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Abstract

Missingness frequently complicates the analysis of longitudinal data. A popular
solution for dealing with incomplete longitudinal data is the use of likelihood-based
methods, when, for example, linear, generalized linear, or non-linear mixed models
are considered, due to their validity under the assumption of missing at random

(MAR). Semi-parametric methods such as generalized estimating equations (GEE)
offer another attractive approach but require the assumption of missing completely

at random (MCAR). Weighted GEE (WGEE) has been proposed as an elegant
way to ensure validity under MAR. Alternatively, multiple imputation (MI) can
be used to pre-process incomplete data, after which GEE is applied (MI-GEE).
Focusing on incomplete binary repeated measures, both methods are compared
using the so-called asymptotic, as well as small-sample, simulations, in a variety of
correctly specified as well as incorrectly specified models. In spite of the asymptotic
unbiasedness of WGEE, results provide striking evidence that MI-GEE is both less
biased and more accurate in the small to moderate sample sizes which typically
arise in clinical trials.
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1 Introduction

Longitudinal binary, or in general non-Gaussian, data are common in biomed-
ical research and beyond. A typical study, for instance, would consist of repeat-
edly observing the presence or absence of some characteristic, taken in relation
to covariates of interest. Data arising from such investigations, however, are
often prone to incompleteness, or missingness. In the context of longitudinal
studies, missingness predominantly occurs in the form of dropout, in which
subjects fail to complete the study for one reason or another. The focus of
this paper will be on this type of missingness. In what follows, we will discuss
methodology that applies to all non-Gaussian settings, but illustrations and
simulations will be confined to the prevalent binary case.

The nature of the dropout mechanism affects both the analysis and interpre-
tation of the remaining data. Since one can almost never be certain about
the cause of dropout, certain assumptions have to be made. Therefore, when
referring to the missingness process, we will use the terminology introduced by
Rubin (1976) and Little and Rubin (1987). A non-response process is said to
be missing completely at random (MCAR) if the missingness is independent of
both unobserved and observed data, and missing at random (MAR) if, condi-
tional on the observed data, the missingness is independent of the unobserved
measurements. A process that is neither MCAR nor MAR is termed non-

random (MNAR). Note that specific names for these mechanisms for the case
of longitudinal data were cornered by Diggle and Kenward (1994). Moreover,
Little (1995) further splits the MCAR case in situations where missingness
is independent of both outcomes and covariates on the one hand, and cases
where missingness is covariate-dependent only. For reasons of simplicity and
generality, we prefer to retain the generic MCAR–MAR–MNAR terminology.
Full details can be found in Molenberghs and Kenward (2007). In the context
of likelihood inference, and when the parameters describing the measurement
process are functionally independent of the parameters describing the miss-
ingness process, MCAR and MAR are ignorable, while an MNAR process is
non-ignorable. This is not the case for frequentist inference, where the stronger
condition of MCAR is required to ensure ignorability (Rubin, 1976). Indeed,
frequentist methods, such as standard generalized estimating equations, for
which dropout does not need to be modelled, are only valid under the restric-
tive MCAR assumption. Weighted generalized estimating equations (WGEE)
and multiple imputation based generalized estimating equations (MI-GEE) are
two possible alternatives that make it possible to model the data under the
MAR missingness mechanism. However, in both methods, dropout needs to
be addressed, either by means of a dropout model for WGEE or by an impu-
tation model for MI-GEE, meaning the missing-data mechanism is then not
ignorable.
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A general taxonomy of models for longitudinal non-Gaussian data consists of
three families: marginal, random-effects, and conditional models. Within these
model families, a broad set of methods are available, although the marginal
and random-effects models are most often used in longitudinal non-Gaussian
settings. Such random-effects models, known as generalized linear mixed mod-
els, are typically estimated through maximum likelihood, or variations to this
theme, implying that ignorability under MAR can be invoked. This is not the
case for non-likelihood marginal models, such as the semi-parametric method
of generalized estimating equations (Liang and Zeger, 1986), henceforth GEE,
which is a second prevalent modelling approach in this area. Such models
give valid inferences under the restrictive assumption of MCAR. To be able
to analyze the longitudinal non-Gaussian profiles under the weaker MAR as-
sumption, Robins et al (1995) extended generalized estimating equations by
using inverse probability weights, resulting in weighted estimating equations,
or WGEE. An alternative approach is multiple imputation, developed by Ru-
bin (1987). A detailed account is given in Schafer (2003). Missing values are
imputed several times, and the resulting complete datasets are analyzed us-
ing a standard method, such as GEE. Afterwards, the obtained inferences
are combined into a single one (MI-GEE). Regarding the missingness process,
standard multiple imputation requires MAR to hold, even though extensions
exist. Pros and cons of inverse probability weighting methods with respect
to multiple imputation have been the subject of some debate (the discussion
of Scharfstein, Rotnitzky, and Robins, 1999; Clayton et al , 1998; Carpenter,
Kenward, and Vansteelandt, 2006).

In this paper, the focus will be on the comparison between the two GEE
versions for incomplete data mentioned above: WGEE and MI-GEE. Com-
parisons will be made by means of a simulation study, including both small-
sample simulations, as well as so-called asymptotic simulations (Rotnitzky and
Wypij, 1994). The behavior of both methods in terms of mean squared error
(MSE), variance and bias of the estimators will be studied, under correctly
specified and misspecified models. In this way, robustness of both methods
under misspecification of either the dropout model, the imputation model, or
the measurement model, can be explored.

The outline of this paper is as follows. In Section 2, an overview of methods
for analyzing incomplete longitudinal non-Gaussian data is given, with main
attention on WGEE and multiple imputation together with GEE as analysis
method. A description of the asymptotic and small-sample simulation design,
as well as the results of the simulation study, is provided in Section 3. We
conclude with a discussion in Section 4.
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2 Methods for Incomplete Non-Gaussian Longitudinal Data

Whereas the linear mixed model is seen as a unifying parametric framework
for Gaussian repeated measures (Verbeke and Molenberghs, 2000), there are
a variety of methods in common use in the non-Gaussian setting.

In line with Fahrmeir and Tutz (2001), Diggle et al (2002), and Molenberghs
and Verbeke (2005), we distinguish between three model families. In a marginal

model, marginal distributions are used to describe the outcome vector, given
a set of predictor variables. The correlation among the components of the
outcome vector can then be captured either by adopting a fully parametric
model specification or by means of working assumptions, such as in GEE
(Liang and Zeger, 1986).

Alternatively, in conditional models, any response within the sequence of re-
peated measures is modelled conditional upon (subsets of) the other outcomes.
This could be the set of all past measurements or a subset thereof, as is the
case in so-called transition models. A well-known member of this family is the
log-linear model (Agresti, 2002).

Finally, in a subject-specific or random-effects model, the responses are as-
sumed independent, given a collection of subject-specific parameters.

Although we will focus on the marginal model family to which GEE belongs,
we will also explore the effect of generating the data from a conditional model.
We will describe both of these model families in more detail in turn.

2.1 Data Setting and Notational Conventions

Assume that for subject i = 1, . . . , N a sequence of responses Yij is designed to
be measured at occasions j = 1, . . . , J . The outcomes are grouped into a vector
Y i = (Yi1, . . . , YiJ)′. Define now a dropout indicator Di for the occasion at
which dropout occurs and make the convention that Di = J+1 for a complete
sequence. Further, split the vector Y i into observed (Y o

i ) and missing (Y m
i )

components, respectively. For this definition to be meaningful, a balanced
design is necessary, in the sense that the measurement occasions are common
to all subjects.

In general, one would want to analyze the joint distribution of the measure-
ment and dropout process, f(yi,di) say. Different routes can be taken. A
common approach is through the use of a selection model (Rubin, 1976; Little
and Rubin, 1987), in which the joint distribution is factorized as the marginal
distribution of the measurement process, f(yi), on the one hand, and the con-
ditional distribution of the dropout process given the measurement process,
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f(di|yi), on the other. This factorization could also be reversed, resulting
in a pattern-mixture model (Little, 1993, 1994). Finally, one could also use
a shared-parameter model (Wu and Carrol, 1988; Wu and Bailey, 1989), in
which the measurement and dropout process are assumed to be independent,
given a certain set of shared parameters. In this paper, the focus will be on
the selection model approach.

2.2 Conditional Models

In a conditional model the parameters describe a feature (e.g., probability,
odds, logit) of (a set of) outcomes, given values for the other outcomes (Cox,
1972). The best known example is undoubtedly the log-linear model.

In a transition model, a measurement Yij in a longitudinal sequence is de-
scribed as a function of previous outcomes, or history hij = (Yi1, . . . , Yi,j−1)
(Diggle et al , 2002, p. 190). One can write a regression model for the outcome
Yij in terms of hij, or alternatively, the error term εij can be written in terms
of previous error terms. In the case of linear models for Gaussian outcomes,
one formulation can be translated easily into another and specific choices give
rise to well-known marginal covariance structures such as, e.g., AR(1). The
order of a transition model is the number of previous measurements that is
still considered to influence the current one. A model is called stationary if
the functional form of the dependence does not vary over time.

A particular version of a transition model is a stationary first-order autoregres-
sive model for binary longitudinal outcomes, which follows a logistic-regression
type model:

logit[P (Yij = 1|xij, Yi,j−1 = yi,j−1,β, α)] = x′
ijβ + αyi,j−1. (1)

Extension to the second or higher orders is obvious.

2.3 Marginal Models

In marginal or population-averaged models, the parameters characterize the
marginal expectation of a subset of the outcomes, without conditioning on
other outcomes.

Bahadur (1961) proposed a marginal model for binary outcomes, accounting
for the association via marginal correlations. Define the marginal probability
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πij = E(Yij) = P (Yij = 1), and define standardized deviations

εij =
Yij − πij√
πij(1 − πij)

and eij =
yij − πij√
πij(1 − πij)

, (2)

where yij is an actual value of the binary response variable Yij. Further, let
ρij1j2 = E(εij1εij2), ρij1j2j3 = E(εij1εij2εij3),. . ., and ρi12...J = E(εi1εi2 . . . εiJ).
Then, the general Bahadur model can be represented by the expression

f(yi) = f1(yi)c(yi), (3)

where

f1(yi) =
J∏

j=1

π
yij

ij (1 − πij)
1−yij

and

c(yi) = 1+
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3 +. . .+ρi12...Jei1ei2 . . . eiJ .

Thus, the probability mass function is the product of the independence model
f1(yi) and the correction factor c(yi). One viewpoint is to consider the factor
c(yi) as a model for overdispersion.

Besides the Bahadur model, a broad set of marginal models have been pro-
posed by Dale (1986), Plackett (1965), Lang and Agresti (1994), Molenberghs
and Lesaffre (1994), and Molenberghs and Lesaffre (1999). Even though a
variety of flexible full-likelihood models exist, maximum likelihood can be
unattractive due to excessive computational requirements, especially when
high-dimensional vectors of correlated data arise, as alluded to in the context
of the Bahadur model.

As a consequence, alternative methods have been in demand. Liang and Zeger
(1986) proposed so-called generalized estimating equations (GEE), useful to
circumvent the computational complexity of full likelihood, and which can be
considered whenever interest is restricted to the mean parameters. It requires
only the correct specification of the univariate marginal distributions, provided
one is willing to adopt so-called working assumptions about the association
structure of the vector of repeated measurements.

Let us introduce more formally the classical form of GEE (Liang and Zeger,
1986; Molenberghs and Verbeke, 2005). The score equations for a non-Gaussian
outcome are

S(β) =
N∑

i=1

∂µi

∂β′ (A
1/2

i CiA
1/2

i )−1(yi − µi) = 0, (4)
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where µi = E(yi), β is the vector of regression parameters, Ai is a diagonal
matrix with the marginal variances, and Ci is the marginal correlation matrix
for the repeated measures. Although Ai = Ai(β) follows directly from the mar-
ginal mean model, β commonly contains no information about Ci. Therefore,
the correlation matrix Ci typically is written in terms of a vector α of unknown
parameters, Ci = Ci(α). Liang and Zeger (1986) dealt with this set of nuisance
parameters α by allowing for specification of an incorrect structure or so-called
working correlation matrix. Some of the more popular choices for the working
correlations include independence (Corr(Yij, Yik) = 0, j 6= k), exchangeability
(Corr(Yij, Yik) = α, j 6= k), AR(1) (Corr(Yij, Yi,j+t) = αt, t = 0, 1, . . . , J − j),
and unstructured (Corr(Yij, Yik) = αjk, j 6= k).

Assuming that the marginal mean µi has been correctly specified as h(µi) =
Xiβ, they showed that, under mild regularity conditions, the estimator β̂

obtained from solving (4) is asymptotically normally distributed with mean β

and with covariance matrix

Var(β̂) = I−1

0 I1I
−1

0 , (5)

where

I0 =

(
N∑

i=1

∂µ′
i

∂β
V −1

i

∂µi

∂β′

)
and I1 =

(
N∑

i=1

∂µ′
i

∂β
V −1

i Var(yi)V
−1

i

∂µi

∂β′

)
,

with Vi = A
1/2

i CiA
1/2

i . When the working correlation structure differs strongly
from the true underlying structure, there is no price to pay in terms of the
consistency of the asymptotic normality of β̂, but such a poor choice may
result in loss of efficiency. With incomplete data that are MAR or MNAR, an
erroneously specified working correlation matrix may additionally lead to bias
(Molenberghs and Kenward, 2007).

The GEE moments that are specified coincide with those of the Bahadur
model, so that the former can be seen as a non-likelihood version of the latter.
In summary, GEE for binary data can be seen as a moment-based version of the
Bahadur model. Alternatively, it may be helpful to view it as a “correlation-
corrected version of logistic regression.”

2.4 Non-Gaussian Longitudinal Data and MAR

While full likelihood methods are appealing because of their flexible ignora-
bility properties, their use for non-Gaussian outcomes can be problematic due
to prohibitive computational requirements. Therefore, GEE is an attractive
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alternative within the marginal model family. Since GEE is motivated by fre-
quentist considerations, the missing-data mechanism needs to be MCAR for it
to be ignorable. This motivated so-called weighted generalized estimating equa-

tions (WGEE). An alternative mode of analysis, proposed by Schafer (2003),
consists of multiply imputing the missing outcomes using a full-parametric
model, e.g., of a random-effects or conditional type, followed by analysis of
the so-completed sets of data using a conventional marginal (e.g., GEE) or
conditional model (e.g., a transition model), and finally performing multiple-
imputation inference on the so-analyzed sets of data.

2.4.1 Weighted Generalized Estimating Equations

As Liang and Zeger (1986) pointed out, GEE-based inferences are valid only
under MCAR, due to the fact that they are based on frequentist considera-
tions. An important exception, mentioned by these authors, is the situation
where the working correlation structure happens to be correct, since then the
estimates and model-based standard errors are valid under the weaker MAR.
In general, the working correlation structure will not be correctly specified,
and hence, Robins et al (1995) proposed a class of weighted estimating equa-
tions to allow for MAR.

The idea of weighted estimating equations (WGEE) is to weight each subject’s
contribution in the GEEs by the inverse probability that a subject drops out
at the time he dropped out. Thus, anyone staying in the study is considered
representative of himself as well as of a number of similar subjects that did
drop out from the study. The incorporation of these weights, reduces possible
bias in the regression parameter estimates. Such a weight can be expressed as

νij ≡ P [Di = j] =
j−1∏

k=2

(1 − P [Rik = 0|Ri2 = . . . = Ri,k−1 = 1]) ×

P [Rij = 0|Ri2 = . . . = Ri,j−1 = 1]I{j≤J},

where j = 2, 3, . . . , J + 1.

Recall that we partitioned Y i into the unobserved components Y m
i and the

observed components Y o
i . Similarly, we can make the exact same partition of

µi into µm
i and µo

i . In the weighted GEE approach, the score equations to be
solved are:

S(β) =
N∑

i=1

J+1∑

d=2

I(Di = d)

νid

∂µi

∂β′ (d)(A
1/2

i RiA
1/2

i )−1(d)(y(d) − µi(d)) = 0,

where yi(d) and µi(d) are the first d−1 elements of yi and µi respectively. We
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define
∂µ

i

∂β
′ (d) and (A

1/2

i RiA
1/2

i )−1(d) analogously, in line with the definitions

of Robins et al (1995).

2.4.2 MI-GEE and MI-Transition

Multiple imputation (MI) was formally introduced by Rubin (1978). The key
idea of the procedure is to first replace each missing value with a set ofM plau-
sible values drawn from the conditional distribution of the unobserved values,
given the observed ones. This conditional distribution represents the uncer-
tainty about the right value to impute. In this way, M imputed datasets are
generated (imputation stage), which are then analyzed using standard com-
plete data methods (analysis stage). Finally, the results from the M analyses
have to be combined into a single inference (pooling stage) by means of the
method laid out in Rubin (1978). In its basic form, multiple imputation re-
quires the missingness mechanism to be MAR, even though versions under
MNAR have been proposed (Rubin, 1987; Molenberghs, Kenward, and Lesaf-
fre, 1997).

In line with the notation in Section 2.1, suppose the parameter vector of the
distribution of Y i = (Y o

i ,Y
m
i ) is denoted by θ. Multiple imputation uses the

observed data Y o to estimate the conditional distribution of Y m given Y o.
The missing data are sampled several times from this conditional distribution
and augmented to the observed data. The resulting completed data are then
used to estimate θ. If the distribution of Y i = (Y o

i ,Y
m
i ) were known, with

parameter vector θ, then Y m
i could be imputed by drawing a value of Y m

i

from the conditional distribution f(ym
i |y

o
i ,θ). The objective of the imputa-

tion phase is to sample from this true predictive distribution. However, θ in
the imputation model is unknown, and therefore needs to be estimated from
the data first, say θ̂, after which f(ym

i |y
o
i , θ̂) is used to impute the missing

data. Precisely, this implies one first generates draws from the distribution
of θ̂, thereby taking sampling uncertainty into account. Generally, the vector
θ in the imputation model differs from the parameter vector β that governs
the analysis model. Alternatively, a Bayesian approach, in which uncertainty
about θ is incorporated by means of some prior distribution for θ, can also
be taken. In the context of multiple imputation, a random θ∗ is first drawn
from this prior distribution, which is then put into the distribution of Y i,
and then a random Y m

i is selected from f(ym
i |y

o
i ,θ

∗). The estimate of β and
its estimated variance are calculated using the completed data and a, poten-
tially different, analysis model, (Y o,Y m∗): β̂ = β̂(Y ) = β̂(Y o,Y m∗), and the
within imputation variance is U = V̂ar(β̂). These steps are repeated a number

of M times, producing β̂
m

and Um, for m = 1, . . . ,M .

In the last phase of multiple imputation, the results of the analyses for the M
imputed datasets are pooled into a single inference. The combined point esti-
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mate for the parameter of interest β from the multiple imputation is simply
the average of the M complete-data point estimates (Schafer, 1999). That is,
the estimate and its estimated variance are given by:

β̂ =
1

M

M∑

m=1

β̂
m

and V = W +
(
M + 1

M

)
B,

where

W =

∑M
m=1 Um

M
and B =

∑M
m=1(β̂

m
− β̂)(β̂

m
− β̂)′

M − 1
,

with W denoting the average within imputation variance and B the between

imputation variance (Rubin, 1987).

Since in WGEE all subjects are given weights, calculated using the hypoth-
esized dropout model, any misspecification of this dropout model will affect
all subjects, and thus the results. On the other hand, one can also consider
MI together with GEE or with a transition model (in what follows, we refer
to these as MI-GEE and MI-Transition, respectively). In essence, this method
comes down to first using the predictive distribution of the unobserved out-
comes given the observed ones and perhaps covariates. After this step, the
missing-data mechanism can be further ignored, provided the missing-data
mechanism is MAR. In these MI cases, a misspecification made in the impu-
tation step will only effect the unobserved (i.e., imputed) but not the observed
part of the data. Meng’s (1994) results show that, as long as the imputation
model is not grossly misspecified, this approach will perform well. Considering
all this, one might be inclined to expect the MI-GEE or MI-Transition to be
more robust against model misspecification than WGEE. In the next section,
we will use a simulation study to investigate this idea.

3 A Simulation Study

In the previous section, two approaches have been proposed to overcome the
bias occurring in GEE under MAR. WGEE is unbiased for a correctly speci-
fied dropout and mean structure of the measurement model. MI-GEE requires
compatibility between the imputation and estimation model to be correctly
specified. Therefore, it is of interest to quantify the bias and precision un-
der various types of misspecification. To this end, an asymptotic simulation
study, as well as small-sample simulations, were conducted on various un-
derlying data-generating models. Whereas asymptotic simulations give a nice
paradigm to explore the situation of “large” samples, small-sample simulations
give insight into the behavior of the methods in real-life settings.

In the simulation study, we distinguish between two stages: (1) the data-
generating stage and (2) the analysis stage. In the first stage, a data-generating
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model is defined. Under the selection model framework, this generating model
consists of a measurement model on the one hand, and a dropout model,
given the measurement model on the other. In the analysis stage, a distinc-
tion should be made among three types of models: a measurement model, a
dropout model and an imputation model. For the WGEE approach, only a
marginal measurement model and a dropout model need to be specified. In
contrast, the analysis stage for MI-GEE would entail the specification of an
imputation model, rather than a dropout model, as well as a marginal mea-
surement model. Finally, for MI-Transition, a conditional rather than marginal
measurement model is needed, as well as an imputation model. For the MI-
GEE and MI-Transition approaches, the predictors of dropout are included in
the imputation model.

To assess the distinctive and relative merits of the methods of interest, we
consider their performance, first in the case without any misspecification, then
under various misspecifications. Since our interest lies in comparing WGEE
and MI-GEE as methods for dealing with missing data in a binary longitudinal
setting, the misspecification can be made either in the dropout model, in
the imputation model, or in the measurement model. Misspecification in the
missingness mechanism, however, e.g., using MCAR for an underlying MAR
mechanism, is not further explored, as this is not the main focus here and has
already been investigated extensively (Jansen et al, 2006).

In this section, we first define the various generating models employed for the
simulations. A description of the design of the simulation study follows, after
which the results of the simulation, under each of the various scenarios, are
presented.

3.1 Data-Generating Models

For the simulation study, we generated an outcome at 3 time points using
three different measurement models: first, three-dimensional binary outcomes
were generated from a Bahadur model as well as from a second-order autore-
gressive, AR(2), transition model; further, a three-dimensional continuous out-
come (that was later dichotomized) was generated from a trivariate Gaussian
distribution. Whereas the choice of the first two is obvious, since our focus
lies on binary repeated measures, the third case depicts real-life settings for
which a continuous outcome is available, but the scientific question is based
on a dichotomized version of it. For all three cases, the measurement model in-
corporated a binary treatment indicator, such as a treatment versus placebo
classification. In addition, for the dropout model, an MAR mechanism was
considered. Assuming that dropout can occur only after the first time point,
there are three possible dropout patterns: (1) dropout at the second time point,
(2) dropout at the third time point, or (3) no dropout. The combination of
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the various measurement models and the dropout model gives rise to three
data-generating models, which will hereinafter be denoted as GM I (Bahadur
measurement model and MAR dropout model), GM II (AR(2) measurement
model and MAR dropout model) and GM III (Gaussian measurement model
and MAR dropout model). Let us define these three data-generating mecha-
nisms in turn.

Note that we restrict the simulation setting to short sequences, since the
higher-order Bahadur models would become prohibitive to generate from. Nev-
ertheless, both the WGEE as well as the MI-GEE methods and then especially
also the MI-Transition models can be used, in fact are very appealing, for
longer sequences of repeated measures. When sequences become very long,
the transition model is appealing owing to its computational convenience.

Denote by tj the time point at which measurement j is taken and by xi the
treatment indicator. GM I is based on a Bahadur model, which follows general
formulation (3), with

logit(πij) = logit[P (Yij = 1|xi, tj)] = β0 + βx xi + βt tj + βxt xi tj, (6)

where we choose β0 = −0.25, βx = 0.5, βt = 0.2 and βxt = −0.8, with two- and
three-way correlation coefficients equal to ρij1j2 = 0.2 and ρij1j2j3 = 0, respec-
tively. The latter define an exchangeable correlation structure. The missing-
ness process for GM I is assumed to be MAR, and the probability of dropout
at time point j given xi and the measurement at the previous time point, is
modelled by a logistic regression of the form

logit[P (Di = j|xi, yi,j−1, Di ≥ j)] = ψ0 + ψx xi + ψprev yi,j−1,

where j = 2, 3, 4, ψ0 = −0.5, ψx = −0.6 and ψprev = −3.5. Combining this
dropout model with the measurement model yields, for GM I, 68% completers,
15% with the last outcome missing (7% for x = 0 and 8% for x = 1), and 18%
with only the first outcome observed (10% for x = 0 and 8% for x = 1).

The same dropout model is used to generate the missingness for GM II, but
now combined with the AR(2) transition model. Such a model can be described
as follows:

P (xi) =µx,

logit[P (Yi1 = 1|xi)] =α0 + αx xi,

logit[P (Yi2 = 1|xi, yi1)] =φ0 + φx xi + φ1yi1

and logit[P (Yi3 = 1|xi, yi1, yi2)] = γ0 + γx xi + γ1 yi1 + γ2 yi2,

where µx = 0.5, α0 = −0.2, αx = 0.3, φ0 = −0.1, φx = 0.5, φ1 = 0.7,
γ0 = −0.25, γx = 0.35, γ1 = 0.4 and γ2 = 0.6. On this generation model, the
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missingness proportions are 73% for completers, 11% with the last outcome
missing (7% for x = 0 and 4% for x = 1), and 17% with only the first outcome
observed (11% for x = 0 and 6% for x = 1).

Since the methods of interest, WGEE and MI-GEE, involve marginal models,
so as to allow comparison, the above conditional model needs to be further
marginalized to obtain so-called marginalized “true” parameters, which then
approximately describe a marginal logistic function. This marginalization as-
sumes that the corresponding underlying marginal model is of the form given
in (6). Inasmuch as the underlying measurement model is in fact conditional,
rather than marginal, there is no way to verify whether this assumed under-
lying marginal model is “true”. This marginalization was done by comput-
ing the marginal probabilities from the underlying conditional AR(2) transi-
tion model probabilities, i.e., for a given outcome vector and treatment level,
(yi1, yi2, yi3, xi),

P (yi1, yi2, yi3, xi) = P (yi3|xi, yi1, yi2)P (yi2|xi, yi1)P (yi1|xi)P (xi). (7)

On a hypothetical dataset consisting of all 16 possible combinations of the
form (yi1, yi2, yi3, xi), with corresponding probability weights P (yi1, yi2, yi3, xi),
we fitted a GEE model of the form (6). The resulting marginalized “true”
parameters of GM II are β0 = −0.3658, βx = 0.2673, βt = 0.2265 and βxt =
0.0790.

Finally, for GM III, we assume a Gaussian outcome, Wij, at three time points,
where:

µij = E(Wij|xi, tj) = η0 + ηx xi + ηt tj + ηxt xi tj,

for i = 0, 1 and j = 1, 2, 3, with η0 = 3.5, ηx = 0, ηt = 1.75 and ηxt = 0.5.
That is,

µ =




µ0

µ1


 =




(µ01, µ02, µ03)
′

(µ11, µ12, µ13)
′


 =




(5.75, 8.00, 10.25)′

(5.25, 7.00, 8.75)′


 .

Moreover, we assume the following unstructured covariance structure:

Σ =




1 0.80 0.35

0.80 1 0.50

0.35 0.50 1



.

The missingness process for this GM is given by:

logit[P (Di = j|xi, wi,j−1, Di ≥ j)] = δ0 + δx xi + δprev wi,j−1,
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where j = 2, 3, . . . , J + 1, δ0 = −0.15, δx = 0.8 and δprev = −0.35. Combining
this dropout model with the measurement model yields, on average, over all
the 500 samples generated from GM III, 76% completers, 7% with the last
outcome missing (3% for x = 0 and 4% for x = 1), and 17% with only the
first outcome observed (7% for x = 0 and 10% for x = 1).

The binary outcome Yij was then obtained from the continuous outcome Wij

by defining a cut-off value of 6.5, i.e., Yij = 1, if Wij ≥ 6.5, and 0, otherwise.
Although the generated outcomes are continuous in nature, the focus here is
on the analysis of the binary version Yij. For this reason, we need to obtain
“true” parameters corresponding to this dichotomized response by fitting a
GEE model of the form (6). Note however that this model is not necessarily the
unknown underlying marginal model for the binary outcomes. The resulting
parameters are β0 = −3.0373, βx = 0.0095, βt = 1.7812 and βxt = 0.4828.

Our choice for linear time evolutions, at the scale of the linear predictor and
within each of the treatment arms, allows us to distinguish between misspec-
ification effects on cross-sectional parameters (β0 and βx), longitudinal para-
meters (βt), and parameters combining aspects of both (βxt). In practice, for
example in a clinical trial, it might be advisable to allow for an unstructured,
saturated treatment-by-time model, reducing the risk of model misspecifica-
tion and in line with recommendations made by Molenberghs et al (2004) and
several references listed therein.

3.2 Design of the Simulation Study

We now proceed to describe the details of our simulation study. Given that
the sequence of outcomes and the missing data process for GM I and GM II
are discrete, quantification of bias under specific assumptions about the non-
response process can be done via an algorithm first proposed by Rotnitzky
and Wypij (1994). This so-called asymptotic simulation method entails first
creating a hypothetical dataset consisting of all possible outcome sequences
for each level of the covariate(s). In addition, for each of these, there are
J possible missingness patterns. The probability mass with which each of
these outcome sequences occurs can be computed based on the assumed data-
generating model (measurement and dropout models).

For our case, we consider a binary outcome at 3 time points, denoted by yi =
(yi1, yi2, yi3)

′, and a single covariate xi with 2 levels, i.e., a binary treatment
indicator. This gives rise to 23 = 8 possible sequences at each level of the
covariate, yielding a total of 16 possibilities. From the assumed measurement
model, the probability masses for each of these 16 sequences can be computed,
P (yi, xi) say. Now, for each such case, there are 3 possible dropout patterns
– dropout at second time point, dropout at the third time point, and no
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dropout – yielding a total of 48 possibilities. The probabilities P (yi, xi) are
thus further split among the 3 missingness patterns according to the dropout
probabilities. Specifically, denoting by P (Di = 2|Di ≥ 2), P (Di = 3|Di ≥ 3)
and P (Di = 4|Di ≥ 4) the probabilities of dropout at time points 2, 3, and 4,
respectively, we obtain:

P (yi, xi, Di = 4|Di ≥ 4) = P (yi, xi)
∏

4
j=2[1 − P (Di = j|Di ≥ j)],

P (yi, xi, Di = 3|Di ≥ 3) = P (yi, xi)
∏

3
j=2[1 − P (Di = j|Di ≥ j)]P (Di = 4|Di ≥ 4)

and

P (yi, xi, Di = 2|Di ≥ 2) = P (yi, xi)[1 − P (Di = 2|Di ≥ 2)]
∏

4
j=3 P (Di = j|Di ≥ j).

The estimating equations are then applied to this hypothetical dataset with
the application of the resulting probability weighting. The solutions obtained
are the limiting (i.e., asymptotic) solutions, which can then be compared with
the known parameters of the simulation model, so as to conveniently derive
the asymptotic bias of the estimators.

For the small-sample simulations, we assume a sample of size N = 100 sub-
jects, equally divided between the two treatment groups. Such a choice is
directly applicable to practitioners, since many biopharmaceutical trials em-
ploy about 50 to 100 patients per treatment arm. Based on the underlying
probabilities from GM I or GM II, 50 observations were generated randomly
for each treatment group. S = 500 such samples were then generated. Simi-
larly, for GM III, we generated S = 500 samples with n0 = 50 observations
from N(µ0,Σ) and n1 = 50 observations from N(µ1,Σ). While asymptotic
simulations were conducted only for GM I and GM II, small-sample simula-
tions were done for all three generation models. When using a GEE approach
for analysis, the same working correlation structure as assumed during data
generation is employed.

3.3 Results of the Simulation Study

For the ensuing discussion, in assessing and comparing WGEE and imputation-
based GEE, various properties are quantified. First, we define bias as the
difference between the estimate and the true value of the parameter, i.e.,
Bias(β̂) = β̂ − β. For the asymptotic version, probability weights, computed
from the underlying GM, are applied in solving the estimating equations (Rot-
nitzky and Wypij, 1994). The resulting estimates are the limiting solutions,
which can then be used to compute the asymptotic bias (Bias∞), while the
resulting variances are the asymptotic variances (Var∞) of the parameter es-
timators.

For the small-sample simulations, the average (Est) of the estimators over all
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S = 500 samples, its true variance for a sample of size N (VarN), its estimated
variance for a sample of size N (V̂arN) and MSE are computed as:

Est ≡ β̂ =
S∑

i=1

β̂i

S
,

with

VarN ≡ VarN(Est) =
Var∞
N

, V̂arN ≡ V̂arN(Est) =
S∑

i=1

(β̂i − β̂)2

S − 1

and
MSE ≡ MSE(Est) = Bias2

N(Est) + V̂arN(Est).

3.3.1 Everything Correctly Specified

We first investigate the individual merits of each method when every one of
its aspects is correctly specified. Recall that GM I is based on a Bahadur mea-
surement model and a logistic model for dropout that is reflective of an MAR
mechanism, i.e., depending on the previous measurement as well as the treat-
ment indicator. An appropriate analysis model would consist of a measurement
model and a dropout model that match those of this GM. Since GEE methods
are moment-based versions of the Bahadur model (Section 2.3), a GEE-based
version, with the same structure as that of the underlying measurement model
would be suitable. To address the MAR nature of the missingness, the GEE-
based approach is supplemented with a weighting scheme, obtained from a
model of the same form as that of the underlying dropout model, resulting
now in WGEE. Thus, WGEE was fitted for GM I, using weights taken from
fitting a logistic dropout model with the treatment indicator and the previ-
ous measurement as predictors. It should be noted that under WGEE the
imputation model is not relevant since the missingness is addressed, not by
imputation, but rather, by means of the dropout model. The results for both
the asymptotic and small-sample simulations are shown in Table 1.

It can be observed that the asymptotic unbiasedness of the WGEE estimators
under a correctly specified mean structure is demonstrated by our asymptotic
simulation. The same cannot be said, however, for the small-sample simulation,
under which a substantial amount of bias is observed. Moreover, the estimated
variances of the parameter estimators are considerably larger than the true
variances, demonstrating the inefficiency of WGEE for small samples. These
observations are indicative that, for a sample of size N = 100, the consistency
of the WGEE estimators does not seem to be achieved, at least not for this
particular generating model.

For GM II, which uses an AR(2) transition model for the mean structure and a
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Table 1
Asymptotic and small-sample simulation results for WGEE, with everything cor-
rectly specified, under GM I. Asymptotic results include asymptotic bias (Bias∞)
and asymptotic variance (Var∞), while small-sample simulation results include the
average (Est), bias (BiasN ), estimated variance (V̂arN ), true variance (VarN ) and
mean squared error (MSE), of the parameter estimators, for N = 100.

Asymptotic Small-Sample

Parameter Bias∞ Var∞ Est BiasN V̂arN VarN MSE

β0 -1.87E-06 0.44095 -0.6457 -0.3956 1.0779 0.0044 1.2345

βx 1.99E-07 1.10959 0.6225 0.1225 2.1108 0.0111 2.1258

βt 2.02E-07 0.11942 0.3018 0.1018 0.2388 0.0012 0.2491

βxt -1.66E-07 0.27815 -0.9355 -0.1356 0.4441 0.0028 0.4625

conditional logistic model for dropout, we considered fitting an AR(2) transi-
tion model, which is consistent with the underlying measurement model, after
multiple imputation (MI-Transition). The multiple imputations were carried
out with the SAS procedure MI, which employs a conditional logistic imputa-
tion model for binary outcomes, a model in line with the underlying measure-
ment model of GM II and fully parametric, admitting valid inferences under
MAR (Schafer, 2003). Thus, our analysis model, both the imputation as well
as the measurement models, are correctly specified in the sense that they are
compatible with the underlying measurement model. Note also that a dropout
model need not be defined for this mode of analysis, since imputations, rather
than dropout weights, are used to cope with the missingness. For the asymp-
totic simulation, M = 500 datasets were imputed, while for the small-sample
simulations, since efficient results can be obtained even under a small number
of imputations (Rubin, 1987), we chose a more practically relevant value of
M = 5. Table 2 gives the results for both types of simulations.

The first panel shows asymptotically unbiased parameter estimates, since,
for this outcome, data for all subjects are assumed available and are thus
not imputed. The small-sample simulations for this outcome, on the other
hand, show slightly biased estimates as can be expected whenever taking finite
samples. For the second and third panels, some bias is observed, asymptotically
and for small samples, but the amounts are generally of small magnitudes.
Some degree of difference can also be observed between the estimated and
true variances, pointing to a slight inefficiency of the estimators. This might be
attributed to the fact that, when applying multiple imputation, small-sample
behaviour stems from both the actual sample size, N , as well as from the
number of imputations, M . Thus, in cases where the former is large while the
latter is relatively small, it should not come as a surprise that the estimated
variance is relatively large.
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Table 2
Asymptotic and small-sample simulation results for MI-Transition, with every-
thing correctly specified, under GM II. Asymptotic results include asymptotic bias
(Bias∞) and asymptotic variance (Var∞), while small-sample simulation results in-
clude the average (Est), bias (BiasN ), estimated variance (V̂arN ), true variance
(VarN ) and mean squared error (MSE), of the parameter estimators, for N = 100.

Asymptotic Small-Sample

Parameter Bias∞ Var∞ Est BiasN V̂arN VarN MSE

α0 -0.0000 8.0803 -0.2313 -0.0313 0.0925 0.0808 0.0935

αx -0.0000 16.1003 0.3369 0.0369 0.1791 0.1610 0.1805

φ0 -0.0096 12.0926 -0.0683 0.0317 0.2046 0.1209 0.2056

φx -0.0666 18.0194 0.5041 0.0041 0.2635 0.1802 0.2635

φ1 0.0343 18.1493 0.7241 0.0241 0.2692 0.1815 0.2698

γ0 0.0236 17.4438 -0.1702 0.0798 0.3472 0.1744 0.3535

γx -0.0568 18.5632 0.3590 0.0090 0.3023 0.1856 0.3024

γ1 -0.0594 19.7766 0.5029 -0.0971 0.2354 0.1978 0.2448

γ2 0.0072 18.9333 0.4382 0.0382 0.3249 0.1893 0.3264

Finally, we consider GM III, which is based on a Gaussian measurement model
and a logistic dropout model. The analysis model used for this GM was MI-
GEE, which requires an imputation model and a measurement model, but
not a dropout model. Multiple imputations of the missing Gaussian outcomes
were first obtained using a Gaussian imputation model, thereby ensuring a
correctly specified imputation model, that is, one that uses the underlying
measurement process to generate the imputations for the missing observations.
The Gaussian outcome was then dichotomized based on the previously defined
cutoff value, after which standard GEE, using a probit link, was applied to the
dichotomized outcome of the imputed datasets. Since the underlying distribu-
tion for the outcomes is not discrete, only small-sample simulations are possi-
ble. Although initially S = 500 samples were generated, after dichotomization
of the Gaussian outcome, there were 51 samples for which convergence was not
attained. Inspection of these samples showed that the treatment-by-time in-
teraction could not be estimated because, at one time point, all dichotomized
outcomes belonged to only one treatment group.

Table 3 gives the results of the simulation only for the S ′ = 449 convergent
samples. The “true” parameter values used to compute the bias were obtained
by fitting the same measurement model using the complete (binary) data from
the S ′ = 449 samples. Consistent with the theory on MI, we obtained only
very small bias for the estimates, which might be expected to decrease even
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Table 3
Small-sample simulation results for MI-GEE, with everything correctly specified,
under GM III. Results include the average (Est), bias (BiasN ), estimated variance
(V̂arN ) and mean squared error (MSE), of the parameter estimators, for N = 100.

Small-Sample

Parameter Est BiasN V̂arN MSE

β0 -3.0358 0.0015 0.1978 0.1978

βx 0.0151 0.0056 0.3968 0.3968

βt 1.7808 -0.0004 0.0601 0.0601

βxt 0.4767 -0.0061 0.1480 0.1481

further under larger samples.

3.3.2 Dropout and Measurement Models Correct, Imputation Model Incorrect

We now consider a comparison between WGEE and MI-GEE, both having
a correctly specified measurement model, but the latter using an incorrectly
specified imputation model and the former specifying the dropout model cor-
rectly. For the two methods, the measurement model used is consistent with
the underlying Bahadur measurement model of GM I. We know from the
discussion in the previous section that fitting WGEE for GM I, using the
same mean structure as that of the underlying measurement model and with
weights obtained from a logistic dropout model with the treatment indicator
and the previous measurement as predictors, ensures every aspect is correctly
specified. For MI-GEE, imputations are done using a conditional logistic im-
putation model for binary outcomes – a model that is not consistent with
the marginal nature of the underlying Bahadur measurement model and is,
therefore, incorrectly specified. Thus, the said comparison, of WGEE with
correctly specified dropout and measurement models against MI-GEE with
correctly specified measurement model but incorrectly specified imputation
model, is possible under GM I. The results are given in Table 4.

As was already noted in the previous section, WGEE does not yield unbiased
and consistent estimators for the particular sample size used, whereas the
bias is considerably smaller for MI-GEE. The latter also leads to more precise
estimators than those obtained for WGEE, as evidenced by smaller differences
between the estimated and true variances for MI-GEE, despite the fact that
the WGEE analysis model used was entirely correctly specified. Moreover,
comparison of the MSEs indicate more efficient estimators for MI-GEE. All of
these observations suggest a certain amount of robustness of MI-GEE when
misspecifying the imputation model.
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Table 4
Small-sample simulation results for WGEE, with correctly specified dropout, and
MI-GEE, with incorrectly specified imputation model, under GM I. Results include
the bias (BiasN ), estimated variance (V̂arN ), true variance (VarN ) and mean squared
error (MSE), of the parameter estimators (Parm), for N = 100.

WGEE MI-GEE

Parm BiasN V̂arN VarN MSE BiasN V̂arN VarN MSE

β0 -0.3956 1.0779 0.0044 1.2345 -0.0169 0.2332 0.1896 0.2335

βx 0.1225 2.1108 0.0111 2.1258 0.0195 0.4835 0.3938 0.4839

βt 0.1018 0.2388 0.0012 0.2491 0.0088 0.0548 0.0414 0.0548

βxt -0.1356 0.4441 0.0028 0.4625 -0.0058 0.1172 0.0885 0.1172

3.3.3 Imputation and Measurement Models Correct, Dropout Model Incorrect

Whereas in the previous section the relative performances of WGEE with
correctly specified dropout and MI-GEE with incorrectly specified imputation
model were compared, in this section we proceed to look at the reverse. That is,
we consider a comparison of WGEE with incorrectly specified dropout model
against MI-GEE with correctly specified imputation model. In both cases,
the measurement model corresponds to the assumed underlying measurement
model for the dichotomized version of the continuous response. For this as-
sessment, we apply the methods under GM III. We have seen, in Section 3.3.1,
that for GM III, imputing the missing observations using a Gaussian imputa-
tion model and subsequently fitting standard GEE to dichotomized outcomes
of the completed sets of data, results in MI-GEE with everything correctly
specified. To enable comparison with WGEE using an incorrectly specified
dropout model, we obtain weights from a logistic dropout model with the
treatment indicator and the binary version of the previous measurement as
predictors. The latter is a clear misspecification in the dropout model, since
the underlying dropout model uses the continuous form of the previous mea-
surement as predictor. The results of this comparison are given in Table 5.
Only small-sample simulations are possible since the underlying GM does not
consist of a discrete set of outcomes.

Bias is much smaller for MI-GEE, which can be expected as this is a correctly
specified analysis model. With respect to the estimated precision (V̂arN) for a
sample of size N = 100, the estimators obtained from MI-GEE are superior to
those from WGEE. Overall, the MI-GEE estimators are more efficient, with
MSEs for the WGEE estimators about 1.5 times those of MI-GEE. These
results seem to highlight the sensitivity of WGEE to misspecifications in the
dropout model, in contrast to MI-GEE, which was noted to be somewhat
robust to misspecifications in the imputation model.
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Table 5
Small-sample simulation results for WGEE, with incorrectly specified dropout, and
MI-GEE, with correctly specified imputation model, under GM III. Results include
the bias (BiasN ), estimated variance (V̂arN ) and mean squared error (MSE), of the
parameter estimators (Parm), for N = 100.

WGEE MI-GEE

Parm BiasN V̂arN MSE BiasN V̂arN MSE

β0 -0.1855 0.3113 0.3457 0.0015 0.1978 0.1978

βx -0.1380 0.5644 0.5834 0.0056 0.3968 0.3968

βt 0.3100 0.1376 0.2336 -0.0004 0.0601 0.0601

βxt 0.0367 0.2312 0.2325 -0.0061 0.1480 0.1481

3.3.4 Imputation and Dropout Models Correct, Measurement Model Incorrect

We finally proceed to looking at a comparison between WGEE and MI-GEE
when the measurement model is specified incorrectly. For this setting, we con-
sider GM II. We first present the results of the asymptotic and small-sample
simulations for the marginalized version of MI-Transition, with which WGEE
and MI-GEE are subsequently compared. Recall that the resulting parame-
ter estimates, from the correctly specified MI-Transition model fitted in Sec-
tion 3.3.1 (Table 2), define three sets of conditional probabilities, from which
marginal probabilities can be derived as in (7). These estimated probabilities
were then used as weights in fitting a GEE model of the form (6) on a dataset
consisting of all possible combinations of outcome sequences and treatment
level, yielding the marginalized version of MI-Transition. The resulting para-
meter estimates were subsequently compared with the “marginal” parameters
in (6); the results are shown in Table 6. Asymptotic bias for the parameter
estimates is generally small, while its small-sample counterpart is larger. Es-
timated and true variances for a sample of size N = 100 differ substantially,
indicating some degree of inefficiency under this sample size.

Assuming now that these “marginal” parameters define some underlying mar-
marginal model for GM II, we fit both WGEE and MI-GEE, with a correctly
specified dropout model and a correctly specified imputation model, respec-
tively. For WGEE, weights are obtained from a dropout model consistent with
the underlying dropout model of GM II, while for MI-GEE, imputations are
generated from a conditional AR(2) transition model, which is in line with the
underlying measurement model of GM II. In this way, both the dropout and
imputation models are correctly specified. However, the fitted measurement
models for both WGEE and MI-GEE are clearly misspecified, in the sense
that the outcomes are modelled marginally (i.e., GEE), rather than condi-
tionally (i.e., AR(2)). The results of this comparison (Table 7) indicate less
biased estimates for MI-GEE and marginalized MI-Transition. In addition,
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Table 6
Asymptotic and small-sample simulation results for marginalized MI-Transition,
with everything correctly specified, under marginalized GM II. Asymptotic results
include asymptotic bias (Bias∞) and asymptotic variance (Var∞), while small-
sample simulation results include the average (Est), bias (BiasN ), estimated vari-
ance (V̂arN ), true variance (VarN ) and mean squared error (MSE), of the parameter
estimators, for N = 100.

Asymptotic Small-Sample

Parameter Bias∞ Var∞ Est BiasN V̂arN VarN MSE

β0 -0.0045 1.11659 -0.4253 -0.0595 1.1230 0.0112 1.1265

βx 0.0285 2.39565 0.3134 0.0461 2.4702 0.0240 2.4723

βt -0.0022 0.20405 0.2644 0.0379 0.2060 0.0020 0.2074

βxt -0.0363 0.43727 0.0648 -0.0142 0.4524 0.0044 0.4526

Table 7
Small-sample simulation results for WGEE, with correctly specified dropout, and
MI-GEE, with correctly specified imputation model, under GM II. Results include
the bias (BiasN ), estimated variance (V̂arN ), true variance (VarN ) and mean squared
error (MSE), of the parameter estimators (Parm), for N = 100.

WGEE MI-GEE

Parm BiasN V̂arN VarN MSE BiasN V̂arN VarN MSE

β0 -0.4223 1.1310 0.0047 1.3098 -0.0562 0.2508 0.1901 0.2539

βx -0.1451 2.9804 0.0104 3.0014 0.0530 0.4927 0.3841 0.4955

βt 0.1241 0.2149 0.0014 0.2303 0.0343 0.0608 0.0414 0.0620

βxt 0.0792 0.5877 0.0030 0.5940 -0.0233 0.1184 0.0847 0.1190

MI-GEE outperforms both WGEE and marginalized MI-Transition in terms
of precision and efficiency.

4 Concluding Remarks

When the analysis of incomplete binary longitudinal data is envisaged, sev-
eral routes are available. Apart from likelihood-based methods, such as the
generalized linear mixed-effects model (Molenberghs and Verbeke, 2005), non-
likelihood methods are attractive, especially when a so-called marginal model
is of interest. Since standard generalized estimating equations (Liang and
Zeger, 1986) are unbiased only under MCAR, a variety of modifications and
alternatives to GEE have been proposed. Undoubtedly the most popular route
is through weighted estimating equations, proposed by Robins et al (1995),
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and a number of later extensions. Also of attraction is a combination of GEE
and multiple imputation (Rubin, 1987) methods, i.e., MI-GEE. Once multiple
imputation is considered an option, it has the merit of allowing for a variety of
imputation techniques, whereafter several analysis methods can be considered.
Two such routes considered in this paper are MI-GEE and MI-Transition.

In this paper we have provided quantitative evidence, based on asymptotic, as
well as small-sample, simulations, that can be usefully applied in the decision-
making process. We have considered WGEE, MI-GEE, and MI-Transition un-
der a variety of scenarios. While simulations are necessarily limited, we believe
both methods have been put to the test in a fair fashion. Although asymptot-
ically WGEE exhibits the desirable properties that it theoretically is known
to possess, these are barely reproduced for small samples, even when every
aspect of the analysis is correctly specified. Moreover, the observed sensitiv-
ity of WGEE to misspecification in either the dropout or measurement model
renders these asymptotic properties meaningless. MI-GEE and MI-Transition,
on the other hand, demonstrate a certain degree of robustness to misspecifi-
cation in either the imputation or measurement model, this, despite a further
marginalization for the MI-Transition case. Furthermore, WGEE’s applicabil-
ity to the case where also covariates are missing is less straightforward, while
application of MI is relatively easy. Moreover, one can do MI under MAR with
intermittent missing data. Although the results of this study provide insight
about the methods under consideration, and thus are useful in the decision-
making process, whenever inference is critical, it is always wise to try a couple
of different methods, by way of sensitivity analysis.

In view of previous work on the merits of inverse probability weighting meth-
ods versus multiple imputation (the discussion of Scharfstein, Rotnitzky, and
Robins, 1999; Clayton et al , 1998; Carpenter, Kenward, and Vansteelandt,
2006), we now compare our findings with theirs. Clayton et al (1998) inves-
tigated the use of inverse probability weighting (IPW) and multiple imputa-
tion, among others, in the context of longitudinal binary data in a multi-phase
sampling setting. They found that, while IPW was inefficient for such a 2× 2-
phase design, MI showed remarkable efficiency. Moreover, this, along with
possible extension to data arising from other designs, indicates the substan-
tial strengths of MI. Carpenter, Kenward, and Vansteelandt (2006), on the
other hand, used simulations to study a so-called doubly-robust IPW estima-
tor, introduced by Scharfstein, Rotnitzky, and Robins (1999), in comparison
with standard IPW, maximum likelihood, and MI. The doubly-robust IPW
estimator is a modified version of the usual IPW, proposed to improve the ef-
ficiency of IPW estimators. IPW estimators were again found to be inefficient
and sensitive to the choice of the weight model, but the doubly-robust version
proves to be as efficient as MI and robust to misspecification. Although ap-
plied to continuous Gaussian data, they expect the results to generalize to the
discrete case. Whereas Clayton et al (1998) used actual data and Carpenter,
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Kenward, and Vansteelandt (2006) used simulations of a small-sample nature,
we complement a small-sample simulation study with asymptotic simulations.
Through our simulations, we reinforce the strength of MI over IPW, specifi-
cally in application to GEE. WGEE can be viewed as a type of IPW scheme
that uses as weights the inverse of the probability of dropout (taken from
some dropout model), while MI-GEE uses imputations for the missing data.
WGEE was found to be inefficient for small-samples, in line with the findings
of these two papers regarding the inefficiency of such IPW schemes. However,
this (lack of) efficiency might well be addressed by adopting the doubly-robust
IPW version in obtaining the WGEE solutions.

Misspecifications are common in practice and it is seldom the case that one
would have an entirely correctly specified analysis model. This, along with the
fact that the nice properties of WGEE are not attained for modest sample
sizes, which is common in typical clinical trials, discourages its recommen-
dation. On the other hand, although theoretically MI-GEE does not provide
consistent results when there is a misspecification, overall, it still yields more
precise estimates than WGEE.

Thus, we provided evidence for the important fact that MI-GEE is less biased
and more precise in small and moderate samples, in spite of the asymptotic
unbiasedness of WGEE. As a consequence, in practice, MI-GEE would be the
preferred method for analysis over WGEE. Moreover, although the focus of
this paper is on missingness in the response, in real-life settings, missingness
in covariates is often encountered. In such cases, the choice for MI-GEE is
even more convincing, since the use of WGEE would be ruled out. Finally,
with MI, the imputation model is not restricted to the use of covariates that
will be conditioned upon in the measurement model. Other covariates that are
available, without necessarily being of interest in the measurement model, can
be incorporated in the imputation model, thereby yielding presumably better
imputations as well as wider applicability.

Importantly, it ought to be clear that in the case of the conditionally specified
model, a so-called direct likelihood approach, exploiting ignorability results,
is a very viable alternative and may well be the user’s preferred one. However,
we wanted to focus on a comparison between inverse probability weighting
methods and multiple imputation. Hence, not to overly clutter the simula-
tion setting, we have left direct likelihood out of the picture. Additionally,
direct likelihood would not apply to the marginal model settings, given the
prohibitive nature of fitting such models as the Bahadur in other than the
simplest settings.

As a final remark, recall that asymptotic simulations were done to obtain
the asymptotic bias and asymptotic variance. These have theoretical use only,
and may provide guidance as to what happens in large to very large samples.
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Supplementing them with small-sample simulations is therefore an attractive
route. Needless to say the method is of no use with conventional data analysis.
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