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ABSTRACT 

Based on the rank-order citation distribution of e.g. a researcher, one can define certain points 

on this distribution, hereby summarizing the citation performance of this researcher. Previous 

work of Glänzel and Schubert defined these so-called “Characteristic Scores and Scales” 

(CSS), based on average citation data of samples of this ranked publication-citation list. 

 

In this paper we will define another version of CSS, based on diverse h -type indices such as 

the h -index, the g -index, the Kosmulski’s (2)h -index and the g -variant of it, the (2)g -index.  

 

Mathematical properties of these new CSS are proved in a Lotkaian framework. These CSS 

also provide an improvement of the single h -type indices in the sense that they give h -type 

index values for different parts of the ranked publication-citation list.  
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I. Introduction 

The visibility or impact of a researcher’s scientific output is measured using indicators based  

on the rank-order citation distribution of this researcher – stated more simply – on the ranked 

list of papers of this researcher, ranked in decreasing order of number of citations to each of 

these papers. A typical – and famous – example of such an indicator is the Hirsch-index or h -

index (Hirsch (2005)). In subsequent years, several other, so-called h -type indices, were 

introduced in order to avoid certain “bad properties” such as insensibilities of the h -index. 

We can mention here the g -index (Egghe (2006a,b,c)), the R -index (Jin, Liang, Rousseau 

and Egghe (2007)), Kosmulski’s (2)h -index (Kosmulski (2006)) and its g -index variant (2)g  

(Egghe (2009a)). We refer to Egghe (2009b) for an extensive review chapter on h -type 

indices.  

 

Yet, all these indices suffer from the same aspect of roughness: they are all single indicators, 

hereby reducing the evaluation of a researcher’s scientific career, to a single (i.e. one-

dimensional) observation. One way to overcome this is to measure these indices year-per-

year, hereby yielding a sequence of time-dependent h -type indices (see Egghe (2009b) – last 

section before the conclusions section and the references therein). This is an interesting 

approach yielding time-series of yearly impact, hence describing well the evolution of the 

impact of a researcher over the years (with a possibility to predict future impact of this 

researcher). 

 

In the above approach we are still having the problem of the fact that, per year, we only have 

one impact indicator value. It would be interesting to describe, at any moment of our choice, 

the rank-order citation distribution of a researcher in a better way than just presenting one 

indicator. This problem, surprisingly in a certain sense, has been addressed more than 20 

years ago in Glänzel and Schubert (1988). The general idea is to determine, on the rank-order 

citation distribution, a sequence of points k , 1,2,...k   and k , 1,2,...k  , where the k  are 

some ranks of papers and ( )k k    are the corresponding “characteristic scores”, i.e. the 

number of citations to the paper on rank kr  . 
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Here   is the rank-order frequency function, where ( )r  expresses the number of citations to 

the paper on rank r . The methodology is called the method of “Characteristic Scores and 

Scales” (CSS). 

 

In the above definition the k  and k  are arbitrary, but one interesting example is given in 

Glänzel and Schubert (1988) – see also Glänzel (2008). It boils down to the following, based 

on the ranked list of papers of a researcher, in decreasing order of number of citations 

received. First we take the average number of citations per paper, denoted 1 . Now we 

discard all papers with less citations than this mean 1 . This yields a rank 1  of the last paper 

(i.e. highest rank) that is not discarded. We denote by 2  the average number of received 

citations by the papers on ranks 11,...,  (the non-discarded papers). Then we discard all papers 

with less than 2  citations, yielding a rank 2  of the last non-discarded paper, and so on. We 

hence obtain an increasing sequence k  and a decreasing sequence k  (finite in practice but 

possibly infinite in a theoretical setting with rank-order distribution functions).  

 

In Egghe (2009c) we give a mathematical formula for these k  (and k ) in a Lotkaian 

framework where we show that, simply, k

k   for all k  where   is the average number of 

citations per paper in the researcher’s rank-order list. We also present a logical variant of the 

above where “average” is replaced by “median”, where we also obtain an increasing sequence 

k  and a decreasing sequence k . 

 

It is clear that, in determining CSS, we are not limited to averages or medians and even not to 

increasing k s and (corresponding) decreasing k s, although we expect that any algorithm 

will yield monotonic k s and (of course reversely) monotonic k s. 

 

In this paper, characteristic scores and scales are defined using h -type indices such as the h -

index itself and its variants: the g -index, (2)h -index and (2)g -index (definitions are given in 

the next section). The methodology is based on the fact that, certainly for high values of e.g. 

the h -index, many papers of this researcher (i.e. certainly all papers with 1h  or less 

citations) are discarded and this can be papers with many citations. In order to give these 

(highly cited) papers also a role in the impact assessment of this researcher, in the next 
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section, we present a method of calculating the h -index of the truncated set of papers, where 

we have discarded the first h  papers (and the same technique for the other indices). 

 

This gives us a sequence of h -type indices k and corresponding ranks k , where the 

monotonicity of these sequences is reverse to the ones discussed above (based on averages or 

medians). Models for these CSS are given in a Lotkaian framework. We also calculate CSS 

for this author for the h -, g -, R -, (2)h - and (2)g -indices and give interpretations of the 

obtained data.  

 

The paper ends with conclusions and suggestions for further research.  

 

 

II. Definition and properties of CSS based on h-type 

indices 

In the Appendix one finds Table 1 which is the list of papers of this author in decreasing order 

of their number of received citations.  

 

This list was created on February 4, 2009 based on the Web of Science (WoS) data (including 

the (Social) Science Citation Index and Conference Proceedings). The first CSS that we will 

define is based on the h -index itself.  

 

II.1 CSS based on the h-index 

The h -index is the highest rank r h  such that all papers on ranks 1,...,h  have h  or more 

citations (Hirsch (2005)). It is readily seen from Table 1 that 17h   for this author on that 

date. So when we only use 17h   as an indicator of impact, we disregard all other papers 

including papers that received 17,16,15,.... citations. Let it be clear: we do not want to include 

papers with few citations: it is a good robustness property of all h -type indices to disregard 

these papers but papers with lots of citations not belonging to the so-called h -core (the first h  

papers) should be used in the measurement of impact. This is even more clear in the case of 

prolific authors as e.g. given in Ball (2005) (see also Egghe (2009b)) where h -indices above 
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100 can occur. A single number 100h   means that certainly all papers with 99 or less 

citations are disregarded which is very strange in the assessment of impact! 

 

The CSS based on the h -index is constructed as follows (explained on the data in the 

Appendix). We have 0 17h h   in Table 1. Then we cut-off these 17 papers and start re-

labeling the other papers from rank 1 onwards. We now calculate the h -index 1h  of this new 

list (see Table 2). We see that we have now 
1 12h   (original rank 29). Then we cut-off these 

12 papers and start relabeling the other papers from rank 1 onwards. The h -index 2h  for this 

new list can be calculated. In case of Table 1 we see that 
2 9h  , and so on. The values 

0h , 

0 1h h , 0 1 2h h h  , … represent the ranks k , 1,2,...k   described in the Introduction. Let us 

denote by ( )r  the number of citations to the paper on rank r  then we have that in this case 

( )k k    are the characteristic scores.  

 

It is also obvious that the sequence k  is increasing and the sequence k  is decreasing, the 

opposite of the CSS in Glänzel and Schubert (1988), Glänzel (2008) and Egghe (2009c). The 

ranks k  delimit marks on the list of papers such that the papers on ranks 1 1,...,k k    (define 

0 1  ) each have at least 1kh   citations but (if 2k  ) no more than 2kh   citations. This yields 

a clear classification of the author’s papers in citation classes and each of these classes contain 

a maximal number of papers with this property (by definition of the h -index). To provide a 

model for these CSS we briefly repeat the simple Lotkaian model: for 1j  :  

 ( )
C

j
j

   (1) 

0C  , 1   is Lotka’s law which is equivalent with Zipf’s law 

 ( )
B

r
r

   (2) 

 0,r T  (T  = total number of sources, i.e. here: cited papers) and where 

 

1

1

1

C
B





 
  

 
 (3) 

 
1

1B T   (4) 

 
1

1






 (5) 
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This result appears in Egghe (2005), Exercise II.2.2.6 p.134 and also in Egghe and Rousseau 

(2006) where, in the Appendix, a complete proof is given. In the latter article one also proves 

that 

 
1

0h h T    (6) 

in this Lotkaian framework (the proof of (6) readily follows from (2), (4) and (5) and the h -

index definition ( )h h  ). 

 

It is not easy to give a model for the kh -values. For 0k   we have of course (6). For 1k   we 

have the following proposition. 

 

Proposition 1: Supposing the law of Lotka (1), we have that 1h  satisfies 

 
1 1

1

1 1( )h h h h 


   (7) 

In case 2   we have 

 1

5 1

2
h h


  (8) 

which is the Golden Section (cf. Gellart et al. (1975)) of a line piece of length h . 

 

Proof: Taking away the first h  articles results in a ranked list of articles with rank-frequency 

function (by 2)) 

 1( )
( )

B
r

r h 
 


 (9) 

 
1

0, 0,r T h T T 
 

    
 

. The h -index 1h  of this truncated list is, by definition 1 1 1( )h h   

or, by (9) 

 1

1( )

B
h

h h 



 

hence 

 1 1( )B h h h    

Using (4), (5) and (6) proves (7). To the best of my knowledge, equation (7) cannot be solved 

except for 2  . We have then from (7) the equation (in the unknown 1h ) 

 2 2

1 1 0h h h h    
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yielding, since 1 0h  , equation (8).   

 

A Golden Section of a line piece AB  is the point X  on AB  such that  

 
AB AX

AX XB
  (10) 

( | . |  denotes the length of the line piece). Hence (8) is the length of the largest line piece AX  

if AB h . The value is, approximately 

 
5 1

0.618034
2


  (11) 

 

If we put 1h
x

h
  then it is readily seen that (7) is equivalent with the equation 

 1 1x x    (12) 

which can be solved numerically for all values  . Equation (7) and (10) clearly show that 

1h h , an evident fact from the definition of 1h . 

 

The calculation of 2h  is even more difficult but we are still able to derive some useful results. 

We have the following proposition.  

 

Proposition 2: Supposing the law of Lotka (1), we have that 2h satisfies 

 
1 1

1

2 2 1( )h h h h h 


    (13) 

In case 2   we have 

 2 0.47726h h  (14) 

 2 10.7722229h h  (15) 

and (14) and (15) are conform with (8). From these results it follows that 2 1

1 0

h h

h h
  (where 

0h h ), using (8), (11) and (15). 

 

Proof: By (2) and since now we cut-off after rank 1h h , we have the following rank-

frequency function for the remaining sequence of papers 



 8 

 
2

1

( )
( )

B
r

r h h 
 

 
 (16) 

where  10,r T h h   . The definition of the h -index 2h  for this truncated list is 2 2 2( )h h  , 

hence  

 2

2 1( )

B
h

h h h 


 
 

This yields, using (4), (5) and (6), the equation (13). In case 2  , (13) gives, since 
2 0h   

 

2 2

1 1

2

( ) ( ) 4

2

h h h h h
h

    
  (17) 

Since this equation contains the h -indices h , 1h  as well as 2h  we will further calculate 2h  in 

function of h  only and in function of 1h  only. This can be done using equation (8), yielding 

(14) (replacing 1h  by (8)) and (15) (replacing h  by (8), i.e. 12

5 1

h
h 


). We can readily check 

that (8), (14) and (15) indeed satisfy the relation 2 2 1

1

h h h

h h h
  as it should.  

 

A further generalization of the above method leads to the general formula (for 1,2,3,...k  ) 

 

2
1 1

2

0

0 1

4

2

k k

j j

j j

k

h h h

h

 

 

 
   

 


 
 (18) 

( 0h h  by definition).  

 

We now turn our attention to CSS based on the (2)h -index.  

 

 

II.2 CSS based on Kosmulski’s h
(2)

-index  

The (2)h -index of Kosmulski (Kosmulski (2006)) is the highest rank (2)r h  such that all 

papers on ranks (2)1,...,h  have  
2

(2)h  or more citations. The usefulness of Kosmulski‘s (2)h -

index has been criticized e.g. in Egghe (2009b) since (2)h  usually is very low and in any case 

much lower than the h -index: in the case of Table 1, this author’s (2)h -index equals (2) 6h  , 

much smaller than 17h  . Kosmulski introduced this index arguing that less work is needed 
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in the calculation of (2)h  in comparison with h but that is not really true. It is true that the h -

index uses more ranks than the (2)h -index but h  is directly visible from a ranked list of 

publications with citation scores while for (2)h  one needs a comparison with the squared 

ranks. Anyway, we can say that both indices are easy to calculate but that the (2)h -index is 

even more insensitive to the actual numbers of citations per paper in a ranked list since 

Kosmulski’s index uses much less papers than the h -index. We note however that Hua, 

Rousseau, Sun and Wan (2009) have found an interesting application of Kosmulski’s (2)h -

index in the framework of papers vs. the number of times these papers were downloaded (so 

where citations are replaced by downloads). Here Kosmulski’s index uses more papers than in 

the citation case since download quantities are much higher than citation quantities. 

 

Also this paper finds a new application of Kosmulski’s (2)h -index. Indeed, with our method of 

truncating lists from above, and then continuing calculating the same index for the truncated 

list, more papers are involved. It is even so that, because (2)h h , we have more “check 

points” in the ranked list of papers than with the h -index in the definition of CSS. 

Experimental results on this author’s paper-citation scores will indicate the validity of the 

CSS method on the (2)h -index. 

 

It is cleat that the characteristic scores k  (using the (2)h -index) are defined in the same way 

as for the h -index, where we now have 
1

(2)

0

k

k i

i

h




  (and (2) (2)

1 0:h h   ) and ( )k k   , 

yielding the CSS in this case. 

 

Modeling this CSS is even more difficult than for the h -index. Also, there does not yet exist a 

similar result as in (6) (for 0h h ) for the (2)h -index. Hence also this will be done in the next 

proposition.  

 

Proposition 3: Supposing the law of Lotka (1), we have that (2) (2)

0h h  satisfies 

 
1

(2) (2) 2 1
0h h T    (19) 

 (2) 2 1h h


  (20) 

Hence for high   we have 
(2)h h . The next value (2)

1h  satisfies  
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    
1 1

2 1
(2) (2) (2)

1 1h h h h 

 
 

    (21) 

 

(2)

1h , only in terms of (2)h  is the following relation  

    
1 1

1
(2) (2) (2) (2)2 1 2 1

1 1h h h h 


    (22) 

which yields, for 
3

2
  , 

 (2) (2)

1

5 1

2
h h


  (23) 

, the Golden Section of a line piece of length (2)h . 

 

Proof: The definition of the (2)h -index yields 

    
2

(2) (2)h h   (24) 

Hence, by (2), we have 

  
2

(2)B h
 

  

Using (4) and (5) we get  

 

1

(2) 2h B   

 

1
1 2

(2) 1h T






 

  
 

 

 
1

(2) 2 1h T   

proving (19), from which (20) follows from (6). It is clear that 

 (2)lim h h


  (25) 

by (20). Now we will calculate (2)

1h . The rank-frequency function for the truncated list is 

 

 
1

(2)
( )

B
r

r h


 


 (26) 

(2)0,r T h    . The definition of Kosmulski’s index (2)

1h  for this truncated list yields  

 

 
 

2
(2)

1
(2) (2)

1

B
h

h h




 (27) 

hence 
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    
2

(2) (2) (2)

1 1B h h h


   (28) 

 

 

Using (4), (5) and (6) yields 1B h  . Hence (28) yields (21).  

 

By (20) and (5) B  also equals  

  
2 1

(2) 1B h






  

hence, by (28) and (5), (22) follows. For 
3

2
  , we hence have  

  (2) (2) (2) (2)

1 1h h h h   

 

from which (23) follows since (2)

1 0h   (same argument as in Proposition 1).   

 

Note that the Golden Section is now obtained for 
3

2
   instead of 2  , in case of the h -

index.  

 

 

II.3 CSS for other h-type measures: R, g and g
(2)

    

The definition of the R -index – see Jin, Liang, Rousseau and Egghe (2007) – is as follows: 

R  is the square root of the total number of citations to the first h  papers. Note that, for the 

definition of the R -index, the h -index is used. In terms of   (formula (2)) we can write 

 
0

( )
h

R r dr   (29) 

 

So CSS, for the R -index, are not easy to define for two reasons. First of all, the values of (29) 

are not always entire numbers; for cutting-off reasons we hence have to approximate R  by 

the closest entire number. Secondly 1R  and 1h  (and the same for other indices) do not refer to 

the same truncated list. Therefore we do not use the R -index for the creation of CSS.  
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For the g -index, we can do better. The g -index has been defined in Egghe (2006 a,b,c) as 

the largest rank r g  such the sum of the citations to the first g  papers is at least 2g . One 

could reformulate this as: the largest rank r g  such that the first g  papers have, on average, 

g  citations. As proved in Egghe (2006a), for 2  , the g -index equals 

 

1

1

2
g h









 
  

 
 (30) 

with h as in (6). 

 

The proof of (30) is given in Egghe (2006a) and is derived on the defining equation (using 

(2)):  

 2

0

g B
dr g

r
  (31) 

which yields (30), using (4) and (5). The same methodology will yield the g -index 1g , of the 

truncated list, after cutting-off the first g  papers. Now the rank-frequency function has the 

form (similar as for h  and (2)h ): 

 
1( )

( )

B
r

r g 
 


 (32) 

with  0,r T g  . The g -index 1g  for this truncated list is, by definition,  

 
1 2

1
0 ( )

g B
dr g

r g 


  (33) 

Hence, since 0 1   (since 2  ),  

  
1 1 2

1 1
1

B
g g g g

 



    
 

 (34) 

which, implicitly, gives 1g  out of g  and   and formulae (4), (5) and (6) (and (30)) (using 

these formulae one has that 1B h  ). As for the other indices, the CSS are determined by 

1

0

k

k i

i

g




  and ( )k k   , with   as in (2).  

 

A similar approach can be adopted for the (2)g -index. The (2)g -index has been introduced in 

Egghe (2009a) as the “Kosmulski-variant” of the g -index: the (2)g -index is the largest rank 

(2)r g  such that all papers on rank (2)1,..., g  together have at least 3g  citations. In Egghe 
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(2009a) we did not present a formula for (2)g  in the Lotkaian framework (analogous to (6) or 

(20)). We have the following proposition.  

 

Proposition 4: Supposing the law of Lotka (1) with 2  , we have that (2)g  satisfies 

 

1
1

2 1
(2) 2 1

1

2
g T















 
  

 
 (35) 

Hence 

 
1

2 1
(2) (2)1

2
g h









 
  

 
 (36) 

 

Proof: The definition of the (2)g -index gives, with   as in (2):     

  
(2)

3
(2)

0
( )

g

r dr g   (37) 

yielding, since 0 1   (since 2  ) that     

 

1

2
(2)

1

B
g





 
  

 
 (38) 

Using (4) and (5), we hence find (35) and, by (19), also (36).  

 

Also here we see that, for   high, (2)g g ; this follows from (36), (30) and (25). Also 

indices 
( 2)

kg  can be determined via an argument similar as the one given for kg  above. We 

can, again, define 
1

(2)

0

k

k i

i

g




  and  k k   , with   as in (2).      

 

 

III. CSS for the data of Egghe 

The data of Table 1 in the Appendix yield the following CSS for the h -index: 0 17h h  , 

1 12h   (compare this with (8), in case 2  , yielding 
5 1

10.51
2

h


 ), 2 8h  , 4 6h  , 
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5 6h  , 
6 5h  , 

7 4h   and 
8 3h  . Note that, indeed, 2 1

1 0

h h

h h
  which is agreeing with the 

result in Proposition 2 in case 2  . The above values indicate that 
1

k

k

h

h 

 increases in k .      

 

In each case above, the k  can be determined via the rank 0 1 ... kr h h h     and the 

corresponding value in Table 1 for the number of citations at that rank (e.g. for 1 0 1h h   , 

we have 1 12  ). 

 

The CSS from Table 1 for the g -index yields: 0 25g g  , 1 11g  , 2 8g  , 3 7g  , 4 6g  , 

5 5g  , 6 4g  , 7 3g  , again indicating that 
1

k

k

g

g 

 increases in k . In the same way as for the 

h -index we can generate from these values of kg , the values k  and k .  

 

For Kosmulski’s (2)h -index, the values are only informative for lower values of k : (2) 6h  , 

(2)

1 4h  , (2)

2 4h  , (2)

3 4h  . Further (2) (2)

4 9... 3h h   , (2) (2)

10 24... 2h h   . Similar conclusions 

for the (2)g -index: (2) 6g  , (2)

1 4g  , (2)

2 4g  , (2)

3 4g  , (2) (2)

4 9... 3g g   , 

(2) (2)

10 25... 2g g   . 

 

 

IV. Conclusions and suggestions for further research 

In this paper we have noticed that the h -type indices only indicate one level of high-impact 

articles. The higher the value of the h -type-index, the more the need for other “marks” on the 

sequence of papers of an author, ranked in decreasing order of the number of received 

citations. The general principle (say for the h -index but similarly for other h -type-indices 

such as the g -index , the (2)h -index and the (2)g -index) is to determine 0h h   the h -index 

and then discard the papers in the h -core. The remaining list is renumbered so that the ranks 

again start at 1r   and the h -index 1h  of this list is calculated. Again we discard these 

(second level) top 1h  articles and the remaining list is renumbered so that the ranks again start 

at 1r   and the h -index 2h  of this list is calculated, and so on. The CSS are then, for 
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1,2,...k  , 
1

0

k

k i

i

h




  and ( )k k    with   the rank-frequency function of the original list. 

A similar construction applies to other h -type indices. 

 

These extra “marking points” better show the impact of the complete list of papers and in any 

case show the h -type performance of the papers of rank 1, 2,...h h  , which are not used in 

the calculation of the h -index 0h h  at all and which still have many citations (depending on 

h , which is high for prolific authors).  

 

It is clear that more studies on CSS should be conducted and especially in the connection of 

h -type-indices. A challenge is to compare CSS of different authors, i.e. to determine how to 

compare such sequences ( k ) and ( k ) for different authors.  

 

We also leave open to determine the “requested” properties for CSS, i.e. what type of 

sequences illustrate best the impact (performance) of an author’s career. 
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Appendix 

 

Table 1: Citation data of L. Egghe (based on WoS, February 4, 2009). 70 highest cited papers 

r # r
2
 ∑# 

1 58 1 58 

2 52 4 110 

3 52 9 162 

4 45 16 207 

5 41 25 248 

6 37 36 285 

7 27 49 312 

8 27 64 339 

9 25 81 364 

10 24 100 388 

11 20 121 408 

12 19 144 427 

13 19 169 446 

14 18 196 464 

15 18 225 482 

16 18 256 500 

17 17 289 517 

18 17 324 534 

19 16 361 550 

20 15 400 565 

21 15 441 580 

22 14 484 594 

23 13 529 607 

 

 

r # r
2
 ∑# 

24 13 576 620 

25 13 625 633 

26 13 676 646 

27 12   

28 12   

29 12   

30 11   

31 11   

32 11   

33 11   

34 10   

35 9   

36 9   

37 9   

38 9   

39 8   

40 8   

41 8   

42 8   

43 8   

44 8   

45 8   

46 8   

 

 

r # r
2
 ∑# 

47 8   

48 7   

49 7   

50 7   

51 7   

52 7   

53 6   

54 6   

55 6   

56 6   

57 6   

58 6   

59 5   

60 5   

61 5   

62 5   

63 5   

64 5   

65 4   

66 4   

67 4   

68 4   

69 4   

70 3   

 

From Table 1 and the definition of the h -, g -, R -, (2)h - and (2)g -index, we have, clearly, 

17h  , 25g  , 22,74R  , (2) (2) 6h g  .  

 

To illustrate how we calculate 1h , we cut-off the first 17h   papers and relabel the ranks of 

the remaining papers from 1r   onwards. This yields Table 2 (13 ranks suffice).  
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Table 2. Truncated and relabelled Table from  

the 18
th

 paper onwards from Table 1. 

r # 
1 17 

2 16 

3 15 

4 15 

5 14 

6 13 

7 13 

8 13 

9 13 

10 12 

11 12 

12 12 

13 11 

 

It is clear from Table 2 that 1 12h  . We finally illustrate the calculation of 1g  (the ones of 

(2)

1h , (2)

1g  and higher indices kh , kg , (2)

kh , (2)

kg , 2,3,...k   are similar). 

 

Cut-off the first 25g   papers and relabel the ranks of the remaining papers from 1r   

onwards. This yields Table 3 (12 ranks suffice). 

 

Table 3. Truncated and relabelled Table from  

the 26
th

 paper onwards from Table 1. 

r # r
2
 ∑# 

1 13 1 13 

2 12 4 25 

3 12 9 37 

4 12 16 49 

5 11 25 60 

6 11 36 71 

7 11 49 82 

8 11 64 93 

9 10 81 103 

10 9 100 112 

11 9 121 121 

12 9 144 130 

 

It is clear from Table 3 that 1 11g  . Note that 1 1h g .This is not in contradiction with the fact 

that the g -index is always larger than or equal to the h -index. Indeed 1h  and 1g  are the h -
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index, respectively g -index of different tables (because we truncate differently: for 
1h  at rank 

17 and for 1g  at rank 25). 

 

 

 


