
DMRG-study of current and activity fluctuations near non-equilibrium phase

transitions

Mieke Gorissen1, Jef Hooyberghs2,1,3, and Carlo Vanderzande1,3

1 Hasselt University, 3590 Diepenbeek, Belgium.
2 VITO, Boeretang 200, 2400 Mol, Belgium.

3 Instituut Theoretische Fysica,

K.U. Leuven, Belgium.

(Dated: January 22, 2009)

Cumulants of a fluctuating current can be obtained from a free energy-like generating function
which for Markov processes equals the largest eigenvalue of a generalized generator. We determine
this eigenvalue with the DMRG for stochastic systems. We calculate the variance of the current in
the different phases, and at the phase transitions, of the totally asymmetric exclusion process. Our
results can be described in the terms of a scaling ansatz that involves the dynamical exponent z.
We also calculate the generating function of the dynamical activity (total number of configuration
changes) near the absorbing state transition of the contact process. Its scaling properties can be
expressed in terms of known critical exponents.
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Physical systems that are in contact with two reser-
voirs at a different temperature or chemical potential,
develop a heat or particle current [1]. In macroscopic
systems, fluctuations of these currents can often be ne-
glected. As is the case in equilibrium systems, one can
however expect that such fluctuations become impor-
tant in mesoscopic systems and in the vicinity of a non-
equilibrium critical point [2].

The statistics of current fluctuations in mesoscopic
conductors have received a lot of attention in the past
decade [3], since they can, for example, give insight on
correlated electron transport. It is nowadays possible
to measure experimentally third and higher order cumu-
lants of the current in problems of charge transport [4].
Theoretically, these cumulants can be obtained as deriva-
tives of a generating function. This function has many
similarities to the free energy in equilibrium systems.

In the present Letter, we focus on the scaling of the cur-
rent distribution in one-dimensional (classical) stochastic
models such as the (a)symmetric exclusion process. This
stochastic process is a standard model of non-equilibrium
statistical mechanics [5]. Rigorous results are known for
the current distribution in this model both on a ring and
for open boundaries [6]. Moreover, several approximate
and numerical approaches to this problem have been de-
velopped: simulation techniques that sample rare events
[7], a renormalisation approach [8] and perturbation tech-
niques [9]. Here we apply for the first time the density
matrix renormalisation group (DMRG) to the investiga-
tion of current fluctuations. We illustrate the method
for the current of the totally asymmetric exclusion pro-
cess, but the technique is more general. As an example
we also present results on the total number of changes of
configuration (a quantity that has been called dynami-
cal activity [10]) in the contact process [2]. It has been
suggested that the activity is a crucial quantity for un-

derstanding the dynamical behavior of glasses [11].

In the totally asymmetric exclusion process (TASEP),
each site of a one-dimensional lattice of L sites can be
empty or occupied by at most one particle. The dynam-
ics of the model is a continuous time Markov process in
which a particle hops to its right neighbor with unit rate
provided that site is empty. At the left boundary par-
ticles enter the system with rate α, while at the right
boundary they leave it with rate β. Asymptotically, the
TASEP reaches a non-equilibrium steady state (NESS) in
which a current flows through the system. The TASEP
has three distinct phases [12]: in the low density (LD)
phase (α < 1/2, β > α) the average current J (per bond
and in the thermodynamic limit) equals α(1 − α) while
in the high density (HD) phase (β < 1/2, α > β) it is
β(1 − β). Finally, in the maximal current (MC) phase
(α > 1/2, β > 1/2) , J = 1/4.

Let JL(t) be the total current through all bonds up to
time t during a realisation of the stochastic process. The
statistical properties of this current can be obtained from
its generating function

µ(s, L) ≡ lim
t→∞

1

t
log〈esJL(t)〉 (1)

where the average is taken over the realisations of the
stochastic process. The distribution of JL(t) at large
times can be determined from µ(s, L) by a Legendre
transformation while the average current J(L), its vari-
ance ∆(L) and higher cumulants can be found as deriva-
tives of µ(s, L):

J(L) = lim
t→∞

1

t
〈JL(t)〉 =

∂µ

∂s
(0, L)

∆(L) = lim
t→∞

1

t

(

〈J2
L(t)〉 − 〈JL(t)〉2

)

=
∂2µ

∂s2
(0, L) (2)
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Let σi be a spin variable which equals 1 if the site
i is vacant and −1 if it is occupied. The state of the
system is then characterized by the probability P (C; t)
to be in a given microstate C = {σ1, . . . , σL}. This
probability evolves according to the master equation
dP (C; t)/dt = HP (C; t) where H is the generator of the
stochastic process. The properties of the NESS of the
stochastic process can be determined from the (right)
eigenvector of H with the largest eigenvalue [13]. Simi-
larly, it is not difficult to show that generating functions
such as µ(s, L) can be obtained as the largest eigenvalue
of a modified generator H(s) [5]. For the current JL(t),
H(s) equals

H(s) =

L−1
∑

i=1

[

ess+
i s−i+1 − nivi+1

]

+ α
[

ess−1 − n1

]

+ β
[

ess−L − vL

]

(3)

Here we have used the ”quantum” notation for stochas-
tic systems [13]. The operators s+

i and s−i respectively
destroy and create a particle at site i, while ni and vi

count the number of particles and vacancies at that site.
Formulated this way, determining µ(s, L) is mathemat-

ically similar to finding the ground state energy of a quan-
tum spin or fermion chain. One of the most succesful nu-
merical techniques to study low temperature properties
of quantum chains is the DMRG [14, 15]. More recently,
this method has been extended to stochastic systems [16]
where the main difference is that in general the genera-
tor H is non-Hermitian. Here we apply the method for
the first time to operators such as H(s) which are nei-
ther Hermitian nor stochastic. We found that with the
DMRG it is possible to obtain µ(s, L) numerically exactly
for systems up to L = 60 with only modest computing
facilities. Since there are no essential new ingredients in
the method as such [17], we focus here on the results.

Firstly, in order to test the method we have calculated
µ(s, L) for the symmetric exclusion process (SEP) for
which this function is known for large L values [18]. In
the SEP, particles can hop both to the right and left with
equal rate. At its boundaries, the system is in contact
with particle baths of density ρa and ρb. In Fig. 1, we
show typical results for Lµ(s, L) for various L-values, to-
gether with the exact result (full line). As can be seen,
there is a fast convergence towards the asymptotic re-
sults.

Going back to the TASEP, we calculated µ(s, L) in
the various regions of the phase diagram. The cumu-
lants J(L) and ∆(L) are then determined by numerical
differentiation. As an example, we present in Fig. 2
our results for J(L)/(L + 1) and ∆(L) in the MC phase.
Also shown are the exact results for J(L) per bond ob-
tained from the matrix product ansatz [12]. The numer-
ical data coincide with the exact ones within the accu-
racy. The variance of the current is only known exactly
along the line α + β = 1 and for α = β = 1 [19]. We
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FIG. 1: (Color online) Generating function for the symmetric
exclusion process with ρa = 1, ρb = 0. Shown are the asymp-
totic results of [18] (full line) and DMRG results for different
system sizes.
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FIG. 2: (Color online) (a) Average current per bond from
DMRG (squares) compared with exact results from [12]
(crosses). (b) Variance of the total current. Both results
are for α = 3/5 and β = 2/3.

have calculated ∆(L) across the phase diagram and find
that it increases as Lσ. The corrections to this power
law behavior are strong and cannot be neglected for the
system sizes we studied. In order to get reliable esti-
mates of σ we have used the BST-algorithm [20]. In
this algorithm, starting from a sequence that converges
to some limit T , a number of shorter sequences are cal-
culated, each of which is expected to converge faster to
T . We then find that in the MC phase, but also at the
transition line between the MC and LD (or HD)-phase,
σ = 1.50(2). In the LD (and HD) phase, σ changes to
2.01(4). Finally, along the coexistence line between HD
and LD phases, we find σ = 2.03(3). These results con-
firm that M = limL→∞ ∆(L)/L2 goes to zero as L−1/2 in
the MC-phase and is constant in the LD and HD phases,
as predicted in [19].

Given the similarities between the generating function
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and the free energy, it is natural to ask about the scaling
properties of µ near a phase transition. To focus at-
tention, we consider the transition line between LD and
MC phases (α = 1/2, β > 1/2). We propose that under a
rescaling with a factor b the singular part of µ transforms
as

µ(s, ∆α, L) = b−zµ(byss, byα∆α, L/b) (4)

where ∆α = α − 1/2 and z is the dynamical exponent.
We conjecture that z replaces the dimension d that ap-
pears in the scaling of the free energy because µ(s, L)
is a quantity per ”unit of time”, whereas the free en-
ergy is per unit of volume. The exponent ys is a new
exponent associated with current fluctuations, and yα is
like a thermal exponent in equilibrium critical phenom-
ena. From (2) and (4), it follows that J(L) ∼ L−z+ys

and ∆(L) ∼ L−z+2ys at the transition. From the exact
results on J(L) and our data on the variance, we find
z = 1.50(2) and ys = 1.50(2). This value of z agrees with
that determined by the Bethe-ansatz [21], z = 3/2, thus
providing strong support to the scaling form (4). We con-
jecture that also ys = 3/2. Finally, yα can be obtained
from ∂J(L)/∂α. This derivative can easily be calculated
from the exact results, and gives yα = 1/2 [17].

Away from criticality, the variance of the current
should scale as

∆(L, ∆α) ∼ L−z+2ysH(Lyα∆α) (5)

with H a scaling function. To match the numerically de-
termined behavior of the variance in the different phases,
H(x) should be constant for x > 0, and linear in x for
small x < 0. This implies that M goes to zero linearly
as the LD-MC transition line is approached from below.
Our data for ∆(L) can be well collapsed according to
(5) [22]. Similarly, we also checked that the scaling of
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FIG. 3: (Color online) Scaling plot of (∂2µ/∂s2)Lz−2ys versus
Lyss.

∆(s, L) = ∂2µ/∂s2 as a function of s at the transition
line is well satisfied (see Fig. 3). Finally, also the third

cumulant of the current can be well described by our
scaling proposal [17].

As a second application of our approach we study
the one-dimensional contact process (CP). In this model,
each site of a lattice can be occupied by at most one par-
ticle. An occupied site becomes empty with rate 1, while
an empty site becomes occupied with a rate ζλ/2. Here
ζ is the number of occupied neighbors. When λ < λc the
process reaches an absorbing state in which all sites are
empty. For λ > λc, and in an infinite system, the model
reaches a NESS with a finite density ρ of particles. The
contact process is a standard model for phase transitions
out of an absorbing state [2]. It is known from extensive
numerical investigations that its phase transition belongs
to the universality class of directed percolation [23]. The
scaling properties of various quantities near λc are well
characterized [2]. Here we are interested in the dynami-
cal activity KL(t) of the model. The generating function
of KL(t) is

π(s, λ, L) ≡ lim
t→∞

1

t
log〈esKL(t)〉

This function can again be obtained as the largest eigen-
value of a generator which in this case equals

L
∑

i=1

[

(ess+
i − ni) −

λ

2
(ni−1 + ni+1)(e

ss−i − vi)

]

(6)

(n0 = nL+1 = 0). A finite system will always reach the
absorbing state asymptotically. To avoid this, we allow
the creation of particles at the boundary sites. Following
the reasonings made for the TASEP, we expect that near
the absorbing state transition, π scales as

π(s, ∆λ, L) = b−zπ(byK s, b1/ν⊥∆λ, L/b) (7)

Here ∆λ = λ − λc. The exponents z = 1.5805 and
ν⊥ = 1.09684 are known numerically while yK is a new
exponent.

It is possible to express yK in terms of other, known,
exponents. From the dynamics of the model one can
show that 〈KL(t)〉 obeys [17]

d〈KL〉

dt
= 2

L
∑

i=1

〈ni〉 +

L
∑

i=1

d〈ni〉

dt
(8)

In the NESS, the second term in (8) approaches zero,
whereas the first one becomes equal to 2Lρ. The scal-
ing of ρ is well known and therefore the average activity
should scale as

K(L) = lim
t→∞

〈KL(t)〉

t
= L1−β/ν⊥F (L1/ν⊥∆λ) (9)

Here F is a scaling function and β = 0.27649. Since
K(L) is also the first derivative of π we get from (7) and
(9): yK = 1 + z − β/ν⊥ = 2.3284. We have calculated
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FIG. 4: (Color online) Plot of the variance ∆K(L) of the
activity of the contact process for (top to bottom) L =
44, 38, 32, 26, 20.

π(s, λ, L) using the DMRG. In Fig. 4, we show our re-
sults for the variance of the activity as a function of ∆λ
and L. At criticality, we find that the average activity
diverges as L.746(2), while its variance goes as L3.08(2).
These exponents are close to −z + yK = 0.7479 and
−z + 2yK = 3.0763 predicted by the scaling (7). Other
evidence of (7) can be seen in Fig. 5 where we present
a scaling plot of K(s, L) = ∂π/∂s as a function of s at
∆λ = 0. This quantity should scale as L−z+yK G(LyK s).
The numerical data again support this prediction [22].
From this figure, it is also clear that the CP undergoes a
dynamical transition from inactive to active as s changes
sign [10].
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FIG. 5: (Color online) Scaling plot of (∂π/∂s)Lz−yK versus
sLyK (∆λ = 0).

In summary, we determined the generating function of
the current in the TASEP and of the activity in the CP
with the DMRG. We proposed a scaling form for these
generating functions which is supported by all numerical
data. We believe that this scaling is quite general and
can be applied to other models as well.
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[4] T. T. Heikkilä and T. Ojanen, Phys. Rev. B 75, 035335
(2007); T. Fujisawa, T. Hayashi, R. Tomita and Y. Hi-
rayama, Science 312, 1634 (2006).

[5] B. Derrida, J. Stat. Mech., P07023 (2007); R.A. Blythe
and M.R. Evans, J. Phys. A: Math. Gen. 40 R333 (2007).

[6] B. Derrida and J.L. Lebowitz, Phys. Rev. Lett. 80, 209
(1998); B. Derrida and C. Appert, J. Stat. Phys. 94, 1
(1999); T. Bodineau and B. Derrida, Phys. Rev. Lett.
92, 180601 (2004); C. Appert-Rolland, B. Derrida, V.
Lecomte and F. van Wijland, Phys. Rev. E 78, 021122
(2008).
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[15] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[16] E. Carlon, M. Henkel and U. Schollwöck, Eur. Phys. J.
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