y) return
let w := merge-text(element(c,z)) return

eq(content(children(w)), a)

Indeed, using a similar reasoning as above, it is easy to see that the single
text node child of w is labeled by a if, and only if, e is empty.

As such, we obtain that QL(concat , children, eq , node-name, content ,
element , text , data) and QL(concat , children, eq , node-name, element , text ,
merge-text , content) are at least as expressive as QL(concat , children, eq ,
node-name, element , empty). It follows by Propositions 17 and 18 that
their well-definedness problem is hence also undecidable. This reasoning
clearly illustrates that automatic coercions, such as the ones performed by
atomization and text node merging, are not harmless with regard to deciding
well-definedness.

5.3 Monotone expressions

In this section we show that if B is a set of monotone base operations, then
monotonicity transfers to all expressions in QL(B). Hereto, we first state
the following lemma’s.

Lemma 23. Let R ⊆ Vp×V be a monotone base operation and let (Σ;~s) and
(Σ′; ~s′) be value-tuples of arity p such that (Σ;~s)v(Σ′; ~s′) and R(Σ;~s) 6= ∅.
For every (Σ′ ◦Σ′1; s

′
1) ∈ R(Σ′; ~s′) there exists (Σ ◦Σ1; s1)v(Σ′ ◦Σ′1, s

′
1) in

R(Σ;~s) such that Σ1vΣ′1.

Proof. Every store can be written as a concatenation of trees. Let Θ′1, . . . ,Θ
′
k

be the non-empty trees such that Σ′ = Θ′1 ◦ · · · ◦Θ′k. Since ΣvΣ′, we can
write Σ as a concatenation of trees Θ1 ◦ · · · ◦Θk such that Θj vΘ′j for every
j ∈ [1, k], where if Σ does not contain any node in Θ′j , we take Θj to
be the empty tree. Let ∆1, . . . ,∆k be the trees such that, for every j ∈
[1, k], ∆j = Θj if Θj is non-empty, and ∆j = Θ′j otherwise. In particular,
∆j = Θj whenever ~s mentions a node in Θj . Since R is reachable-only and
since R(Θ1 ◦ · · · ◦Θk;~s) is defined, it is easy to see that R(∆1 ◦ · · · ◦∆k;~s)
is also defined. Moreover, by construction we have ∆j vΘ′j for every j ∈
[1, k]. Hence, (∆1 ◦ · · · ◦∆k;~s)v(Θ′1 ◦ · · · ◦Θ′k; ~s′). Since R is a monotone
base operation, there exists (∆1 ◦ · · · ◦∆k ◦Σ1; s1) ∈ R(∆1 ◦ · · · ◦∆k;~s) such
that

(∆1 ◦ · · · ◦∆k ◦Σ1; s1)v(Θ′1 ◦ · · · ◦Θ′k ◦Σ′1; s
′
1).

Hence, Σ1vΘ′1 ◦ · · · ◦Θ′k ◦Σ′1. Assume, for the purpose of contradiction,
that Σ1 has some node m in common with Θ′j , for some j ∈ [1, k]. Let

32

n be the root node of m in Σ1. In particular there exists a path from
n to m in Σ1. Since Σ1vΘ′1 ◦ · · · ◦Θ′k ◦Σ′1, n must also a root node in
Θ′1 ◦ · · · ◦Θ′k ◦Σ′1. By definition of v there must also exist a path from n to
m in Θ′1 ◦ · · · ◦Θ′k ◦Σ′1. By definition of concatenation however, there can
be no path in Θ′1 ◦ · · · ◦Θ′k ◦Σ′1 connecting a node not in Θ′j to a node in
Θ′j . Hence, n must be the root node of Θ′j . As Θ′j is non-empty, ∆j is also
non-empty by construction. Let n′ be the root node of ∆j . Since ∆j vΘ′j ,
n′ must also be a root node in Θ′j . Since trees have at most one root node,
n = n′. Hence, n is a node in ∆j . This is a contradiction however, as
(∆1 ◦ · · · ◦∆k ◦Σ1; s1) is a value and ∆j should hence be disjoint with Σ1.
It follows that Σ1 is disjoint with Θ′j for every j ∈ [1, k] and hence that
Σ1vΣ′1.

Finally, since R is reachable-only, since ∆j = Θj whenever ~s mentions
a node in ∆j , and since (∆1 ◦ · · · ◦∆k ◦Σ1; s1) ∈ R(∆1 ◦ · · · ◦∆k;~s) we have
(Θ1 ◦ · · · ◦Θk ◦Σ1; s1) ∈ R(Θ1 ◦ · · · ◦Θk;~s), as desired.

Lemma 24. If R ⊆ Vp ×V is a base operation which is defined on v and if
w is node-isomorphic to v, then R is also defined on w.

Proof. Since R is defined on v there exists u ∈ R(v). Since v is node-
isomorphic to w there exists a node-renaming ρ such that ρ(v) = w. Since
R is node-generic we have ρ(u) ∈ R(ρ(v)) = R(w), from which the result
follows.

We are now ready to prove:

Proposition 25. Let B be a finite set of monotone base operations. Every
expression e in QL(B) defines a monotone relation.

Proof. Let e be an expression in QL(B). Let (Σ;σ) and (Σ′;σ′) be two
contexts on e such that e(Σ;σ) 6= ∅, e(Σ′;σ′) 6= ∅, and (Σ;σ)v(Σ′;σ′).8

Let w ∈ e(Σ′;σ′). We will prove by induction on e that there exists v ∈
e(Σ;σ) such that vvw. Throughout the induction we will use the fact that
expressions define base operations (Proposition 6) and that if an expression
is defined on an input, it is also defined on all the node-isomorphic copies of
this input (Lemma 24).

• If e = x, e = a or e = (), then the result follows immediately.

• If e = if e1 then e2 else e3, then there must exist (Σ′1; 〈b〉) ∈
e1(Σ′;σ′) with b either true or false such that w ∈ e2(Σ′;σ′) if
b = true and w ∈ e3(Σ′;σ′) otherwise. Suppose that b = true. Since
e(Σ;σ) is defined, e1(Σ;σ) must also be defined. There hence exists

8Here we extend the containment relation to contexts in the obvious way: if σ
and σ′ are environments with the same domain {x, . . . , y}, then (Σ; σ)v(Σ′; σ′) if
(Σ; σ(x), . . . , σ(y))v(Σ′; σ′(x), . . . , σ′(y)).

33

a value (Σ1; s1)v(Σ′1; 〈true〉) in e1(Σ;σ) by the induction hypothesis.
Then s1 is either 〈〉 or 〈true〉. Note however that if s1 = 〈〉, then all
values in e1(Σ;σ) are of the form (Σ1; 〈〉) since e1 is a semi-function.
Hence, e(Σ;σ) would be undefined. Therefore, s1 = 〈true〉. Since e1
is a semi-function it follows that all values in e1(Σ;σ) are of the form
(Σ1; 〈true〉). Hence, e2(Σ;σ) = e(Σ;σ) 6= ∅. Since w ∈ e2(Σ′;σ′) there
then exists v ∈ e2(Σ;σ) with vvw by the induction hypothesis. Since
e2(Σ;σ) = e(Σ, σ) we hence have v ∈ e(Σ;σ) with vvw, as desired.
If b = false, then the reasoning is similar.

• If e = let x := e1 return e2, then there must exist (Σ′1; s
′
1) ∈

e1(Σ′;σ′) such that w ∈ e2(Σ′1;x : s′1, σ
′). Moreover, since e(Σ;σ) is

defined there must exist a (Π1; t1) ∈ e1(Σ;σ) such that e2(Π1;x : t1, σ)
is defined. Note that in particular, e1(Σ;σ) is defined. Hence there
exists a value (Σ1; s1)v(Σ′1; s

′
1) in e1(Σ;σ) by the induction hypothe-

sis. Since e1 is a store-increasing semi-function, it follows from Corol-
lary 12 that (Σ1;x : s1, σ) is node-isomorphic to (Π1;x : t1, σ). Since
e2 is a node-generic and since e2(Π1;x : t1, σ) is defined, it follows that
e2(Σ1;x : s1, σ) is also defined. Since also (Σ1;x : s1, σ)v(Σ′1;x : s′1, σ

′),
it follows by the induction hypothesis that there exists v ∈ e2(Σ1;
x : s1, σ) with vvw. The result then follows since v ∈ e(Σ;σ).

• If e = f(e1, . . . , ep), then there exist (Σ′ ◦Σ′j ; s
′
j) ∈ ej(Σ′;σ′) for every

j ∈ [1, p] such that the Σ′j are all pairwise disjoint and

w ∈ f(Σ′ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p).

Moreover, since e(Σ;σ) is defined there must also exist (Σ ◦Πj ; tj) ∈
ej(Σ;σ) for every j ∈ [1, p] such that the Πj are pairwise disjoint and

f(Σ ◦©p
j=1 Πj ; t1, . . . , tp) 6= ∅.

Note that in particular, ej(Σ;σ) is defined for every j ∈ [1, p]. Since ev-
ery ej defines a monotone base operation by the induction hypothesis,
it hence follows from Lemma 23 that there exist (Σ ◦Σj ; sj) ∈ ej(Σ; s)
for every j ∈ [1, p] such that (Σ ◦Σj ; sj)v(Σ′ ◦Σ′j ; s

′
j) and Σj vΣ′j .

Since the Σ′j are all pairwise disjoint and Σj vΣ′j , it follows that the
Σj are also pairwise disjoint. Moreover, (Σ ◦Σj ; sj) is node-isomorphic
to (Σ ◦Πj ; tj) for every j ∈ [1, p] since every ej is a semi-function. By
Lemma 11 we hence obtain that

(Σ ◦©p
j=1 Σj ; s1, . . . , sp) ≡node (Σ ◦©p

j=1 Πj ; t1, . . . , tp).

Since f is a node-generic and since f(Σ ◦©p
j=1 Πj ; t1, . . . , tp) is defined,

it follows that f(Σ ◦©p
j=1 Σj ; s1, . . . , sp) is also defined. Moreover,

since ΣvΣ′, Σj vΣ′j and sj v s′j for every j ∈ [1, p] we have

(Σ ◦©p
j=1 Σj ; s1, . . . , sp)v(Σ′ ◦©p

j=1 Σ′j ; s
′
1, . . . , s

′
p).

34

Since f is a monotone base operation, there hence exists

v ∈ f(Σ ◦©p
j=1 Σj ; s1, . . . , sp)

such that vvw. The result then follows since v ∈ e(Σ;σ).

• If e = for x in e1 return e2, then there exists (Σ′0; s
′) ∈ e1(Σ′;σ′)

and values (Σ′0 ◦Σ′j ; s
′
j) ∈ e2(Σ′0;x : 〈s′(j)〉, σ′) for every j ∈ [1, |s′|]

such that the Σ′j are all pairwise disjoint and

w = (Σ′0 ◦©
|s′|
j=1 Σ′j ;©

|s′|
j=1 s

′
j).

Moreover, since e(Σ;σ) is defined there exists (Π0; t) ∈ e1(Σ;σ) such
that e2(Π0;x : 〈t(j)〉, σ) 6= ∅ for every j ∈ [1, |t|]. Note that in par-
ticular, e1(Σ;σ) is defined. Since (Σ;σ)v(Σ′;σ′) there hence exists
(Σ0; s)v(Σ′0; s

′) in e1(Σ;σ) by the induction hypothesis. Since e1 is a
store-increasing semi-function, it follows from Corollary 13 that |s| =
|t| and that (Σ0;x : 〈s(j)〉, σ) is node-isomorphic to (Π0;x : 〈t(j)〉, σ),
for every j ∈ [1, |t|]. Since e2 is node-generic and since e2(Π0;x : 〈t(j)〉,
σ) is defined for every j ∈ [1, |t|], it follows that e2(Σ0;x : 〈s(j)〉, σ) is
also defined for every j ∈ [1, |s|]. Let h be a witness of sv s′. It is
easy to see that for every j ∈ [1, |s|] we have

(Σ0;x : 〈s(j)〉, σ)v(Σ′0;x : 〈s′(h(j))〉, σ).

Since e2 is a monotone base operation by the induction hypothesis, it
hence follows from Lemma 23 that there exist

(Σ0 ◦Σj ; sj) ∈ e2(Σ0;x : 〈s(j)〉, σ)

for every j ∈ [1, |s|] such that (Σ0 ◦Σj ; sj)v(Σ′0 ◦Σ′j ; s
′
j) and Σj vΣ′j .

Since the Σ′j are all pairwise disjoint and Σj vΣ′j , it follows that the
Σj are also pairwise disjoint. It is easy to see that hence

(Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj)v(Σ′0 ◦©
|s′|
j=1 Σ′j ;©

|s′|
j=1 s

′
j).

The result then follows since the left-hand side is in e(Σ;σ).

6 Interpretation of atoms and the restriction to
generic base operations

Another potential source of undecidability is the interpretation of atoms by
base operations. Indeed, suppose that B includes base operations + and ×
which interpret the atoms as integers and simulate the addition respectively
multiplication on them. That is, + and × relate (Σ; 〈k〉, 〈l〉) to (Σ; 〈k +

35

l〉) respectively (Σ; 〈k × l〉). Note that with this definition, + and × are
monotone. It is easy to see that for every polynomial P (x1, . . . , xk) with
integer coefficients there exists an expression eP with free variables x1, . . . , xk
that simulates P . Hence, the expression

if eq(eP , 0) then (if () then () else ()) else ()

is well-defined under the type assignment which maps every xj to atom
if, and only if, the Diophantine equation P (x1, . . . , xk) = 0 has no integer
solution. Since we now have a reduction from Hilbert’s undecidable tenth
problem [27], well-definedness for QL(B) is undecidable.

Generic base operations We will therefore restrict ourselves to base
operations which do not interpret the atoms, except for the booleans true
and false. Formally, we require that all base operations R are generic: for
every renaming ρ it must hold that

w ∈ R(v) ⇔ ρ(w) ∈ R(ρ(v)).

It is easy to see that for example concat , children and element are generic
base operations. In fact:

Proposition 26. The base operations concat, children, descendant, parent,
ancestor, preceding-sibling, following-sibling, eq, is, �, is-element, is-text,
is-atom, node-name, content, element, text, and empty are all generic.9

Note that hence genericity alone is not powerful enough to prevent the
construction of QL(concat , children, eq , node-name, content , elem, empty)
for which well-definedness is undecidable.

Semi-generic expressions In contrast to monotonicity, genericity does
not transfer literally from base operations to expressions. Indeed, it is ob-
vious that expressions can always interpret the constants they mention. An
easy induction shows that expressions cannot interpret more than those con-
stants however:

Proposition 27. If B is a finite set of generic base operations, then for
every expression e ∈ QL(B) and every renaming ρ which is the identity on
the atoms mentioned in e it holds that w ∈ e(v) ⇔ ρ(w) ∈ e(ρ(v)).

We say that e is semi-generic in this case.
9Remember that renamings are the identity on the booleans. This explains why for

example eq can be generic.

36

7 Non-local behavior and the restriction to local
and locally-undefined base operations

In this section we will show that, even if B is a set of monotone and generic
base operations, well-definedness for QL(B) need not be decidable. In order
to illustrate this, we first introduce the following problem.

Definition 28. Let e1 and e2 be two expressions with the same set of free
variables, and let Γ be a type assignment under which e1 and e2 are well-
defined. We say that the list-width of e1 is less than the list-width of e2
under Γ, denoted by |e1| ≤Γ |e2| if for all v ∈ Γ, all (Σ1; s1) ∈ e1(v) and all
(Σ2; s2) ∈ e2(v) it holds that |s1| ≤ |s2|. The list-width problem consists of
deciding, given e1, e2, and Γ whether |e1| ≤Γ |e2|.

Lemma 29. The list-width problem for QL(concat) is undecidable.

Proof. Our proof is based on the reduction used to show that containment of
unions of conjunctive queries on bags is undecidable [21]. Let P1(x1, . . . , xp)
and P2(x1, . . . , xp) be two polynomials in p variables, with natural number
coefficients and without constant terms. It was shown by Ioannidis and
Ramakrishnan [21] (p. 317) that there is no decision procedure checking
that P1(x1, . . . , xp) ≤ P2(x1, . . . , xp) for all natural number assignments to
x1, . . . , xp.

We will encode natural numbers k as lists of width k. Note that under
this encoding we can simulate addition by concatenation and multiplication
by the for loop. Indeed, let (Σ;σ) be a context such that |σ(x)| = k and
|σ(y)| = l. The list of the value returned by the expression concat(x, y) on
(Σ;σ) then has width k + l. Moreover, the list of the value returned by
the expression for z in x return y on (Σ;σ) has with k × l. Hence, we
can construct an expression e1 with free variables x1, . . . , xk which simulates
P1(x1, . . . , xp) in the sense that

(Σ1; s1) ∈ e1(Σ;σ) ⇒ P1(|σ(x1)|, . . . , |σ(xp)|) = |s1|.

We can similarly construct an expression e2 which simulates P2(x1, . . . , xp).
Let Γ be a type assignment on e1 and e2 such that Γ(xj) = atom∗ for
all xj . Since concat is defined on every input, it is easy to see that e1
and e2 are also defined on every input. Hence e1 and e2 are well-defined
under Γ. Finally, as Γ contains encodings of all possible natural number
assignments to x1, . . . , xp it follows that it is undecidable to check whether
|e1| ≤Γ |e2|.

As a side note, we state the following corollary which is interesting in its
own right.

37

Corollary 30. The containment problem for QL(concat) is undecidable:
it is undecidable to check, given two expressions e1 and e2 with the same
set of free variables and a type assignment Γ under which e1 and e2 are
well-defined, whether e1(v)v e2(v), for all v ∈ Γ.10

Proof. Let e1 and e2 be two expressions in QL(concat) with the same set of
free variables and let Γ be a type assignment under which e1 and e2 are well-
defined. Since we cannot create new nodes in QL(concat), it follows that
if (Σ1; s1) ∈ e1(Σ;σ) and (Σ2; s2) ∈ e2(Σ;σ), then Σ1 = Σ = Σ2. Hence
|e1| ≤Γ |e2| if, and only if, for all v ∈ Γ we have

(for x in e1 return a)(v) v (for x in e2 return a)(v).

As we now have a reduction from the list-width problem for QL(concat)
which is undecidable by Lemma 29, it follows that the containment problem
is also undecidable.

7.1 Non-local undefinedness behavior

The undefinedness behavior of base operations such as children, eq , and
element is quite simple: the input list contains an atom where it should
only contain nodes; one of the input lists contains two or more items; or
the first input list is not a singleton atom respectively. Base operations
with more complex undefinedness behavior are problematic with regard to
well-definedness checking, as the following proposition shows.

Proposition 31. Let smaller-width be the binary base operation which re-
lates (Σ; s, s′) to (Σ; 〈〉) when |s| ≤ |s′| and which is undefined otherwise.
The well-definedness problem for QL(concat , smaller-width) is undecidable.

Proof. Let e1 and e2 be expressions in QL(concat) with the same set of free
variables and let Γ be a type assignment under which e1 and e2 are well-
defined. It is easy to see that smaller-width(e1, e2) is well-defined under Γ if,
and only if, |e1| ≤Γ |e2|. Since we now have a reduction from the list-width
problem for QL(concat) which is undecidable by Lemma 29, it follows that
well-definedness for QL(concat , smaller-width) is also undecidable.

Note, however, that concat and smaller-width are both monotone and
generic. Hence, monotonicity and genericity alone do not imply decidability.
In fact, we will prove in Section 8.1:

Proposition 32. The satisfiability problem for QL(concat , smaller-width)
is decidable.

10We note that, in contrast, the corresponding problem in a set-based data model is
decidable [12].

38

Hence, decidability of the satisfiability problem is not sufficient to obtain
decidability of the well-definedness problem.

The core difficulty with well-definedness in QL(concat , smaller-width)
is that smaller-width can switch arbitrarily from defined to undefined and
back again when the input “grows” according to the containment relation.
Indeed, smaller-width is defined on (Σ; 〈〉, 〈〉); undefined on (Σ; 〈a〉, 〈〉); and
defined again on (Σ; 〈a〉, 〈b〉). As such, smaller-width is non-monotone in
its undefinedness behavior: if smaller-width(v) is undefined and vvw, then
smaller-width(w) is not necessarily undefined. In our companion paper [37]
we study well-definedness for the Nested Relational Calculus (NRC), a set-
based query language which is well-known from the complex object data
model [1, 8, 38]. Specifically, we show that the positive-existential fragment
of the NRC is monotone in its undefinedness behavior, and we use this
property to show decidability of well-definedness for that fragment.

In order to obtain QL(B) for which well-definedness is decidable, we
could hence restrict ourselves to base operations which are monotone in
their undefinedness behavior. In that case, however, we would disallow base
operations such as is-element , is-text , element , and text which are undefined
when their (first) argument is empty, but are defined when this is a singleton.
As we would like to obtain a language with these operators for which well-
definedness is decidable, we will use another, looser restriction.

Specifically, we note that smaller-width’s undefinedness on a certain in-
put depends on the whole input, and not on a local part of it. We will
therefore restrict ourselves to base operations which are undefined on an
input due to a local reason. We make this notion precise as follows.

Requirements A requirement w is a tuple (V ;P1, . . . , Pp) where V is
a set of nodes and the Pj are sets of non-zero natural numbers. Let w =
(Σ; s1, . . . , sp) be a value-tuple. We say that w is a requirement on w when V
is a subset of the nodes in Σ and Pj is a subset of [1, |sj |], for every j ∈ [1, p].
A value-tuple (Σ′; s′1, . . . , s

′
p) satisfies w on w if (Σ′; s′1, . . . , s

′
p)vw, V is a

subset of the nodes in Σ′, and for every j ∈ [1, p] there exists a witness hj
for s′j v sj such that Pj ⊆ rng(hj). Note that w itself trivially satisfies w on
w. We will denote the set of all value-tuples which satisfy w on w by [w, w].

As an example, let Σ2 and Σ3 be the stores depicted in Figure 6(b) re-
spectively Figure 6(c). Then w = ({n7}; {2}) is clearly a requirement on
w = (Σ3; 〈n1, n4, a, n4〉). Furthermore, the value (Σ2; 〈n4〉) satisfies w on
w. Indeed, it is clear that (Σ2; 〈n4〉)v(Σ3; 〈n1, n4, a, n4〉) and that {n7} is a
subset of the nodes in Σ2. Moreover, the function which maps 1 to 2 is a wit-
ness of 〈n4〉v〈n1, n4, a, n4〉 whose range obviously includes {2}. The value
(∅; 〈a, n4〉) does not satisfy w on w however. Indeed, {n7} is not a subset
of the nodes in ∅ and there exists no witness h of 〈a, n4〉v〈n1, n4, a, n4〉 for
which {2} ⊆ rng(h).

39

The following lemma establishes some basic properties of requirements.

Lemma 33. Let (V ;P1, . . . , Pp) be a requirement on (Σ; s1, . . . , sp), let
(Σ′; s′1, . . . , s

′
p) be a value-tuple which satisfies this requirement, and let j ∈

[1, p]. Then |Pj | ≤ |s′| and {sj(i) | i ∈ Pj} ⊆ rng(s′j).

Proof. Trivial.

Undefinedness reasons Let R ⊆ Vp×V and w ∈ Vp such that R(w) = ∅.
A requirement w on w is a reason why R(w) = ∅ if R(v) = ∅ for every
v ∈ [w, w]. Intuitively, a reason why R(w) = ∅ describes a “part” of w
which causes R to be undefined on w.

For example, w = (∅; {2}) is a reason why children is undefined on w =
(Σ; 〈n, a,m, a〉). Indeed, if (Σ′; s′) ∈ [w, w], then it follows by Lemma 33 that
{a} ⊆ rng(s′). Since s′ hence mentions an atom, children is also undefined
on (Σ′; s′). Likewise, w′ = (∅; {1}, {1, 2}) is a reason why eq is undefined on
w′ = (∅; 〈a, c〉, 〈a, b, c〉). Indeed, if (Σ′; s′1, s

′
2) ∈ [w′, w′], then it follows by

Lemma 33 that |s′1| ≥ 1 and |s′2| ≥ 2. Hence, eq is undefined on (Σ′; s′1, s
′
2).

Reasons are not necessarily unique. For example, (∅; {1, 2}, {2}) is an-
other reason why eq is undefined on (∅; 〈a, c〉, 〈a, b, c〉). Furthermore, there
always exists a reason why R is undefined on w = (Σ; s1, . . . , sp). Indeed,
it suffices to take w = (V ;P1, . . . , Pp) with V the set of nodes in Σ and
Pj = [1, |sj |], for every j ∈ [1, p].

Locally-undefinedness The size of a requirement w = (V ;P1, . . . , Pp),
denoted by |w|, is the maximum of |V |, |P1|, . . . , |Pp|. We say that R
is locally-undefined if there exists a constant k such that for every v on
which R is undefined there exists a reason why R(v) = ∅ of size at most
k. We call k a witness of the fact that R is locally-undefined. Intuitively,
a locally-undefined base operation cannot base its decision to be undefined
on a certain input on the whole input, but only on a small part of it.

Example 34. Let us give some examples of locally-undefined base opera-
tions.

• The concatenation operator concat , the atomization function data,
and the emptiness test empty are always defined. Hence, they are also
locally-undefined.

• The children axis is locally-undefined with witness 1. Indeed, suppose
that children is undefined on w = (Σ; s). Then there exists j ∈ [1, s]
such that s(j) is a atom. Let w be the requirement (∅; {j}) on (Σ; s).
It is clear that w has size 1. Furthermore, let (Σ′; s′) ∈ [w, w]. It
follows by Lemma 33 that s(j) ∈ rng(s′). As s′ thus mentions an
atom, it follows that children is undefined on (Σ′; s′). Hence, w is a
reason why children(w) = ∅.

40

• The atomic value comparison eq is locally-undefined with witness 2.
Indeed, suppose that eq(w) is undefined. We discern two cases.

1. If w = (Σ; 〈i1〉, 〈i2〉) with i1 or i2 a node, then let w be the
requirement (∅; {1}, {1}) on w. It is clear that w has size 1.
Furthermore let (Σ′; s′1, s

′
2) ∈ [w, w]. It follows by Lemma 33

that i1 ∈ rng(s′1) and i2 ∈ rng(s′2). Since s′1 or s′2 are then non-
empty and since one of them mentions a node, it follows that eq
is undefined on (Σ′; s′1, s

′
2). Hence, w is a reason why eq(w) = ∅.

2. Otherwise, w must be of the form (Σ; s1, s2) with s1 and s2 non-
empty and one of s1 or s2 containing two or more items. We
assume without loss of generality that |s1| ≥ 2, the other case is
similar. Let w be the requirement (∅; {1, 2}, {1}). It is clear that
w has size 2. Furthermore, let (Σ′; s′1, s

′
2) ∈ [w, w]. It follows by

Lemma 33 that |s′1| ≥ 2 and |s′2| ≥ 1. Hence, eq is undefined on
(Σ′; s′1, s

′
2). As such w is a reason why eq(w) = ∅.

• The kind test is-element is locally-undefined with witness 2. Indeed,
suppose that is-element(w) is undefined. We discern three cases.

1. If w = (Σ; 〈〉), then let w be the requirement (∅; ∅) on w. It is
clear that w has size 0. Let (Σ′; s′) ∈ [w, w]. Since in particular
s′v〈〉, it follows that is-element is undefined on (Σ′; s′). Hence,
w is a reason why is-element(w) = ∅.

2. If w = (Σ; 〈a〉) with a an atom, then let w be the requirement
(∅; {1}) on w. It is clear that w has size 1. Furthermore, let
(Σ′; s′) ∈ [w, w]. It follows by Lemma 33 that a ∈ rng(s′). As s′

hence mentions an atom, it follows that is-element is undefined
on (Σ′; s′). Hence, w is a reason why is-element(w) = ∅.

3. Otherwise, w must be of the form (Σ; s) with |s| ≥ 2. Let w be
the requirement (∅; {1, 2}) on w. It is clear that w has size 2.
Furthermore, let (Σ′; s′) ∈ [w, w]. It follows by Lemma 33 that
|s′| ≥ 2. Hence, is-element is undefined on (Σ′; s′). As such, w is
a reason why eq(w) = ∅.

• As a final example, let R be the base operation that relates (Σ; s) to
(Σ; 〈〉) if s is a sequence of items in which no element node has an
a-labeled element child. If some element node in s does have an a-
labeled element child, then R(Σ; s) is undefined. Note that R is not
some artificially contrived example. Indeed, R can be defined by the
following expression.

for y in x return
if is-element(y) then

41

for z in children(y) return
if is-element(z) then

if eq(node-name(z), a) then
if () then () else ()

else ()
else ()

else ()

We claim that R is locally-undefined with witness 1. Indeed, suppose
that R is undefined on w = (Σ; s). Then there exists a position j ∈
[1, |s|] such that s(j) is an element node which has an a-labeled element
child node n. Let w be the requirement ({n}, {j}) on w. It is clear
that w has size 1. Furthermore, let (Σ′; s′) ∈ [w, w]. Since {n} is
a subset of the nodes in Σ′ and since Σ′vΣ, it follows that n is an
a-labeled element child of s(j) in Σ′. Furthermore, s(j) ∈ rng(s′) by
Lemma 33. As s′ thus mentions an element node with an a-labeled
element child, it follows that R is undefined on (Σ′; s′). Hence, w is a
reason why R(Σ; s) = ∅.

Using similar reasonings as the ones employed in Example 34 we obtain:

Proposition 35. The base operations concat, children, descendant, parent,
ancestor, preceding-sibling, following-sibling, data, eq, is, �, is-element,
is-text, node-name, content, element, merge-text, text, empty, +, and ×
are all locally-undefined.

Note that hence locally-undefinedness alone is not powerful enough to
prevent the construction of QL(concat , children, eq , node-name, content ,
element , empty) and QL(+,×), for which well-definedness is undecidable.

7.2 Non-local behavior

Unfortunately, locally-undefinedness does not transfer from base operations
to expressions, a fact which can also cause trouble as we show next.

Let zip be a binary base operation which relates (Σ; r, s) to (Σ ◦Π; t)
where Π has the form

|r| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|s|−|r| times

︷ ︸︸ ︷

true

false

. . .

true

false

if |r| ≤ |s| and is otherwise of the form

42

|s| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|r|−|s| times

︷ ︸︸ ︷

true

true

. . .

true

true

In both cases t is the list of Π’s root nodes in document order. Note that Π
always has width max(|r|, |s|). Intuitively, every natural number i between
1 and max(|r|, |s|) gets represented as a root node, which has a true-labeled
child if i ≤ |r| and has a false-labeled child if i ≤ |s|. Note that zip is
defined on every input and is hence locally-undefined.

Now let has-false be the base operation which relates (Σ; 〈n〉) to (Σ; 〈〉)
if n has a false-labeled child, and which is undefined otherwise. Since the
undefinedness behavior of has-false is equal to the undefinedness behavior of
is-element , which we already showed to be locally-undefined in Example 34,
it follows that has-false is also locally-undefined.

Although zip and has-false are hence both locally-undefined, there are
expressions in QL(zip, has-false) which are not locally-undefined, as the fol-
lowing lemma shows.

Lemma 36. The expression

for x in zip(y , z) return has-false(x)

is not locally-undefined.

Proof. Let us denote the expression above by e. Suppose, for the purpose
of contradiction, that there does exist a natural number k such that for all
contexts v on e for which e(v) = ∅, there exists a reason why e(v) = ∅ of size
at most k. Then let (Σ; y : s1, z : s2) be a context on e such that |s1| = k+1
and |s2| = k. Clearly, e(Σ; y : s1, z : s2) = ∅. Hence, there exists a reason
w := (V ; y : P1, z : P2) why this is so of size at most k. Since P1 has at most
k elements, there must exist a list s′1v s1 of width k for which there exists
a witness h of s′1v s1 such that P1 ⊆ rng(h). Then clearly

(Σ; y : s′1, z : s2) ∈ [w, (Σ; y : s1, z : s2)].

Since |s′1| = |s2| it follows however that e(Σ; y : s′1, z : s2) 6= ∅, which contra-
dicts the fact that w is a reason why e is undefined on (Σ; y : s1, z : s2).

In fact, expressions as in Lemma 36 are quite problematic with regard
to well-definedness checking. Indeed, let e1 and e2 be expressions with the
same set of free variables and let Γ be a type assignment under which e1
and e2 are well-defined. Then |e1| ≤Γ |e2| if, and only if,

for x in zip(e1, e2) return has-false(x)

43

is well-defined under Γ. As we now have a reduction from the list-width
problem to well-definedness, it follows from Lemma 29 that

Proposition 37. Well-definedness for QL(concat , zip, has-false) is unde-
cidable.

This undecidability is not due to the fact that our set of base operations
contains a non-monotone or non-generic base operation. Indeed, we already
know that concat is monotone and generic from Propositions 21 and 26. Sim-
ilarly, it is quite easy to see that both zip and has-false are generic.11 Since
has-false(Σ; s) when defined always returns (Σ; 〈〉) it follows that has-false
is also monotone. Finally, we show that zip is also monotone.

Lemma 38. The base operation zip is monotone.

Proof. Suppose that zip is defined on (Σ; r, s) and (Σ′; r′, s′) and that (Σ; r, s)
is contained in (Σ′; r′, s′). Let (Σ′ ◦Π′; t′) ∈ zip(Σ′; r′, s′). We will show
that we can always find (Σ ◦Π; t) ∈ zip(Σ; r, s) such that ΠvΠ′. Since by
definition of zip we know that t is the list of all of the root nodes in Π in
document order, and that t′ is the list of all of the root nodes in Π′s in
document order, we then also have tv t′. Hence (Σ ◦Π; t)v(Σ′ ◦Π′; t′), i.e.,
zip is monotone.

We only treat the case where |r′| ≤ |s′|, the other case is similar. By
definition of zip we know that Π′ is of the form

|r′| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|s′|−|r′| times

︷ ︸︸ ︷

true

false

. . .

true

false

We observe the following cases.

• If |r| > |s|, then for every (Σ ◦Π; t) ∈ zip(Σ; r, s) we know that Π is of
the form

|s| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|r|−|s| times

︷ ︸︸ ︷

true

true

. . .

true

true

11Remember that generic base operations can interpret true and false, which explains
why zip and has-false can be generic. The use of true and false in these base operations
is done solely for simplicity of exposition however. Indeed, zip and has-false could just as
easily have taken extra atoms as input and used those atoms instead of true and false.

44

In particular we know that Π consists of |r| trees. Furthermore, |r| ≤
|r′| since rv r′. It is then easy to see that there exists at least one
(Σ ◦Π; t) ∈ zip(Σ; r, s) for which Π is contained in the first |r′| trees
of Π′. Hence, ΠvΠ′, as desired.

• If |r| ≤ |s|, then for every (Σ ◦Π; t) ∈ zip(Σ; r, s) we know that Π is of
the form

|r| times

︷ ︸︸ ︷

true

true false

. . .

true

true false

|s|−|r| times

︷ ︸︸ ︷

true

false

. . .

true

false

In particular we know that Π consists of |s| trees. Furthermore, |r| ≤
|r′| and |s| ≤ |s′| since rv r′ and sv s′. If |s| − |r| ≤ |s′| − |r′|, then it
is easy to see that there exists at least one (Σ ◦Π; t) ∈ zip(Σ; r, s) for
which the first |r| trees of Π are contained in the first |r| trees of Π′ and
the other |s| − |r| trees of Π are contained in the last |s| − |r| trees of
Π′. Hence, ΠvΠ′, as desired. If on the other hand |s|−|r| > |s′|−|r′|,
then

|r|+ (|s| − |r|)− (|s′| − |r′|) = |s| − |s′|+ |r′| ≤ |r′|

Hence there exists at least one (Σ ◦Π; t) ∈ zip(Σ; r, s) for which the
first |r| + (|s| − |r|) − (|s′| − |r′|) trees of Π are contained in the first
|r′| trees of Π′ and the other (|s′| − |r′|) trees of Π are contained in
the last |s′| − |r′| trees of Π′. In both cases we hence have ΠvΠ′, as
desired.

Hence our restriction to monotone, generic, and locally-undefined base
operations does not prevent the definition of QL(concat , zip, has-false) for
which well-definedness is undecidable. The core difficulty here is that zip
is non-local in the sense that the presence of a tree without false-labeled
child in the output depends on the whole input, and not on a local part of it.
We will therefore restrict ourselves to base operations where every part of
the output depends only on a local part of the input. We make this notion
precise as follows.

Parts Let R ⊆ Vp×V be a base operation and let v be an input on which
R is defined. If w ∈ R(v) and if w is a requirement on w, then we say that
the set [w, w] is a part of R(v), denoted by [w, w] /R(v).

45

The set [w, w] intuitively describes a property of values. For example,
consider a value w = (Σ; s) where smentions a node n in Σ without a-labeled
child but with a b-labeled child m. Let w = ({m}, {j}) be the requirement
on w where s(j) = n. The set [w, w] then contains all values (Σ′; s′)vw
such that s′ mentions n; n does not have an a-labeled child in Σ′; and m is
a b-labeled child of n in Σ′. Indeed, n ∈ rng(s) by Lemma 33; n does not
have an a-labeled child in Σ′ since Σ′vΣ; and m is a b-labeled child of n in
Σ′ since Σ′vΣ and since {m} is a subset of the nodes in Σ′. The fact that
[w, w] is a part of R(v) hence registers the fact every value in R(v) has a
node in its list without an a-labeled child, but with a b-labeled child (as R
is a semi-function).

Output reasons A requirement v on v is a reason why [w, w] /R(v) if
for every v′ ∈ [v, v] on which R is defined, [w, w] ∩R(v′) 6= ∅.

Intuitively, the fact that [w, w] ∩ R(v′) 6= ∅ implies that the values in
R(v′) also satisfy the property described by [w, w]. For our earlier example,
this implies that the values in R(v′) mention a node in their list without
an a-labeled child, but with a b-labeled child. Since this is true for every v′

which satisfies v on v, we can say that v is a “reason” why R(v) has the
property described by [w, w].

Example 39. The requirement (∅; {1}) is a reason why

[(∅; ∅), (∅; 〈false〉)] / empty(∅; 〈a, n〉).

Indeed, let (Σ′; s′) ∈ [(∅; {1}), (∅; 〈a, n〉)]. By Lemma 33 it follows that
|s′| ≥ 1. Hence, s′ is non-empty, and thus empty(Σ′; s′) = {(Σ′; 〈false〉)}.
It is easy to see that hence [(∅; ∅), (∅; 〈false〉)] ∩ empty(Σ′; s′) 6= ∅.

Locality We say that R is local if there exists a computable increasing
function c mapping natural numbers to natural numbers such that for ev-
ery input v and every part [w, w] of R(v) there exists a reason v why
[w, w] /R(v) of size at most c(|w|). We call c a witness of the fact that
R is local.

Example 40. Let us give some examples of local base operations.

• The base operation smaller-width introduced in Section 7.1 is local as
witnessed by the identity function. Indeed, suppose that [w, w] is part
of R(v), for some v = (Σ; s1, s2). Since smaller-width(v) = {(Σ; 〈〉)},
it follows that w = (Σ; 〈〉). Let (V ;P) = w. Since P ⊆ [1, |〈〉|] = ∅,
it follows that P is the empty set. It is clear that v = (V ; ∅, ∅) is
a requirement on v of size |V | ≤ |w|. We claim that v is a reason
why [w, w] / smaller-width(v). Indeed, let v′ = (Σ′; s′1, s

′
2) ∈ [v, v] and

suppose that smaller-width(v′) is defined. Since v′ ∈ [v, v], Σ′vΣ

46

and V is a subset of the nodes in Σ′. Hence, (Σ′; 〈〉) ∈ [w, w]. Since
smaller-width(v′) can only be {(Σ′; 〈〉)}, we have smaller-width(v′) ∩
[w, w] 6= ∅, as desired.

• The children axis is local as witnessed by the function which maps k
to 2k. Indeed, suppose that [w, w] is part of R(v), for some v = (Σ; s).
Since children(v) = {(Σ; t)} with t containing the children of nodes in
s in document order, this implies that w = (Σ; t). Let w = (V ;P).
Let, for each j ∈ P , ij be the position in [1, |s|] such that s(ij) is the
parent of t(j). Let P ′ = {ij | j ∈ P} and V ′ = V ∪ {t(j) | j ∈ P}.
Clearly, v = (V ′;P ′) is a requirement on v of size

max{|V ′|, |P ′|} ≤ max{|V |+ |P |, |P |} ≤ 2|w|.

We claim that v is a reason why [w, w] / children(v). Indeed, let v′ =
(Σ′; s′) ∈ [v, v] and suppose that children(v′) is defined. It follows
in particular that V ′ ⊇ V is a subset of the nodes in Σ′ and that
(Σ′; s′)v(Σ; s). Let (Σ′; t′) be the value related to v′ by children (where
t′ hence contains the children of nodes in s′ in document order). Since
every child of a node m in Σ′ is also a child of m in Σ (as Σ′vΣ)
and since rng(s′) ⊆ rng(s) (as s′v s), it follows that rng(t′) ⊆ rng(t).
Moreover, {t(j) | j ∈ P} ⊆ rng(t′) since {s(ij) | ij ∈ P ′} ⊆ rng(s′) by
Lemma 33 and since V ′ ⊇ {t(j) | j ∈ P} is a subset of the nodes in
Σ′. It is not difficult to see that, since the nodes mentioned in t′ and t
occur in document order and since this document order is maintained
by the fact that Σ′vΣ, there hence exists a witness h of t′v t for which
P ⊆ rng(h). Hence, (Σ′; t′) ∈ [w, w]. Since children(v′) = {(Σ′; t′)},
we have children(v′) ∩ [w, w] 6= ∅, as desired.

• The element constructor element is also a local base operation as wit-
nessed by the identity function. Indeed, suppose that [w, w] is part of
element(v). We know that v and w are of the form

v = (Σ; 〈a〉, 〈n1, . . . , nk〉)
w = (Σ ◦Θ; 〈m〉).

Here, Θ is a tree, disjoint with Σ, whose root element node m is labeled
by a such that

– m has exactly k children m1, . . . ,mk with m1<Θ . . . <Θmk, and

– for every j ∈ [1, k] there exists a node-renaming ρj such that
ρj(Σ|nj) = Θ|mj .

Let (V ;P) = w. We partition V into VΣ and VΘ such that VΣ is a
subset of the nodes in Σ and VΘ is a subset of the nodes in Θ. Then
let, for every j ∈ [1, k], Vj be the maximal subset of VΘ which is also

47

a subset of Θ|mj . Let Wj = ρ−1
j (Vj) for every j ∈ [1, k]. Since ρj is a

bijection, it is clear that |Wj | = |Vj |. Hence

|
k⋃
j=1

Wj | = |
k⋃
j=1

Vj | ≤ |VΘ|.

Let Q be the set of all j ∈ [1, k] for which Vj 6= ∅. It is clear that
|Q| ≤ |VΘ|. Then let v be the requirement on v defined by

v := (VΣ ∪
k⋃
j=1

Wj ; ∅, Q).

It is clear that the size of v is given by

max

|VΣ ∪
k⋃
j=1

Wj |, |Q|

 ≤ max {|VΣ|+ |VΘ|, |VΘ|} ≤ |w|.

We claim that v is a reason why [w, w] / element(v). Indeed, let v′ ∈
[v, v] and suppose that element(v′) is defined. In particular we know
that v′v v. Since element(v′) is defined, we hence know that v′ is of
the form

v′ = (Σ′; 〈a〉, 〈n′1, . . . , n′l〉).
Furthermore, since v′ ∈ [v, v], there exists a witness h of

〈n′1, . . . , n′l〉v〈n1, . . . , nk〉

such thatQ ⊆ rng(h). Note that, by definition of v, we have n′i = nh(i)
for every i ∈ [1, l]. Then let Θ′ be the tree with the a-labeled root node
m in which m has mh(1), . . . ,mh(l) as children with

mh(1)<Θ′ . . . <Θ′ mh(l),

such that for every i ∈ [1, l]:

ρh(i)

(
Σ′|n′

i

)
= Θ′|mh(i)

.

It is easy to see that Θ′vΘ and hence (Σ′ ◦Θ′; 〈m〉)v(Σ ◦Θ; 〈m〉).
Furthermore, since for every j ∈ [1, k] for which Vj 6= ∅ there exists
i ∈ [1, l] such that h(i) = j and since Wj is a subset of the nodes
in Σ′, it follows by construction that Vj is a subset of the nodes in
Θ′|mj , for every j ∈ [1, k]. Hence, VΘ is a subset of the nodes in Θ.
Since VΣ is also subset of the nodes in Σ′, it follows that hence VΣ ∪
VΘ = V is a subset of the nodes in Σ′ ◦Θ′. Furthermore, the identity
function is certainly a witness of 〈m〉v〈m〉 whose range contains P
(as P ⊆ {1}). Hence, (Σ′ ◦Θ′; 〈m〉) ∈ [w, w]. Finally, it is easy to see
that (Σ′ ◦Θ′; 〈m〉) ∈ element(v′). Hence, element(v′) ∩ [w, w] 6= ∅, as
desired.

48

Using similar reasonings as the ones employed in Example 40 we obtain:

Proposition 41. The base operations concat, children, descendant, parent,
ancestor, preceding-sibling, following-sibling, data, eq, is, �, is-element,
is-text, is-atom, node-name, content, element, merge-text, text, empty, +,
×, and smaller-width are all local.

Note that hence locality alone is not powerful enough to prevent the con-
struction of QL(concat , children, eq , node-name, content , element , empty),
QL(+,×), and QL(concat , smaller-width), for which well-definedness is un-
decidable.

7.3 Local and locally-undefined expressions

In this section we show that if B is a finite set of monotone, local, and
locally-undefined base operations, then locally-undefinedness transfers to
expressions in QL(B). Moreover, a witness of the fact that e ∈ QL(B) is
locally-undefined can be computed from e. This property lies at the heart
of our decidability result in Section 8. Before we are able to prove it we
first show that if B is a finite set of monotone and local base operations,
then locality transfers to expressions in QL(B). We start out by stating the
following technical lemmas.

Lemma 42. Let (V ;P) be a requirement on (Σ0 ◦©p
j=1 Σj ;©p

j=1 sj). Let
V0, . . . , Vp be the partition of V such that V0 is a subset of the nodes in Σ0

and Vj is a subset of the nodes in Σj, for every j ∈ [1, p]. Let for each
j ∈ [1, p], Pj be the subset of P defined by

Pj :=

{
k −

j−1∑
i=1

|si|
∣∣ k ∈ P and

j−1∑
i=1

|si| < k ≤
j∑
i=1

|si|

}
.

Let, for every j ∈ [1, p], (Σ′0 ◦Σ′j ; s
′
j) be a value in [(V0∪Vj ;Pj), (Σ0 ◦Σj ; sj)]

such that Σ′0vΣ0 and Σ′j vΣj. Then

(Σ′0 ◦©
p
j=1 Σ′j ;©

p
j=1 s

′
j) ∈ [(V ;P), (Σ0 ◦©p

j=1 Σj ;©p
j=1 sj)].

Proof. It immediately follows that

(Σ′0 ◦©
p
j=1 Σ′j ;©

p
j=1 s

′
j)v(Σ0 ◦©p

j=1 Σj ;©p
j=1 sj).

Since Σ′0 ◦Σ′j contains all nodes in V0 ∪ Vj for every j ∈ [1, p] it follows that
Σ′0 ◦©

p
j=1 Σ′j contains all nodes in

V0 ∪
p⋃
j=1

Vj = V.

49

Furthermore, for every j ∈ [1, p] there exists a witness hj of s′j v sj such
that Pj ⊆ rng(hj). Then let h be the function mapping [1, |©p

j=1 s
′
j |] to

[1, |©p
j=1 sj |] defined by

h(q) := hj

(
q −

j−1∑
i=1

|s′i|

)
+

j−1∑
i=1

|si| when
j−1∑
i=1

|s′i| < q ≤
j∑
i=1

|s′i|.

It is easy to see that h is a witness of ©p
j=1 s

′
j v©

p
j=1 sj . It remains to show

that P ⊆ rng(h). Let k ∈ P . Since P ⊆ [1, |©p
j=1 sj |], there exists j ∈ [1, p]

such that
j−1∑
i=1

|si| < k ≤
j∑
i=1

|si|.

It follows that hence

k −
j−1∑
i=1

|si| ∈ Pj .

Since Pj ⊆ rng(hj) there exists l ∈ [1, |s′j |] such that

hj(l) = k −
j−1∑
i=1

|si|.

Then obviously
j−1∑
i=1

|s′i| < l +
j−1∑
i=1

|s′i| ≤
j∑
i=1

|s′i|,

and hence

h(l +
j−1∑
i=1

|s′i|) = hj(l) +
j−1∑
i=1

|si| = k.

Hence, k ∈ rng(h), as desired.

Lemma 43. Let R be a base operation, let (Σ ◦Σ1; s1) ∈ R(Σ;~s), and let
(V, ~P) be a reason why [(W,Q), (Σ ◦Σ1; s1)] /R(Σ;~s) such that V contains
all nodes of W in Σ. For every (Σ′; ~s′) ∈ [(V, ~P), (Σ;~s)] on which R is
defined there exists

(Σ′ ◦Σ′1; s
′
1) ∈ R(Σ′; ~s′) ∩ [(W,Q), (Σ ◦Σ1; s1)]

with Σ′1vΣ1.

Proof. Every store can be written as a concatenation of trees. Let Θ1, . . . ,Θk

be the non-empty trees such that Σ = Θ1 ◦ · · · ◦Θk. Since Σ′vΣ, we can
write Σ′ as a concatenation of trees Θ′1 ◦ · · · ◦Θ′k such that Θ′j vΘj for every

50

j ∈ [1, k], where if Σ′ does not contain any node in Θj , we take Θ′j to be
the empty tree. Let ∆1, . . . ,∆k be the trees such that, for every j ∈ [1, k],
∆j = Θ′j if Θ′j is non-empty, and ∆j = Θj otherwise. In particular, ∆j = Θ′j
whenever ~s′ mentions a node in Θj . Since R is reachable-only and since
R(Θ′1 ◦ · · · ◦Θ′k; ~s′) is defined, it is easy to see that R(∆1 ◦ · · · ◦∆k; ~s′) is also
defined. Moreover, by construction we have ∆j vΘj for every j ∈ [1, k].
Hence,

(∆1 ◦ · · · ◦∆k; ~s′) ∈ [(V, ~P), (Σ;~s)].

Since (V, ~P) is a reason why [(W,Q), (Σ ◦Σ1; s1)] /R(Σ;~s), there exists

(∆1 ◦ · · · ◦∆k ◦Σ′1; s
′
1) ∈ R(∆1 ◦ · · · ◦∆k; ~s′) ∩ [(W,Q), (Σ ◦Σ1; s1)].

Hence, Σ′1vΣ ◦Σ1. Using a similar reasoning as in the proof of Lemma 23
it now follows that Σ′1vΣ1. Then, since R is reachable-only, since ∆j = Θ′j
whenever ~s′ mentions a node in ∆j , and since (∆1 ◦ · · · ◦∆k ◦Σ′1; s

′
1) ∈

R(∆1 ◦ · · · ◦∆k; ~s′) we have (Σ′ ◦Σ′1; s
′
1) ∈ R(Σ′; ~s′). Moreover, since V con-

tains all nodes of W in Σ, it is easy to see that W is a subset of the nodes
in Σ′ ◦Σ′1. Hence, (Σ′ ◦Σ′1; s

′
1) ∈ [(W,Q), (Σ ◦Σ1; s1)], as desired.

Proposition 44. If B is a finite set of monotone and local base operations,
then every expression e ∈ QL(B) is also local. Moreover, an arithmetic ex-
pression defining a witness of this locality can effectively be computed from e.

Proof. Let cf be a witness of the fact that base operation f ∈ B is local.
For every e ∈ QL(B) we then define the function ce inductively as follows:

cx(k) := k

ca(k) := k

c()(k) := k

cif e1 then e2 else e3(k) := max{ce2(k), ce3(k)}
clet x:=e1 return e2(k) := ce1(ce2(k)) + ce2(k)

cfor x in e1 return e2(k) := ce1(max{k + 2kce2(k), 2k}) + 2kce2(k)
cf(e1,...,ep)(k) := cf (k) + ce1(cf (k)) + · · ·+ cep(cf (k))

It is clear from this inductive definition that an arithmetic expression defin-
ing ce can effectively be computed from e. It is also clear that ce is a
computable, increasing function mapping natural numbers to natural num-
bers. Let v be a context of e and let [w, w] be a part of e(v). We will
prove by induction on e that there exists a reason why [w, w′] / e(v) of size
at most ce(|w|). During our induction we will often use the fact that every
expression e′ ∈ QL(B) defines a monotone base operation by Propositions 6
and 25. We will also use the fact that if e′ ∈ QL(B) is defined on input v′,
then e′ is also defined on every input node-isomorphic to v′ by Lemma 24.

51

• If e = x, then let (Σ;σ) = v. Since e(v) = {(Σ;σ(x))} and since
[w, w] / e(v), it follows that w = (Σ;σ(x)). Let (V ;P) = w and let v
be the requirement (V ;φ) on v such that φ is defined by

φ(y) :=

{
P if y = x

∅ otherwise.

It is easy to see that v is a reason why [w, w] / e(v) of size |w|.12

• If e = a, then let (Σ;σ) = v. Since e(v) = {(Σ; 〈a〉)} and since
[w, w] / e(v), it follows that w = (Σ; 〈a〉). Let (V ;P) = w and let v
be the requirement (V ;φ) on v such that φ is defined by

φ(x) := ∅ for all x.

It is easy to see that v is a reason why [w, w] / e(v) of size |w|.

• The case where e = () is similar.

• If e = if e1 then e2 else e3, then there exists (Σ1; 〈b〉) ∈ e1(v)
with b a boolean such that [w, w] / e2(v) if b = true and [w, w] / e3(v)
otherwise. Suppose that b = true. Then there exists a reason v why
[w, w] / e2(v) of size at most ce2(|w|) by the induction hypothesis. We
claim that v is also a reason why [w, w] / e(v). Indeed, suppose that
v′ ∈ [v, v] and that e(v′) is defined. In particular e1(v′) must then
also be defined. Since e1 is monotone, there exists (Σ′1; s

′) ∈ e1(v′)
with (Σ′1; s

′)v(Σ1; 〈true〉). It follows that s′ = 〈〉 or s′ = 〈true〉.
Suppose that s′ = 〈〉. Then we know that the list of all values in
e1(v′) is empty, since e1 is a semi-function. Hence, e(v′) would be
undefined, a contradiction. Hence, s′ must be 〈true〉. Since e1 is a
semi-function, it follows that the list of every value in e1(v′) is 〈true〉.
Hence, e(v′) = e2(v′) and thus

e(v′) ∩ [w, w] = e2(v′) ∩ [w, w] 6= ∅.

In a similar way we can show that if b = false, then the reason v
why [w, w] / e3(v) of size at most ce3(|w|) as given by the induction
hypothesis is also a reason why [w, w] / e(v). Hence, we can always find
a reason why [w, w] / e(v) of size at most max{ce2(|w|), ce3(|w|)} =
ce(|w|).

12Here we extend the notion of a requirement to contexts in the obvious way: if σ is
an environment with domain {x, . . . , y} and φ is function from {x, . . . , y} to the positive
natural numbers, then (V ; φ) is a requirement on context (Σ; σ) if (V ; φ(x), . . . , φ(y)) is
a requirement on (Σ; σ(x), . . . , σ(y)). We say that (Σ′; σ′) satisfies (V ; φ) on (Σ; σ) if
(Σ′; σ′(x), . . . , σ′(y)) satisfies (V ; φ(x), . . . , φ(y)) on (Σ; σ(x), . . . , σ(y)).

52

• If e = let x := e1 return e2, then let (Σ;σ) = v. Since [w, w] / e(v)
there exists (Σ1; s1) ∈ e1(v) such that [w, w] / e2(Σ1;x : s1, σ). By the
induction hypothesis there exists a reason (V1;x : P1, φ1) why this is
so of size at most ce2(|w|). We have in particular that (V1;P1) is
a requirement on (Σ1; s1). By the induction hypothesis there hence
exists a reason (V ;φ) why [(V1;P1), (Σ1; s1)] / e1(v) of size at most
ce1(ce2(|w|)). Let φ′ be the function with domain dom(σ) defined by

φ′(y) := φ(y) ∪ φ1(y),

and let v = (V ;φ′). It is easy to see that v is a requirement on v.
Moreover,

|v| = max
{
|V |, |φ′(x)|

∣∣ x ∈ dom(σ)
}

≤ max{ce1(ce2(|w|)), ce1(ce2(|w|)) + ce2(|w|)}
= ce1(ce2(|w|)) + ce2(|w|)
= ce(|w|).

We claim that w is a reason why [w, w] / e(v). Indeed, let v′ =
(Σ′;σ′) ∈ [v, v] and suppose that e(v′) is defined. There hence ex-
ists (Σ′1; s

′
1) ∈ e1(v′) such that e2(Σ′1;x : s′1, σ

′) is defined. Since e1(v′)
is hence defined; since (V ;φ) is a reason why

[(V1;P1), (Σ1; s1)] / e1(Σ;σ);

and since v′ ∈ [(V ;φ′), (Σ;σ)] ⊆ [(V ;φ), (Σ;σ)], it follows that

e1(v′) ∩ [(V1;P1), (Σ1; s1)] 6= ∅.

Let (Σ′′1; s
′′
1) be a value in this non-empty intersection. Then clearly

(Σ′′1;x : s′′1, σ
′) ∈ [(V1;x : P1, φ

′), (Σ1;x : s1, σ)]
⊆ [(V1;x : P1, φ1), (Σ1;x : s1, σ)].

(2)

Furthermore, since e1 is a base operation it follows that

(Σ′′1;x : s′′1, σ
′) ≡node (Σ′1;x : s′1, σ

′)

by Corollary 12. Since e2(Σ′1;x : s′1, σ
′) is defined and since e2 is node-

generic, it follows that

e2(Σ′′1;x : s′′1, σ
′) 6= ∅. (3)

Since (V1;x : P1, φ1) is a reason why [w, w] / e2(Σ1;x : s1, σ) it follows
from (2) and (3) that e2(Σ′′1;x : s′′1, σ

′) ∩ [w, w] 6= ∅. Hence, e(v′) ∩
[w, w] 6= ∅, as desired.

53

• If e = f(e1, . . . , ep), then let (Σ;σ) = v. Since [w, w] / e(v) there exists
(Σ ◦Σj ; sj) ∈ ej(v) for every j ∈ [1, p] such that the Σj are all pairwise
disjoint and

[w, w] / f(Σ ◦©p
j=1 Σj ; s1, . . . , sp).

Since f is a local base operation with witness cf there hence exists a
reason (V ∪

⋃p
j=1 Vj ;P1, . . . , Pp) why this is so of size at most cf (|w|).

Here, V is a subset of the nodes in Σ and Vj is a subset of the nodes
in Σj , for every j ∈ [1, p]. We have in particular that (V ∪ Vj ;Pj) is a
requirement on (Σ ◦Σj ; sj). By the induction hypothesis there hence
exists for every j ∈ [1, p] a reason (Wj ;φj) why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v)

of size at most cej (cf (|w|)). Let v be the requirement (V ∪
⋃p
j=1Wj ;φ)

on v such that φ is the function with domain dom(σ) defined by

φ(y) :=
p⋃
j=1

φj(y).

Clearly,

|v| ≤ max

|V |+
p∑
j=1

|Wj |,
p∑
j=1

|φj(x)|
∣∣∣ x ∈ dom(σ)

≤ cf (|w|) +

p∑
j=1

cej (cf (|w|)) = ce(|w|).

Moreover, since [v, v] ⊆ [(Wj ;φj), v] for every j ∈ [1, p], v is a reason
why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v).

We claim that v is also a reason why [w, w] / e(v). Indeed, let v′ =
(Σ′;σ′) ∈ [v, v] and suppose that e(v′) is defined. There hence exist
(Σ′ ◦Σ′j ; s

′
j) ∈ ej(v′) for every j ∈ [1, p] such that the Σ′j are all pairwise

disjoint and
f(Σ′ ◦©p

j=1 Σ′j ; s
′
1, . . . , s

′
p) 6= ∅. (4)

Since ej(v′) is hence defined; since ej is a base operation; since v is a
reason why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v);

and since v contains all nodes of V ∪Vj in Σ, it follows from Lemma 43
that for every j ∈ [1, p] there exists

(Σ′ ◦Σ′′j ; s
′′
j) ∈ ej(v′) ∩ [(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)],

54

with Σ′′j vΣj . Since in particular V ∪ Vj is a subset of the nodes
in Σ′ ◦Σ′′j , it follows that V ∪

⋃p
j=1 Vj is a subset of the nodes in

Σ′ ◦©p
j=1 Σ′′j . Hence,

(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) ∈

[(V ∪
p⋃
j=1

Vj ;P1, . . . , Pp), (Σ ◦©p
j=1 Σj ; s1, . . . , sp)]. (5)

Since every ej is a semi-function, it follows that (Σ′ ◦Σ′j ; s
′
j) is node-

isomorphic to (Σ′ ◦Σ′′j ; s
′′
j). Since Σ′′j vΣj and since the Σj are all

pairwise disjoint, it follows that the Σ′′j are also pairwise disjoint. Since
the Σ′j are also pairwise disjoint, it follows by Lemma 11 that

(Σ′ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p) ≡node (Σ′ ◦©p

j=1 Σ′′j ; s
′′
1, . . . , s

′′
p). (6)

Since f is node-generic it follows from (4) and (6) that

f(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) 6= ∅. (7)

Furthermore, since (V ∪
⋃p
j=1 Vj ;P1, . . . , Pp) is a reason why

[w, w] / f(Σ ◦©p
j=1 Σj ; s1, . . . , sp),

it follows from (5) and (7) that

f(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) ∩ [w, w] 6= ∅.

Hence, e(v′) ∩ [w, w] 6= ∅, as desired.

• If e = for x in e1 return e2 then let (Σ;σ) = v. Since [w, w] / e(v)
there exists (Σ0; s) ∈ e1(v) and values

(Σ0 ◦Σj ; sj) ∈ e2(Σ0;x : 〈s(j)〉, σ)

for every j ∈ [1, |s|] such that the Σj are all pairwise disjoint and

w = (Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj).

Let w = (V ;P). Note that in particular V is a subset of the nodes in

Σ0 ◦©|s|j=1 Σj .

Hence, we can partition V into V0, . . . , V|s| such that V0 is contained
in the nodes of Σ0 and Vj is contained in the nodes of Σj , for every
j ∈ [1, |s|]. Let, for every j ∈ [1, |s|], Pj be the subset of P defined by

Pj :=

{
k −

j−1∑
i=1

|si|
∣∣ k ∈ P and

j−1∑
i=1

|si| < k ≤
j∑
i=1

|si|

}
.

55

We have in particular that (V0∪Vj ;Pj) is a requirement on (Σ0 ◦Σj ; sj).
By the induction hypothesis there hence exists, for every j ∈ [1, |s|], a
reason (Wj ;x : Qj , φj) why

[(V0 ∪ Vj ;Pj), (Σ0 ◦Σj ; sj)] / e2(Σ0;x : 〈s(j)〉;σ) (8)

of size at most
ce2(|(V0 ∪ Vj ;Qj)|) ≤ ce2(|w|).

Let J be the set of j in [1, |s|] for which Vj or Pj is non-empty. Note
that there can be at most |w| of the Vj non-empty and that there can
be at most |w| of the Pj non-empty. Hence, J contains at most 2|w|
elements. Hence, the requirement (V0∪

⋃
j∈JWj ;J) on (Σ0; s) has size

at most

max{|V0 ∪
⋃
j∈J

Wj |, |J |} ≤ max{|V0|+
∑
j∈J

|Wj |, |J |}

≤ max{|w|+
∑
j∈J

ce2(|w|), |J |}

≤ max{|w|+ 2|w|ce2(|w|), 2|w|}.

Hence, by the induction hypothesis there exists a reason (W ;φ) why

[(V0 ∪
⋃
j∈J

Wj ;J), (Σ0; s)] / e1(v)

of size at most

ce1

|(V0 ∪
⋃
j∈J

Wj ;J)|

 ≤ ce1(max{|w|+ 2|w|ce2(|w|), 2|w|}).

Let φ′ be the function with domain dom(σ) defined by

φ′(y) := φ(y) ∪
⋃
j∈J

φj(y),

and let v = (W ;φ′). It is easy to see that v is a requirement on v of
size at most

ce1 (max{|w|+ 2|w|ce2(|w|), 2|w|}) +
∑
j∈J

ce2(|w|)

≤ ce1(max{|w|+ 2|w|ce2(|w|), 2|w|}) + 2|w|ce2(|w|) = ce(|w|).

We claim that v is a reason why [w, w] / e(v). Indeed, let v′ =
(Σ′;σ′) ∈ [v, v] such that e(v′) is defined. In particular there must
hence exist (Σ′0; s

′) ∈ e1(v′) such that e2(Σ′0;x : 〈s′(j)〉, σ′) is defined

56

for every j ∈ [1, |s′|]. Since e1(Σ′;σ′) is hence defined; since (W,φ) is
a reason why

[(V0 ∪
⋃
j∈J

Wj ;J), (Σ0; s)] / e1(Σ;σ);

and since

(Σ′;σ′) ∈ [(W ;φ′), (Σ;σ)] ⊆ [(W ;φ), (Σ;σ)],

it follows that

e1(Σ′;σ′) ∩ [(V0 ∪
⋃
j∈J

Wj ;J), (Σ0; s)] 6= ∅.

Let (Σ′′0; s
′′) be a value in this non-empty intersection. Since e1 is a

store-increasing semi-function, it follows from Corollary 13 that |s′| =
|s′′| and that

(Σ′0;x : 〈s′(j)〉, σ′) ≡node (Σ′′0;x : 〈s′′(j)〉, σ′)

for every j ∈ [1, |s′|]. Since e2 is node-generic and since e2 is defined
on (Σ′0;x : 〈s′(j)〉, σ′) for every j ∈ [1, |s′|], it follows that e2 is also
defined on (Σ′′0;x : 〈s′′(j)〉, σ′) for every j ∈ [1, |s′′|]. Since

(Σ′′0; s
′′) ∈ [(V0 ∪

⋃
j∈J

Wj ;J), (Σ0; s)],

there exists a witness h of s′′v s such that J ⊆ rng(h). We will prove
below that for every j ∈ rng(h) there exists

(Σ′′0 ◦Σ′′j ; s
′′
j) ∈ e2(Σ′′0;x : 〈s′′(h−1(j))〉, σ′)

∩ [(V0 ∪ Vj ;Qj), (Σ0 ◦Σj ; sj)], (9)

such that Σ′′j vΣj . Note that h−1(j) is uniquely determined as h is
strictly increasing and hence injective. Let Σ′′j = ∅ and s′′j = 〈〉 for
every j ∈ [1, |s|] \ rng(h). Then

(Σ′′0 ◦©
|s′′|
i=1 Σ′′h(i);©

|s′′|
i=1 s

′′
h(i)) = (Σ′′0 ◦©

|s|
j=1 Σ′′j ;©

|s|
j=1 s

′′
j).

Since the left-hand side is in e(v′), it follows that

(Σ′′0 ◦©
|s|
j=1 Σ′′j ;©

|s|
j=1 s

′′
j) ∈ e(v′). (10)

Note that, if j ∈ [1, |s|]\rng(h), then also j 6∈ J as rng(h) ⊇ J . Hence,
for such j we know that Vj and Pj are empty. Then

(Σ′′0 ◦Σ′′j ; s
′′
j) ∈ [(V0 ∪ Vj ;Pj), (Σ0 ◦Σj ; sj)]

57

and Σ′′j vΣj for every j ∈ [1, |s|]. Note that, since Σ′′j vΣj and since
the Σj are all pairwise disjoint, it follows that the Σ′′j are also pairwise
disjoint. By Lemma 42 and (10) it then follows that

(Σ′′0 ◦©
|s|
j=1 Σ′′j ;©

|s|
j=1 s

′′
j) ∈ [(V ;P), (Σ0 ◦©|s|j=1 Σj ;©|s|j=1 sj)] ∩ e(v

′).

Hence, e(v′) ∩ [w, w] 6= ∅, as desired.

It remains to show (9). Let j ∈ rng(h). Since h is a witness of
s′′v s we have s′′(h−1(j)) = s(j). (Remember that h−1(j) is uniquely
determined as h is strictly increasing and hence injective.) We discern
two possibilities.

– Case j ∈ J . Since we have chosen (Σ′′0; s
′′) such that

(Σ′′0; s
′′) ∈ [(V0 ∪

⋃
j∈J

Wj ;J), (Σ0; s)],

Wj is a subset of the nodes in Σ′′0. Moreover, since Qj is a subset
of [1, |〈s(j)〉|] = {1} it is clear that the identity function is a
witness of 〈s′′(h−1(j))〉v〈s(j)〉 whose range includes Qj . Since
also φj(y) ⊆ φ′(y) for every y ∈ dom(φ′) by construction, it
follows that

(Σ′′0;x : 〈s′′(h−1(j))〉, σ′)
∈ [(V0 ∪Wj , x : Qj , φj), (Σ0;x : 〈s(j)〉, σ)] . (11)

Since [(V0 ∪Wj , x : Qj , φj), (Σ0;x : 〈s(j)〉, σ)] is clearly a subset
of [(Wj , x : Qj , φj), (Σ0;x : 〈s(j)〉, σ)], it follows by (8) that (V0 ∪
Wj , x : Qj , φj) is a reason why

[(V0 ∪ Vj ;Qj), (Σ0 ◦Σj ; sj)] / e2(Σ0;x : 〈s(j)〉, σ).

Then, since V0 ∪Wj contains the nodes of V0 ∪ Vj in Σ0; since
e2 is defined on (Σ′′0;x : 〈s′′(h−1(j))〉, σ′); and since (11) holds, it
follows by Lemma 43 that there exists (Σ′′0 ◦Σ′′j ; s

′′
j) in

e2(Σ′′0;x : 〈s′′(h−1(j)〉, σ′) ∩ [(V0 ∪ Vj ;Qj), (Σ0 ◦Σj ; sj)]

with Σ′′j vΣj , as desired.

– Case j 6∈ J . Note that

(Σ′′0;x : 〈s′′(h−1(j))〉, σ′)v(Σ0;x : 〈s(j)〉, σ).

Since e2 is monotone; since

(Σ0 ◦Σj ; sj) ∈ e2(Σ0;x : 〈s(j)〉, σ);

58

and since e2 is defined on (Σ′′0;x : 〈s′′(h−1(j))〉, σ′), there exists
(Σ′′0 ◦Σ′′j ; s

′′
j)v(Σ0 ◦Σj ; sj) in e2(Σ′′0;x : 〈s′′(h−1(j))〉, σ′) such that

Σ′′j vΣj by Lemma 23. Since

(Σ′′0; s
′′) ∈ [(V0 ∪

⋃
j∈J

Wj ;J), (Σ0; s)],

we know that V0 is a subset of the nodes in Σ′′0. Since j 6∈ J , we
have by construction that both Vj and Qj are empty. Hence

(Σ′′0 ◦Σ′′j ; s
′′
j) ∈ [(V0 ∪ Vj ;Qj), (Σ0 ◦Σj ; sj)] ,

as desired.

We are now ready to prove the main proposition of this section.

Proposition 45. If B is a finite set of monotone, local, and locally un-
defined base operations, then every expression e in QL(B) is also locally-
undefined. Moreover, a witness ke for this locally-undefinedness can effec-
tively be computed from e.

Proof. Let kf be a witness for the locally-undefinedness of base operation
f ∈ B. Let e ∈ QL(B). We then define the natural number ke inductively
as follows:

kx = ka = k() := 0

kif e1 then e2 else e3 := max{ke1 , ke2 , ke3 , ce1(2)}
klet x:=e1 return e2 := max{ke1 , ce1(ke2) + ke2}

kf(e1,...,ep) := max{ke1 , . . . , kep , kf + ce1(kf) + · · ·+ cep(kf)}
kfor x in e1 return e2 := max{ke1 , ce1(ke2 + 1)}

Here, ce′ denotes a witness for the locality of e′ ∈ QL(B), which exists
by Proposition 44. Since by the same proposition an arithmetic expression
defining ce′ is moreover computable from e′, it follows that ke is effectively
computable from e. Let v be a context such that e(v) is undefined. We
will prove by induction on e that there exists a reason v why e(v) = ∅
of size at most ke. During our induction we will often use the fact that
every expression e′ ∈ QL(B) defines a monotone, local base operation by
Propositions 6, 25, and 44. We will also use that fact that if e′ ∈ QL(B)
is undefined on input v′, then e′ is also undefined on every input node-
isomorphic to v′ by Lemma 24.

• If e = x, e = a or e = (), then there is nothing to prove since e(v) is
always defined.

• If e = if e1 then e2 else e3, then we make a case distinction.

59

– Case e1(v) = ∅. By the induction hypothesis there then exists a
reason v why e1(v) = ∅ of size at most ke1 . We claim that v is
also a reason why e(v) = ∅. Indeed, let v′ ∈ [v, v]. Since e1(v′) is
then undefined, e(v′) is also undefined, as desired.

– Case e1(v) 6= ∅ and there exists (Σ1; s1) ∈ e1(v) with s1 = 〈〉
or s1 = 〈a〉 with a not a boolean. Since e1 is a semi-function,
it follows that every value in e1(v) is of this form. Then take
v = (∅; ∅). Obviously, v is a requirement on v of size zero. We
claim that v is a reason why e(v) = ∅. Indeed, let v′ ∈ [v, v].
If e1(v′) is undefined then e(v′) is also undefined, in which case
we are done. Hence, suppose that e1(v′) is defined. Since e1 is a
monotone base operation; since (Σ1; s1) ∈ e1(v); since v′v v; and
since e1(v′) 6= ∅, there exists (Σ′1; s

′
1)v(Σ1; s1) in e1(v′). Since

s′1v s1 it follows that either s′1 = 〈〉 or s′1 = 〈a〉. Since e1 is a
semi-function, it follows that all values in e1(v′) are of this form.
Hence, e(v′) = ∅, as desired.

– Case e1(v) 6= ∅ and there exists (Σ1; 〈true〉) ∈ e1(v). Since e1
is a semi-function, it follows that every value in e1(v) is of this
form. Hence e2(v) = e(v) = ∅. By the induction hypothesis there
then exists a reason v why e2(v) = ∅ of size at most ke2 . We
claim that v is also a reason why e(v) = ∅. Indeed, let v′ ∈ [v, v].
If e1(v′) is undefined then e(v′) is also undefined, in which case
we are done. Hence suppose that e1(v′) is defined. Since e1 is a
monotone base operation; since (Σ1; 〈true〉) ∈ e1(v); since v′v v;
and since e1(v′) 6= ∅, there exists (Σ′1; s

′
1)v(Σ1; 〈true〉) in e1(v′).

In particular we have s′1v〈true〉. If s′1 = 〈〉, then every value in
e1(v′) is of the form (Σ′′1; 〈〉) since e1 is a semi-function. Hence,
e(v′) is undefined in that case. If on the other hand s′1 = 〈true〉,
then every value in e1(v′) is of the form (Σ′′1; 〈true〉) since e1 is
a semi-function. Hence, e(v′) = e2(v′). Since v is a reason why
e2(v) = ∅ and since v′ ∈ [v, v], it follows that e(v′) = e2(v′) = ∅,
as desired.

– Case e1(v) 6= ∅ and there exists (Σ1; 〈false〉) ∈ e1(v). Since e1
is a semi-function, it follows that every value in e1(v) is of this
form. Hence, e3(v) = e(v) = ∅. By the induction hypothesis
there then exists a reason v why e2(v) = ∅ of size at most ke3 .
By a reasoning similar to the previous case it can be seen that v
is also a reason why e(v) = ∅.

– Case e1(v) 6= ∅ and there exists (Σ1; s1) ∈ e1(v) with |s1| ≥ 2. It
is easy to see that (∅; {1, 2}) is a requirement on (Σ1; s1) of size
two. By Proposition 44 there exists a reason v why

[(∅; {1, 2}), (Σ1; s1)] / e1(v)

60

of size at most ce1(2). We claim that v is a also reason why
e(v) = ∅. Indeed, let v′ ∈ [v, v]. If e1(v′) is undefined then e(v′)
is also undefined, in which case we are done. Hence, suppose
that e1(v′) is defined. Then e1(v′)∩ [(∅; {1, 2}), (Σ1; s1)] 6= ∅. Let
(Σ′1; s

′
1) be a value in this non-empty intersection. It follows by

Lemma 33 that |s′1| ≥ 2. Since e1 is a semi-function, it follows
that all values in e1(v′) are of this form. Hence, e(v′) = ∅, as
desired.

Hence, there always exists a reason v why e(v) = ∅ of size at most
max{ke1 , ke2 , ke3 , ce1(2)}, as desired.

• If e = let x := e1 return e2, then we make a case distinction.

– Case e1(v) = ∅. By the induction hypothesis there exists a reason
v why e1(v) = ∅ of width at most ke1 . It is easily seen that v is
also a reason why e(v) = ∅.

– Case e1(v) 6= ∅. Let (Σ;σ) = v and let (Σ1; s1) ∈ e1(v). Since e(v)
is undefined it follows that e2(Σ1;x : s1, σ) is undefined. By the
induction hypothesis there hence exists a reason (V1;x : P1, φ1)
why this is so of size at most ke2 . In particular we have that
(V1;P1) is a requirement on (Σ1; s1) of size at most ke2 . By
Proposition 44 there exists a reason (V ;φ) why

[(V1;P1), (Σ1; s1)] / e1(v)

of size at most ce1(ke2). Let φ′ be the function with domain
dom(σ) defined by

φ′(y) := φ(y) ∪ φ1(y),

and let v = (V ;φ′). It is easy to see that v is a requirement on
v. Moreover,

|v| = max
{
|V |, |φ′(x)|

∣∣ x ∈ dom(σ)
}

≤ max{ce1(ke2), ce1(ke2) + ke2}
= ce1(ke2) + ke2 .

We claim that v is a reason why e(v) = ∅. Indeed, let v′ =
(Σ′;σ′) ∈ [v, v]. If e1(v′) is undefined then e(v′) is also undefined,
in which case we are done. Hence, suppose that e1(v′) is defined.
Since (V ;φ) is a reason why

[(V1;P1), (Σ1; s1)] / e1(v)

and since v′ ∈ [(V ;φ′), v] ⊆ [(V ;φ), v], it follows that

e1(v′) ∩ [(V1;P1), (Σ1; s1)] 6= ∅.

61

Let (Σ′1; s
′
1) be a value in this non-empty intersection. Then

clearly

(Σ′1;x : s′1, σ
′) ∈ [(V1;x : P1, φ

′), (Σ1;x : s1, σ)]
⊆ [(V1;x : P1, φ1), (Σ1;x : s1, σ)].

Since (V1;x : P1, φ1) is a reason why e2(Σ1;x : s1, σ) = ∅, it follows
that also e2(Σ′1;x : s′1, σ

′) = ∅. Furthermore, since e1 is a base
operation it follows by Corollary 12 that for every other value
(Σ′′1; s

′′
1) in e1(Σ′;σ′) we have

(Σ′′1;x : s′′1, σ
′) ≡node (Σ′1;x : s′1, σ

′).

Since e2 is node-generic and since e2(Σ′1;x : s′1, σ
′) is undefined,

it follows that e2(Σ′′1;x : s′′1, σ
′) is also undefined for every other

value (Σ′′1; s
′′
1) in e1(Σ′;σ′). Hence, e(v′) = ∅, as desired.

Hence, there always exists a reason v why e(v) = ∅ of size at most
max{ke1 , ce1(ke2) + ke2}, as desired.

• If e = f(e1, . . . , ep), then we make a case distinction.

– Case ej(Σ;σ) = ∅ for some j ∈ [1, p]. By the induction hypothesis
there exists a reason v why this is so of width at most kej . It is
easily seen that v is also a reason why e(v) = ∅.

– Case ej(Σ;σ) 6= ∅ for all j ∈ [1, p]. Let (Σ;σ) = v. Since ev-
ery ej is node-generic and store-increasing there certainly exist
(Σ ◦Σj ; sj) ∈ ej(v) for every j ∈ [1, p] such that the Σj are pair-
wise disjoint. Since e(v) is undefined it follows that

f(Σ ◦©p
j=1 Σj ; s1, . . . , sp) = ∅.

Since f is a locally-undefined base operation with witness kf there
hence exists a reason (V ∪

⋃p
j=1 Vj ;P1, . . . , Pp) why this is so of

size at most kf . Here, V is a subset of the nodes in Σ and Vj
is a subset of the nodes in Σj , for every j ∈ [1, p]. We have in
particular that (V ∪ Vj ;Pj) is a requirement on (Σ ◦Σj ; sj) of
size at most kf . By Proposition 44 there hence exists for every
j ∈ [1, p] a reason (Wj ;φj) why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v)

of size at most cej (kf). Let v be the requirement (V ∪
⋃p
j=1Wj ;φ)

on v such that the function φ with domain dom(σ) is defined by

φ(x) :=
p⋃
j=1

φj(x) for all x.

62

Clearly,

|v| ≤ max

|V |+
p∑
j=1

|Wj |,
p∑
j=1

|φj(x)|
∣∣∣ x ∈ dom(σ)

≤ kf +

p∑
j=1

cej (kf).

Moreover, since [v, v] ⊆ [(Wj ;φj), v] for every j ∈ [1, p], v is a
reason why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v).

We claim that v is a also reason why e(v) = ∅. Indeed, let
v′ = (Σ′;σ′) ∈ [v, v]. If ej(v′) is undefined for some j ∈ [1, p]
then e(v′) is also undefined, in which case we are done. Hence,
suppose that ej(v′) is defined for all j ∈ [1, p]. Since ej is a base
operation; since v is a reason why

[(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)] / ej(v);

and since v contains all nodes of V ∪ Vj in Σ, it follows from
Lemma 43 that for every j ∈ [1, p] there exists

(Σ′ ◦Σ′j ; s
′
j) ∈ ej(v′) ∩ [(V ∪ Vj ;Pj), (Σ ◦Σj ; sj)],

with Σ′j vΣj . Since Σ′j vΣj and since the Σj are all pairwise
disjoint, it follows that the Σ′j are also all pairwise disjoint. Since
V ∪Vj is a subset of the nodes in Σ′ ◦Σ′j , it follows that V ∪

⋃p
j=1 Vj

is a subset of the nodes in Σ′ ◦©p
j=1 Σ′j . Hence,

(Σ′ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p) ∈

[(V ∪
p⋃
j=1

Vj ;P1, . . . , Pp), (Σ ◦©p
j=1 Σj ; s1, . . . , sp)].

Since (V ∪
⋃p
j=1 Vj ;P1, . . . , Pp) is a reason why

f(Σ ◦©p
j=1 Σj ; s1, . . . , sp) = ∅,

it follows that hence

f(Σ′ ◦©p
j=1 Σ′j ; s

′
1, . . . , s

′
p) = ∅. (12)

Furthermore, since every ej is a node-generic it follows from
Lemma 11 that for every j ∈ [1, p] and every (Σ′ ◦Σ′′j ; s

′′
j) in

ej(v′) for which the Σ′′j are disjoint we have

(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) ≡node (Σ′ ◦©p

j=1 Σ′j ; s
′
1, . . . , s

′
p). (13)

63

Since f is node-generic it follows by (12) and (13) that

f(Σ′ ◦©p
j=1 Σ′′j ; s

′′
1, . . . , s

′′
p) = ∅

for all (Σ′ ◦Σ′′j ; s
′′
j) in ej(v′) for which the Σ′′j are disjoint. Hence,

e(v′) = ∅, as desired.

Hence, there always exists a reason v why e(v) = ∅ of size at most
max{ke1 , . . . , kep , ce1(kf) + · · ·+ cep(kf)}, as desired.

• If e = for x in e1 return e2 then we make a case distinction.

– Case e1(v) = ∅. By the induction hypothesis there exists a reason
v why this is so of width at most ke1 . It is easily seen that v is
also a reason why e(v) = ∅.

– Case e1(v) 6= ∅. Let (Σ;σ) = v and let (Σ1; s) ∈ e1(v). Since
e(v) is undefined it follows that there exists j ∈ [1, |s|] such
that e2(Σ1;x : 〈s(j)〉, σ) is undefined. By the induction hypothe-
sis there hence exists a reason (V1;x : P1, φ1) why this is so of size
at most ke2 . In particular, (V1; {j}) is a requirement on (Σ1; s) of
size at most max{ke2 , 1}. By Proposition 44 there hence exists a
reason (V ;φ) why

[(V1; {j}), (Σ1; s)] / e1(v)

of size at most ce1(max{ke2 , 1}). Let φ′ be the function with
domain dom(σ) defined by

φ′(y) := φ(y) ∪ φ1(y),

and let v = (V ;φ′). It is easy to see that v is a requirement on
v. Moreover,

|v| = max
{
|V |, |φ′(x)|

∣∣ x ∈ dom(σ)
}

≤ max{ce1(max{ke2 , 1}), ce1(max{ke2 , 1}) + ke2}
= ce1(max{ke2 , 1}) + ke2 .

We claim that v is a reason why e(v) = ∅. Indeed, let v′ =
(Σ′;σ′) ∈ [v, v]. If e1(v′) is undefined then e(v′) is also undefined,
in which case we are done. Hence suppose that e1(v′) is defined.
Since (V ;φ) is a reason why

[(V1; {j}), (Σ1; s)] / e1(v)

and since v′ ∈ [(V ;φ′), v] ⊆ [(V ;φ), v] it follows that

e1(v′) ∩ [(V1; {j}), (Σ1; s)] 6= ∅.

64

Let (Σ′1; s
′) be a value in this non-empty intersection. It follows

by Lemma 33 that s(j) ∈ rng(s′). There hence exists i ∈ [1, |s′|]
such that s′(i) = s(j). Since hence 〈s′(i)〉 = 〈s(j)〉 and since
P1 ⊆ [1, |〈s′(j)〉|] = {1}, it follows that the identity function is a
witness of 〈s′(i)〉v〈s(j)〉 whose range includes P1. Then clearly

(Σ′1;x : 〈s′(i)〉, σ′) ∈ [(V1;x : P1, φ
′), (Σ1;x : 〈s(j)〉, σ)]

⊆ [(V1;x : P1, φ1), (Σ1;x : s, σ)].

Since (V1;x : P1, φ1) is a reason why e2(Σ1;x : 〈s(j)〉, σ) = ∅, it
follows that also e2(Σ′1;x : 〈s′(i)〉, σ′) = ∅. Furthermore, since e1
is a node-generic it follows by Corollary 13 that for every other
value (Σ′′1; s

′′) in e1(Σ′;σ′) we have that |s′′| = |s′| and

(Σ′′1;x : 〈s′′(i)〉, σ′) ≡node (Σ′1;x : 〈s′(i)〉, σ′).

Since e2 is node-generic and since e2(Σ′1;x : 〈s′(i)〉, σ′) is unde-
fined, it follows that e2(Σ′′1;x : 〈s′′(i)〉, σ′) is also be undefined for
every other value (Σ′′1; s

′′) in e1(Σ′;σ′). Hence e(v′) = ∅, as de-
sired.

Hence there always exists a reason v why e(v) = ∅ of size at most
max{ke1 , ce1(max{ke2 , 1}) + ke2}, as desired.

8 Decidability results

The restrictions proposed in Sections 5, 6, and 7 are strong enough to guar-
antee decidability of well-definedness:

Theorem 46. If B is a finite set of monotone, generic, local, and locally-
undefined base operations, then the well-definedness problem for QL(B) is
decidable.

In order to prove this theorem, we first introduce the following notions.

Definition 47. The size |Σ| of a store Σ is the number of nodes in Σ. The
size |(Σ; s1, . . . , sp)| of a value-tuple (Σ; s1, . . . , sp) is the sum

|Σ|+ |s1|+ · · ·+ |sp|.

Lemma 48. For every type τ there exists a computable function cτ map-
ping natural numbers to natural numbers such that for every w ∈ τ and every
requirement w on w there exists v ∈ [w, w]∩τ of size at most cτ (|w|). More-
over, an arithmetic expression defining cτ is effectively computable from τ .

65

Proof. Let cτ (k) be defined by induction on τ as follows:

catom(k) := 1
ctext(k) := 1

celement(a, τ ′)(k) := 1 + cτ ′(k)
cempty(k) := 0
cτ1+τ2(k) := max{cτ1(k), cτ2(k)}
cτ1 ◦ τ2(k) := cτ1(k) + cτ2(k)
cτ ′∗(k) := 2kcτ ′(k)

It is clear from this inductive definition that an arithmetic expression defin-
ing cτ can effectively be computed from τ . It is also clear that cτ is a
computable function mapping natural numbers to natural numbers. Let
w ∈ τ and let w = (V ;P) be a restriction on w. We prove that there exists
v ∈ [w, w] ∩ τ of size at most cτ (k) by induction on τ :

• Case τ = atom. Since w ∈ τ we know that w = (∅; 〈a〉). Then clearly
w ∈ [w, w]. The result then follows since |w| = 1.

• The cases where τ = text or τ = empty are similar.

• Case τ = element(a, τ ′). Since w ∈ τ , we know that w is of the
form (Θ; 〈n〉) with Θ a tree such that n is the root element node of Θ
which is labeled by a. Furthermore, if n1, . . . , np are the children of n
in Θ in document order, we have (Θ|n1 ◦ · · · ◦Θ|np ; 〈n1, . . . , np〉) ∈ τ ′.
Let V ′ = V \ {n}. It is clear that then (V ′; ∅) is a requirement on
(Θ|n1 ◦ · · · ◦Θ|np ; 〈n1, . . . , np〉) of size at most |w|. By the induction
hypothesis there exists

(Σ; 〈n′1, . . . , n′p′〉) ∈ [(V ′; ∅), (Θ|n1 ◦ · · · ◦Θ|np ; 〈n1, . . . , np〉)] ∩ τ ′,

of size at most cτ ′(|w|). Since n′1, . . . , n
′
p′ are hence all nodes and since

(Σ; 〈n′1, . . . , n′p′〉) ∈ τ ′, it is easy to see by another induction on τ ′ that
Σ is of the form Θ′1 ◦ . . . ◦Θ′p′ such that Θ′j is a tree with root node n′j
for every j ∈ [1, p′]. Since Θ′1 ◦ . . . ◦Θ′p′ vΘ|n1 ◦ · · · ◦Θ|np , and since n
is not a node in Θ|n1 ◦ · · · ◦Θ|np , n cannot be a node in Θ′1 ◦ . . . ◦Θ′p′ .
Then let Θ′ be the tree with a-labeled root node n in which n has
children n′1, . . . , n

′
p′ such that n′1<Θ′ . . . <Θ′ n′p′ and Θ′|n′

j
= Θ′j for

every j ∈ [1, p′]. Now define v := (Θ′; 〈n〉). Then

|v| = |Θ′1 ◦ · · · ◦Θ′p′ |+ 1 ≤ cτ ′(|w|) + 1 = cτ (|w|).

We claim that v ∈ [w, w]∩τ . Indeed, it is easy to see that (Θ′; 〈n〉) ∈ τ .
Furthermore, since Θ′1 ◦ . . . ◦Θ′p′ contains all nodes in V ′, it follows
that Θ′ contains all nodes in V . Since P ⊆ [1, |〈n〉|] = {1}, it is easy

66

to see that the identity function is a witness of 〈n〉v〈n〉 whose range
certainly contains P . It is also easy to see that Θ′vΘ, and hence
v ∈ [w, w] ∩ τ , as desired.

• If τ = τ1 + τ2, then w ∈ τ1 or w ∈ τ2. In both cases the result follows
immediately from the induction hypothesis.

• Case τ = τ1 ◦ τ2. Since w ∈ τ we know that w is of the form
(Σ1 ◦Σ2; s1 ◦ s2) with (Σ1; s1) ∈ τ1 and (Σ2; s2) ∈ τ2. Let V1, V2 be
the partition of V such that V1 is a subset of the nodes in Σ1 and V2 is
a subset of the nodes in Σ2. Let P1 and P2 be the subsets of P defined
by

P1 = {k | k ∈ P and 1 < k ≤ |s1|}
P2 = {k − |s1| | k ∈ P and |s1| < k ≤ |s|} .

It is clear that (V1;P1) and (V2;P2) are requirements on (Σ1; s1) re-
spectively (Σ2; s2) of size at most |w|. By the induction hypothesis
there hence exist

(Σ′1; s
′
1) ∈ [(V1, P1), (Σ1; s1)] ∩ τ1

(Σ′2; s
′
2) ∈ [(V2, P2), (Σ2; s2)] ∩ τ2

of size at most cτ1(|w|) respectively cτ2(|w|). Since Σ′1vΣ1, since
Σ′2vΣ2, and since Σ1 is disjoint with Σ2, it follows that Σ′1 is disjoint
with Σ′2. Let v = (Σ′1 ◦Σ′2; s

′
1 ◦ s′2). Then,

|v| = |Σ′1 ◦Σ′2|+ |s′1 ◦ s′2| = |Σ′1|+ |Σ′2|+ |s′1|+ |s′2|
≤ cτ1 |w|+ cτ2 |w| = cτ (|w|).

We claim that v ∈ [w, w] ∩ τ . Indeed, it is easy to see that v ∈ τ .
Moreover, since Σ′1vΣ1 and Σ′2vΣ2 it follows by Lemma 42 that
v ∈ [(V ;P), (Σ1 ◦Σ2; s1 ◦ s2)].

• Case τ = τ ′∗. Since w ∈ τ we know that w is of the form

(©p
j=1 Σj ;©p

j=1 sj)

for some p ≥ 0 such that (Σj ; sj) ∈ τ for every j ∈ [1, p]. Let, V1, . . . , Vp
be the partition of V such that Vj is a subset of the nodes in Σj for
every j ∈ [1, p]. Let for each j ∈ [1, p], Pj be the subset of P defined
by

Pj :=

{
k −

j−1∑
i=1

|si|
∣∣∣ k ∈ P and

j−1∑
i=1

|si| < k ≤
j∑
i=1

|si|

}
.

67

It is clear that (Vj ;Pj) is a requirement on (Σj ; sj) of size at most |w|
for every j ∈ [1, p]. Let J be the set of j in [1, p] for which Vj 6= ∅ or
Pj 6= ∅. By the induction hypothesis there exists, for every j ∈ J , a
value

(Σ′j ; s
′
j) ∈ [(Vj ;Pj), (Σj ; sj)] ∩ τ ′

of size at most cτ ′(|w|). Then let v = (©j∈J Σ′j ;©j∈J s
′
j). Note that

there can be at most |w| of the Vj non-empty and that there can be
at most |w| of the Pj non-empty. Hence, J contains at most 2|w|
elements. Hence,

|v| =
∑
j∈J

|Σ′j |+
∑
j∈J

|s′j | =
∑
j∈J

(|Σ′j |+ |s′j |) ≤
∑
j∈J

cτ ′(|w|)

≤ 2|w|cτ ′(|w|) = cτ (|w|).

We claim that v ∈ [w, w] ∩ τ . Indeed, it is easy to see that v ∈ τ .
Furthermore, let Σ′j = ∅ and s′j = 〈〉 for every j ∈ [1, p] \ J . Since
Vj = ∅ and Pj = ∅ for j 6∈ J , we have in particular that for such j:

(Σ′j ; s
′
j) ∈ [(Vj ;Pj), (Σj ; sj)].

Since by construction we then have Σ′j vΣj for every j ∈ [1, p], it
follows by Lemma 42 that

(©p
j=1 Σ′j ;©

p
j=1 s

′
j) ∈ [(V ;P), (©p

j=1 Σj ;©p
j=1 sj)].

Hence, v ∈ [w, w] ∩ τ , as desired.

We are now ready for:

Proof of Theorem 46. Suppose that e ∈ QL(B) is not well-defined under
type assignment Γ on e. Then there exists some context w ∈ Γ such that
e(w) = ∅. By Proposition 45 there exists a natural number k, computable
from e, and a requirement w on w of size at most k such that e(v) = ∅ for
all v ∈ [w, w]. By Lemma 48 there exists v ∈ [w, w] ∩ Γ of size at most

l :=
∑

x∈dom(Γ)

cΓ(x)(k).

Here, cΓ(x) is a function for which a defining arithmetic expression is com-
putable from Γ(x), for every x ∈ dom(Γ). Hence, l is computable from e and
Γ. It is easy to see that v contains at most l nodes and that v can mention
at most l different atoms. Let N be a set of nodes consisting of l element
nodes and l text nodes. Let A be a set of atoms containing all constants
mentioned in e and l other atoms. Then surely there exists a renaming ρ
which is the identity on constants in e such that ρ(v) contains only nodes

68

in N and mentions only atoms in A. By Proposition 27, e(ρ(v)) is also
undefined.

Hence, in order to check if e is well-defined under Γ, it suffices to enu-
merate all contexts v′ ∈ Γ of size at most l with nodes in N and atoms in A,
and check whether e(v′) is defined. There are only a finite number of such
v′, from which the result follows.

Since all base operations mentioned in Section 3, except data,merge-text ,
and empty are monotone, generic, locally-undefined and local by Proposi-
tions 21, 26, 35, and 41, it follows in particular:

Corollary 49. Well-definedness for the XQuery fragment QL(concat, chil-
dren, descendant, parent, ancestor, preceding-sibling, following-sibling, eq,
is, �, is-element, is-text, is-atom, node-name, content, element, text) is
decidable.

It follows from Proposition 17 that satisfiability for this fragment is also
decidable. In contrast, the semantic type-checking problem (i.e., is, for every
input in a given input type, the output of a given expression always in a
given output type) for this fragment is known to be undecidable [3].

8.1 Satisfiability for QL(concat, smaller-width)

Remember from Section 7.1 that well-definedness for QL(concat , smaller-
width) is undecidable. Using Proposition 44 we are able to show, however,
that the satisfiability problem for QL(concat , smaller-width) is decidable.
Hence decidability of the satisfiability problem does not imply decidability
of the well-definedness problem.

Proposition 50. The satisfiability problem for QL(concat , smaller-width)
is decidable.

Proof. Let e be an expression in QL(B) and let Γ be a type assignment on
e such that e is well-defined under Γ. Suppose that e is satisfiable under
Γ. Then let w be a context in Γ and let (Σ; s) be a value in e(w) such that
s is non-empty. Let w = (∅; {1}). It is clear that w is a requirement on
(Σ; s) of size one. Since concat and smaller-width are monotone and local
by Propositions 21 and 35, it follows from Proposition 44 that e is local
and that an arithmetic expression defining a witness c of this locality can
effectively be computed from e. In particular there hence exists a reason w
why [(∅; {1}), (Σ; s)] / e(w) of size at most c(1). By Lemma 48 there then
exists v ∈ [w, w] ∩ Γ of size at most

l :=
∑

x∈dom(Γ)

cΓ(x)(c(1)).

69

Here, cΓ(x) is a function for which a defining arithmetic expression is com-
putable from Γ(x), for every x ∈ dom(Γ). Hence l is computable from e and
Γ. Since e is well-defined under Γ, it follows that e is defined on v. Further-
more, since v ∈ [w, w] and since w is reason why [(∅; {1}), (Σ; s)] / e(w), it
follows that e(v) ∩ [(∅; {1}), (Σ; s)] 6= ∅. Let (Σ′; s′) be a value in this non-
empty intersection. Then it follows from Lemma 33 that |s′| ≥ 1. Hence s′

is non-empty.
It is easy to see that v contains at most l nodes and that v can mention

at most l different atoms. Let N be a set of nodes consisting of l element
nodes and l text nodes. Let A be a set of atoms containing all constants
mentioned in e and l other atoms. Then surely there exists a renaming ρ
which is the identity on constants in e such that ρ(v) contains only nodes
in N and mentions only atoms in A. It is easy to see that concat and
smaller-width are both generic. By Proposition 27 it hence follows that
(ρ(Σ′); ρ(s′)) ∈ e(ρ(v)). Since renamings do not alter the width of a list, it
follows that ρ(s′) is non-empty. Furthermore, since e is a semi-function by
Proposition 6, it follows that every value in e(ρ(v)) has a non-empty list.

Hence, in order to check if e is satisfiable under Γ it suffices to enumerate
all contexts v′ ∈ Γ of size at most l with nodes in N and atoms in A, and
check whether some e(v′) contains a value with a non-empty list. There are
only a finite number of such v′, from which the result follows.

8.2 Well-definedness for the Nested Relational Calculus over
lists

In a companion paper [37] we study the well-definedness problem for the
Nested Relational Calculus (NRC), a well-known query language for the
complex object data model [1, 8, 38]. Specifically, we study the well-
definedness problem for the NRC in the standard, set-based, complex object
data model. We obtain that the problem is undecidable for the NRC in
general, but is decidable for the positive-existential fragment of the NRC
(PENRC for short). Next, we study well-definedness for the PENRC in the
presence of the singleton coercion operator extract. This operator extracts v
from a singleton set {v} and is undefined on non-singleton inputs. Our study
revealed that this operator causes the well-definedness problem to become
undecidable again. The core difficulty here is the fact that extract({e1, e2})
is defined if, and only if, expressions e1 and e2 return the same result on
every input. As such, in order to solve the well-definedness problem one also
needs to solve the equivalence problem, which we show to be undecidable
for the PENRC.

Note that, in contrast, the presence of an operator which becomes un-
defined due to a non-singleton input does not necessarily cause the well-
definedness problem for QL(B) to become undecidable. For example, the
operation is-element mentioned in Corollary 49 is only defined on singleton

70

inputs. Decidability in the presence of this operation is due to the fact that
the difficulty with sets, where {e1, e2} is a singleton if, and only if, e1 and e2
are equivalent, no longer holds for lists. Indeed, in this section we will show
that well-definedness for the PENRC with extract interpreted in a list-based
data model is decidable.

List-based NRC data model A (list-based) NRC-value is either a basic
atom, a pair of values, or a finite list of values. Note that, in contrast to the
QL data model, lists can hence contain other lists.

List-based PENRC with singleton coercion The Positive-Existential
Nested Relational Calculus with singleton coercion (PENRC(extract) for
short) is the set of all expressions generated by the following grammar:

e ::= x

| (e, e) | π1(e) | π2(e)

| ∅ | {e} | e ∪ e |
⋃
e | {e | x ∈ e} | extract(e)

| e = e ? e : e

Here, e ranges over expressions and x ranges over variables. We view ex-
pressions as abstract syntax trees and omit parentheses. The set FV (e) of
free variables of an expression e is defined as usual. That is, FV (x) := {x},
FV (∅) := ∅, FV ({e2 | x ∈ e1}) := FV (e1) ∪ (FV (e2) \ {x}), and FV (e) is
the union of the free variables of e’s immediate subexpressions otherwise.

A list-based NRC-context is a function σ from a finite set of variables
dom(σ) to list-based NRC-values. If dom(σ) is a superset of FV (e), then
we say that σ is a context on e. The semantics of PENRC(extract) expres-
sions on lists is described by means of the evaluation relation, as defined in
Figure 7. Here, we write σ |= e ⇒ v to denote the fact that e evaluates to
value v on list-based context σ on e. It is easy to see that the evaluation
relation is functional: an expression evaluates to at most one value on a
given context. The evaluation relation is not total however. For example, if
σ(x) is an atom then π1(x) does not evaluate to any value on σ, since π1 is
only defined on pairs. Likewise, we can only concatenate lists, flatten lists
of lists, iterate over lists, and test equality on atoms. An expression e can
hence be viewed as a partial function from contexts on e to values. We will
write e(σ) for the unique value v for which σ |= e ⇒ v. If no such value
exists, then we say that e(σ) is undefined.

We note that the semantics of an expression only depends on its free
variables: if two contexts σ and σ′ on e are equal on FV (e), then σ |= e⇒ v
if, and only if, σ′ |= e⇒ v.

71

Variables

σ |= x⇒ σ(x)

Pair operations

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2

σ |= (e1, e2) ⇒ (v1, v2)
σ |= e⇒ (v1, v2)
σ |= π1(e) ⇒ v1

σ |= e⇒ (v1, v2)
σ |= π2(e) ⇒ v2

List operations

σ |= ∅ ⇒ 〈〉
σ |= e⇒ v

σ |= {e} ⇒ 〈v〉

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2
v1 and v2 lists

σ |= e1 ∪ e2 ⇒ v1 ◦ v2

σ |= e⇒ 〈v1, . . . , vk〉
v1, . . . , vn lists

σ |=
⋃
e⇒ v1 ◦ · · · ◦ vk

σ |= e1 ⇒ 〈v1, . . . , vk〉
(x : vj , σ) |= e2 ⇒ wj j ∈ [1, k]
σ |= {e2 | x ∈ e1} ⇒ 〈w1, . . . , wk〉

Conditional test

σ |= e1 ⇒ a σ |= e2 ⇒ b
σ |= e3 ⇒ v a = b

σ |= e1 = e2 ? e3 : e4 ⇒ v

σ |= e1 ⇒ a σ |= e2 ⇒ b
σ |= e4 ⇒ v a 6= b

σ |= e1 = e2 ? e3 : e4 ⇒ v

Figure 7: The semantics of PENRC(extract) expressions in the list-based
NRC data model.

72

List-based NRC types A list-based NRC-type is a term generated by
the following grammar:

τ ::= atom | Pair(τ, τ) | ListOf(τ) | τ ∪ τ.

A list-based NRC-type τ denotes a set JτK of list-based NRC-values :

• JatomK := A;

• JPair(τ1, τ2)K := Jτ1K× Jτ2K;

• JListOf(τ)K denotes the set of all finite lists over JτK; and

• Jτ1 ∪ τ2K := Jτ1K ∪ Jτ2K.

We will abuse notation and identify τ with JτK. A list-based NRC-type
assignment Γ is a function from a finite set of variables dom(Γ) to list-based
NRC-types. A type assignment denotes the set of contexts σ for which
dom(σ) = dom(Γ) and σ(x) ∈ Γ(x), for every x ∈ dom(σ). Again, we will
abuse notation and identify a type assignment with its denotation. Finally,
if dom(Γ) is a superset of FV (e), then we say that Γ is a type assignment
on e.

Well-definedness We have already noted that e(σ) is not necessarily de-
fined (i.e., e does not necessarily evaluate to a value on σ). This leads us to
the following notion:

Definition 51. Let e be a PENRC(extract) expression and let Γ be a list-
based NRC-type assignment on e. If e(σ) is defined for every context σ ∈ Γ,
then e is well-defined under Γ. The well-definedness problem for the list-
based PENRC(extract) consists of checking, given an expression e and a
list-based NRC-type assignment Γ on e, whether e is well-defined under Γ.

Theorem 52. Well-definedness for the list-based PENRC(extract) is decid-
able.

Proof. We give a reduction to the well-definedness problem for QL(concat ,
children, eq , �, node-name, content , element) which is decidable by Corol-
lary 49. Specifically, let e be an expression in PENRC(extract) and let Γ be
a list-based NRC-type assignment on e. We will show that there exists

1. a one-to-many encoding of list-based NRC-values as values in the
XQuery data model;

2. a type assignment enc(Γ), computable from Γ, such that every context
in enc(Γ) is an encoding of some context in Γ and every context in Γ
has an encoding in enc(Γ); and

73

〈n1〉

n1

list

n2

pair

n3

atom

n4

a

n5

atom

n6

b

n7

list

n8 atom

n9

a

Figure 8: One encoding of the list-based NRC-value 〈(a, b), 〈a〉〉 in the QL
data model.

3. an expression enc(e) in QL(B), computable from e, such that e is
defined on an input if, and only if, enc(e) is defined on every encoding
of this input.

Note that hence e is well-defined under Γ if, and only if, enc(e) is well-defined
under enc(Γ). Since enc(e) and enc(Γ) can moreover be computed from e
respectively Γ, we hence have a reduction to well-definedness in QL(concat ,
children, eq , �, node-name, element), as desired.

Let v be a list-based NRC-value. We define the set enc(v) of QL-values
which encode v by induction on v as follows. Here, we assume without loss
of generality that the special labels atom, pair, and list are atoms.

• If v = a, then enc(v) is the set of all values (Σ; 〈n〉) where n is an
element node labeled by atom which has exactly one leaf child text
node n′, which is labeled by a.

• If v = (v1, v2), then enc(v) is the set of all values (Σ; 〈n〉) where n is
an element node labeled by pair which has exactly two children n1

and n2 such that n1<n2, (Σ; 〈n1〉) ∈ enc(v1), and (Σ; 〈n2〉) ∈ enc(v2).

• If v = 〈v1, . . . , vk〉, then enc(v) is the set of all values (Σ; 〈n〉) where
n is an element node labeled by list which has exactly k children
n1, . . . , nk such that n1< . . .<nk and (Σ; 〈nj〉) ∈ enc(vj) for all j ∈
[1, k].

For example, a value in enc(〈(a, b), 〈a〉〉) is shown in Figure 8. The set enc(σ)
of QL-contexts which encode a list-based NRC-context σ is then defined as

enc(σ) := {(Σ;σ′) | (Σ;σ′(x)) ∈ enc(σ(x)) for all x ∈ dom(σ)}.

Next, we define enc(Γ). If τ is a list-based NRC-type, then we define
the QL-type enc(τ) which simulates τ as follows by induction on τ .

74

• If τ = atom, then enc(τ) is element(atom, text).

• If τ = Pair(τ1, τ2), then enc(τ) is element(pair, enc(τ1) ◦ enc(τ2)).

• If τ = ListOf(τ ′), then enc(τ) is element(list, enc(τ ′)∗).

• If τ = τ1 ∪ τ2, then enc(τ) is enc(τ1) + enc(τ2).

The type assignment enc(Γ) is then defined by

enc(Γ)(x) := enc(Γ(x))

for all x ∈ dom(Γ). It is easy to see that every context in enc(Γ) is an
encoding of some context in Γ, and that every context in Γ has an encoding
in enc(Γ).

Finally, we construct enc(e) by induction on e. In order to simplify
presentation, we will allow to bind multiple variables in one for loop, and
we will also allow boolean combinations in the condition of an if test. Both
features can clearly be simulated in QL(B).

• If e = x, then enc(e) = x.

• If e = (e1, e2), then enc(e) is defined as

element(pair, concat(enc(e1), enc(e2)))

• If e = π1(e′), then enc(e) is defined as

let x := enc(e′) return
if eq(node-name(x),pair) then

for y,z in children(x) return
if �(y, z) then y else ()

else if () then () else ()

• If e = π2(e′), then enc(e) is defined as

let x := enc(e′) return
if eq(node-name(x),pair) then
for y,z in children(x) return

if �(z, y) then y else ()
else if () then () else ()

• If e = ∅, then enc(e) is defined as element(list, ()).

• If e = {e′}, then enc(e) is defined as element(list, enc(e′)).

• If e =
⋃
e′, then enc(e) is defined as

75

let x := enc(e′) return
element(list,

if eq(node-name(x),list) then
for y in children(x) return

if eq(node-name(y),list) then
children(y)

else if () then () else ()
else if () then () else ()

)

• If e = {e2 | x ∈ e1}, then enc(e) is defined as

let y := enc(e1) return
if eq(node-name(y),list) then

for x in children(y) return enc(e2)
else if () then () else ()

Here we assume without loss of generality that y is not free in e2.

• If e = extract(e′), then enc(e) is defined as

let x := enc(e′) return
if eq(node-name(x),list) then

let y := is-element(children(x)) return
children(x)

else if () then () else ()

• If e = e1 = e2 ? e3 : e4, then enc(e) is defined as

let x1 := enc(e1) return
let x2 := enc(e2) return
if eq(node-name(x1),atom) and eq(node-name(x2),atom) then
if eq(content(children(x1)),content(children(x2)))
then enc(e3) else enc(e4)

else if () then () else ()

Here we assume without loss of generality that x1 and x2 are not free
in e3 or e4.

A straightforward induction on e no shows that

1. if e(σ) = v, then enc(e)(Σ;σ′) ⊆ enc(v) for every (Σ;σ′) ∈ enc(σ);
and that

2. e(σ) is defined if, and only if, enc(e)(Σ;σ) is defined for every (Σ;σ′) ∈
enc(σ).

76

9 Conclusion

We have shown that well-definedness for QL(B) is decidable if B contains
only monotone, generic, local, and locally-undefined base operations. Vio-
lation of any one of these conditions allows the definition of a language for
which well-definedness is undecidable.

Although our results have been developed for a list-based data model,
we mention that our results also hold in a bag-based data model (where we
hence disregard order). Indeed, note that our undecidability proofs are never
based on the fact that values are ordered. Moreover, if we adapt the notion
of a monotone, generic, local and locally-undefined base operation to a bag-
based data model, then it is not hard to see that we can obtain equivalent
versions of Propositions 25, 27, 44, and 45. Hence, the well-definedness
problem remains decidable in this case.

It is clear that the number of possible counter-examples we need to check
according to the decision procedure outlined in the proof of Theorem 46 can
grow huge very fast. Hence the obvious question for future work: what is
the computational complexity of well-definedness?

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations Of
Databases. Addison-Wesley, 1995.

[2] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu.
Typechecking XML views of relational databases. ACM Transactions
on Computational Logic, 4(3):315–354, 2003.

[3] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu.
XML with data values: typechecking revisited. Journal of Computer
and System Sciences, 66(4):688–727, 2003.

[4] Francois Bancilhon and Setrag Khoshafian. A calculus for complex
objects. In Proceedings of the fifth ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, pages 53–60. ACM Press, 1986.

[5] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query
Language. W3C Working Draft, February 2005.

[6] Anne Brüggemann-Klein, Makoto Murata, and Derick Wood. Regular
tree and regular hedge languages over unranked alphabets. Unpublished
manuscript, version 1, 2001.

77

[7] Peter Buneman, Mary F. Fernandez, and Dan Suciu. UnQL: a query
language and algebra for semistructured data based on structural re-
cursion. VLDB Journal, 9(1):76–110, 2000.

[8] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong.
Principles of programming with complex objects and collection types.
Theoretical Computer Science, 149(1):3–48, 1995.

[9] Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Mar-
chiori, and Jonathan Robie. XML Query Use Cases. W3C Working
Draft, November 2003.

[10] Dario Colazzo, Giorgio Ghelli, Paolo Manghi, and Carlo Sartiani. Types
for path correctness of XML queries. In Proceedings of the Ninth
ACM SIGPLAN International Conference on Functional Programming
(ICFP 2004), pages 126–137, 2004.

[11] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, De-
nis Lugiez, Sophie Tison, and Marc Tommasi. Tree automata techniques
and applications, 2002. http://www.grappa.univ-lille3.fr/tata/.

[12] Xin Dong, Alon Y. Halevy, and Igor Tatarinov. Containment of nested
XML queries. In Proceedings of the 30th VLDB Conference, pages 132–
143. Morgan Kaufmann, 2004.

[13] Denise Draper, Peter Fankhauser, Mary F. Fernández, Ashok Malho-
tra, Kristoffer Rose, Michael Rys, Jérôme Siméon, and Philip Wadler.
XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working Draft,
February 2005.

[14] Mary F. Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy,
and Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model. W3C
Working Draft, February 2005.

[15] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. CDuce:
an XML-centric general-purpose language. In Proceedings of the eighth
ACM SIGPLAN International Conference on Functional Programming,
pages 51–63. ACM Press, 2003.

[16] Jan Hidders. Satisfiability of XPath expressions. In 9th International
Workshop on Database Programming Languages, DBPL 2003, Revised
Papers, volume 2921 of Lecture Notes in Computer Science, pages 21–
36. Springer, 2004.

[17] Jan Hidders, Jan Paredaens, Roel Vercammen, and Serge Demeyer. A
light but formal introduction to XQuery. In Proceedings of the Second
International XML Database Symposium (XSym 2004), volume 3186 of
Lecture Notes in Computer Science, pages 5–20. Springer-Verlag, 2004.

78

[18] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, Uni-
versity of Tokyo, 2000.

[19] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed
XML processing language. ACM Transactions on Internet Technology
(TOIT), 3(2):117–148, 2003.

[20] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular ex-
pression types for XML. ACM Transactions on Programming Lan-
guages and Systems, 27(1):46–90, 2005.

[21] Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of con-
junctive queries: Beyond relations as sets. ACM Transactions on
Database Systems, 20(3):288–324, September 1995.

[22] Howard Katz, editor. XQuery from the Experts. Addison-Wesley, 2003.

[23] Laks V. S. Lakshmanan, Ganesh Ramesh, Hui Wang, and Zheng (Jes-
sica) Zhao. On testing satisfiability of tree pattern queries. In Proceed-
ings of the 30th VLDB Conference, pages 120–131. Morgan Kaufmann,
2004.

[24] Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and
XPath 2.0 Functions and Operators. W3C Working Draft, February
2005.

[25] Wim Martens and Frank Neven. Typechecking top-down uniform un-
ranked tree transducers. In Database Theory - ICDT 2003, volume 2572
of Lecture Notes in Computer Science, pages 64–78. Springer-Verlag,
2003.

[26] Wim Martens and Frank Neven. Frontiers of tractability for type-
checking simple XML transformations. In Proceedings of the Twenty-
third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 23–34. ACM Press, 2004.

[27] Yuri Matiyasevich. Hilbert’s 10th Problem. MIT Press, 1993.

[28] Gerome Miklau and Dan Suciu. Containment and equivalence for a
fragment of XPath. Journal of the ACM, 51(1):2–45, 2004.

[29] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML trans-
formers. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 11–22.
ACM Press, 2000.

[30] John C. Mitchell. Concepts in programming languages. Cambridge
University Press, 2003.

79

[31] Frank Neven. Automata, logic, and XML. In Computer Science Logic
- CSL 2002, volume 2471 of Lecture Notes in Computer Science, pages
2–26. Springer, 2002.

[32] Frank Neven. Automata theory for XML researchers. ACM SIGMOD
Record, 31(3):39–46, 2002.

[33] Frank Neven and Thomas Schwentick. XPath containment in the pres-
ence of disjunction, DTDs, and variables. In Database Theory - ICDT
2003, volume 2572 of Lecture Notes in Computer Science, pages 315–
329. Springer, 2003.

[34] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[35] Dan Suciu. Typechecking for semistructured data. In Database Pro-
gramming Languages, 8th International Workshop, DBPL 2001, Re-
vised Papers, volume 2397 of Lecture Notes in Computer Science, pages
1–20. Springer-Verlag, 2001.

[36] Wolfgang Thomas. Languages, Automata, and Logic, volume 3 of Hand-
book of Formal Languages, chapter 7, pages 389–456. Springer, 1997.

[37] Jan Van den Bussche, Dirk Van Gucht, and Stijn Vansummeren. Well-
definedness and semantic type-checking in the nested relational calcu-
lus.

[38] Limsoon Wong. Querying nested collections. PhD thesis, University of
Pennsylvania, 1994.

[39] Franois Yergeau, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and
Eve Maler. Extensible Markup Language (XML) 1.0 (Third Edition).
W3C Recommendation, February 2004.

80

