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Abstract

Statistical analysis often extends beyond the data available. This is especially true when data
are incompletely recorded because both ad hoc as well as model-based approaches are rooted, not
only in the observed data and the mechanism governing missingness, but also in the unobserved
given the observed data. Other instances of this phenomenon include but are not limited to
censored time-to-event data, random-effects models, and latent-class approaches. One needs
to be aware of: (1) changes in results and intuition relative to complete-data analysis; (2) the
assumptions under which such approaches are valid; (3) the sensitivities implied by departures;
and (4) in response to these, what sensitivity analysis avenues are available. This paper provides
a bird’s eye perspective on these. Some of the developments are illustrated using data from a
clinical trial in onychomycosis.

Some Key Words: Linear mixed model; Missing at random; Missing completely at random;
Non-future dependence; Pattern-mixture model; Selection model; Shared-parameter model.

1 Introduction

Incomplete sets of data are common throughout all branches of empirical research and have always
posed problems of imbalance in the data matrix, but more importantly incompleteness often destroys
a trial’s randomization justification or a survey’s representativeness. The extent to which this happens

depends on the nature of the missing data mechanism. Rubin (1976) distinguished between missing
complete at random (MCAR), where the outcomes are independent of the mechanism governing

missingness, missing at random (MAR), where there is dependence between both, but only in the
sense that missingness may depend on the observed, but not further on the unobserved measurements.

Finally, when a missing not at random (MNAR) mechanism operates, missingness depends on the
unobserved outcomes, perhaps in addition to the observed ones.

During the same era, the selection model (SeM), pattern-mixture model (PMM), and shared-

parameter model (SPM) frameworks have been established. In a selection model, the joint dis-
tribution of the ith subject’s outcomes, denoted Y i, and vector of missingness indicators, written
Ri, is factored as the marginal outcome distribution and the conditional distribution of Ri given

Y i. A pattern-mixture approach starts from the reverse factorization. In a shared-parameter model,
a set of latent variables, latent classes, and/or random effects is assumed to steer both the Y i
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and Ri processes. An important version of such a model further asserts that, conditional on the

latent variables, Y i and Ri exhibit no further dependence. Rubin (1976) contributed the concept
of ignorability , stating that under precise conditions, the missing data mechanism can be ignored

when interest lies in inferences about the measurement process. Combined with regularity conditions,
ignorability applies to MCAR and MAR combined, when likelihood or Bayesian inference routes are
chosen, but the stricter MCAR condition is required for frequentist inferences to be generally valid.

These concepts will be formalized in Section 3.

Traditionally, such simple methods as a complete case analysis or simple forms of imputation (e.g.,
last observation carried forward) have been in use. While they have the advantage of restoring balance

and/or a rectangular data matrix, their implied and often severe biases and losses of efficiency have
been properly documented (Molenberghs et al, 2004; Jansen et al , 2006; Molenberghs and Kenward,

2007) and should therefore be avoided. Because of a likelihood-based or Bayesian analysis’ validity
under MAR, as long as all observed data are included into the analysis, so-called direct likelihood
analyses, their Bayesian counterparts, or multiple imputation (Rubin, 1987), are widely regarded as

candidate primary analyses of a study. When semi-parametric inferences are desired, the methods
proposed by Robins et al (1995, 1998) can be applied. Nevertheless, in spite of the flexibility and

elegance brought by a direct-likelihood method, there are fundamental issues when selecting a model
and assessing its fit to the observed data that do not occur with complete data (Molenberghs,

Verbeke, and Beunckens, 2007), already in the MAR case and compounded further under MNAR. A
number of such issues are taken up in Section 4.

The concept of MAR has typically been framed within the SeM framework, while Molenberghs et

al (1998) provided a formulation in the PMM setting as well. Creemers et al (2008) studied MAR
in the SPM family. The ensuing availability of operational MAR definitions across all frameworks,
further studied in Section 5, is a strong asset for data analysis, especially in view of the following

result.

Molenberghs et al (2007) showed that for every MNAR model, there is an MAR counterpart that
produces exactly the same fit to the observed data. Hence, a given MNAR model and its MAR

counterpart cannot be distinguished from one another based on observed data. These authors focused
on the SeM and PMM frameworks, whereas Creemers et al (2008) established the corresponding

result in the SPM family. Details can be found in Section 6.

In the context of longitudinal trials, the above MAR-based results ensure that missingness is allowed to
depend on covariates and past outcomes, but neither on current nor future observations. A sensible
extension towards MNAR would then allow, additionally, missingness to depend on the current,

possible unobserved outcome. However, while formulating such a model in the SeM framework is
natural (Diggle, and Kenward, 1994), it is less so in the PMM and SPM settings. Results by Kenward,

Molenberghs, and Thijs (2003) and Creemers et al (2008), respectively, establish this so-called non-
future dependence (NFD) property in these frameworks as well. The key aspects are summarized in

Section 7.

Whereas the results of Section 6 pertain to incomplete data, this is but one setting where a model
extends beyond the data available. Section 8 briefly discusses the more general result holding for any

so-called coarse-data and/or data-augmented setting, including censoring, grouping, random-effects
models, latent variable structures, and latent classes.

As is clear from what precedes, one cannot distinguish in a formal sense between MAR and MNAR;
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Table 1: Toenail Data. Number and percentage of patients (N ) with severe toenail infection, for

each treatment arm separately.

Group A Group B

# Severe N % # Severe N %

Baseline 54 146 37.0% 55 148 37.2%

1 month 49 141 34.7% 48 147 32.6%

2 months 44 138 31.9% 40 145 27.6%

3 months 29 132 22.0% 29 140 20.7%

6 months 14 130 10.8% 8 133 6.0%

9 months 10 117 8.5% 8 127 6.3%

12 months 14 133 10.5% 6 131 4.6%

it a fortiori is simply difficult, if not impossible, to rule out than an MNAR mechanism be operating.

It is then even more difficult to justify one the particular choice of MNAR model (Jansen et al ,
2006). Without additional information, one can only distinguish between such models using their fit

to the observed data, and so goodness-of-fit tools alone do not provide a relevant means of choosing
between such models, naturally leading to sensitivity analysis, broadly defined as any instrument

to assess the impact on statistical inferences from varying the, often untestable, assumptions in an
MNAR model (Vach and Blettner, 1995; Copas and Li, 1997; Scharfstein, Rotnitzky, and Robins,
1999; Molenberghs and Kenward, 2007). The sensitivity analysis theme is taken up in Section 9. Let

us now first introduce an illustrative case study.

2 A Clinical Trial in Onychomycosis

The data were obtained from a randomized, double-blind, parallel group, multicenter study for the

comparison of two oral treatments (in the sequel coded as A and B) for toenail dermatophyte
onychomycosis (TDO), described in full detail by De Backer et al (1996). TDO is a common toenail

infection, difficult to treat, affecting more than 2 out of 100 persons (Roberts, 1992). Anti-fungal
compounds, classically used for treatment of TDO, need to be taken until the whole nail has grown
out healthy. The development of new such compounds, however, has reduced the treatment duration

to 3 months. The aim of the present study was to compare the efficacy and safety of 12 weeks of
continuous therapy with treatment A or with treatment B.

In total, 2 × 189 patients, distributed over 36 centers, were randomized. Subjects were followed

during 12 weeks (3 months) of treatment and followed further, up to a total of 48 weeks (12
months). Measurements were taken at baseline, every month during treatment, and every 3 months

afterwards, resulting in a maximum of 7 measurements per subject. At the first occasion, the treating
physician indicates one of the affected toenails as the target nail, the nail which will be followed over

time. We will restrict our analyses to only those patients for which the target nail was one of the
two big toenails. This reduces our sample under consideration to 146 and 148 subjects, in group
A and group B, respectively. Figure 1 shows the observed profiles of 30 randomly selected subjects

from treatment group A and treatment group B, respectively.
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Figure 1: Toenail Data. Individual profiles of 30 randomly selected subjects in each of the treatment
groups in the toenail experiment.

Table 2: Toenail Data. Number of available repeated measurements per subject, for each treatment

arm separately.

Group A Group B

# Obs. N % N %

1 4 2.74% 1 0.68%

2 2 1.37% 1 0.68%

3 4 2.74% 3 2.03%

4 2 1.37% 4 2.70%

5 2 1.37% 8 5.41%

6 25 17.12% 14 9.46%

7 107 73.29% 117 79.05%

Total: 146 100% 148 100%

One of the responses of interest was the unaffected nail length, measured from the nail bed to the
infected part of the nail, which is always at the free end of the nail, expressed in mm. This outcome

has been studied extensively in Verbeke and Molenberghs (2000). Another important outcome in
this study was the severity of the infection, coded as 0 (not severe) or 1 (severe). The question

of interest was whether the percentage of severe infections decreased over time, and whether that
evolution was different for the two treatment groups. A summary of the number of patients in the
study at each time-point, and the number of patients with severe infections is given in Table 1. A

graphical representation is given in Figure 2. Due to a variety of reasons, the outcome has been
measured at all 7 scheduled time points, for only 224 (76%) out of the 298 participants. Table 2

summarizes the number of available repeated measurements per subject, for both treatment groups
separately. We see that the occurrence of missingness is similar in both treatment groups. Figure 1

shows the observed profiles of 30 randomly selected subjects from treatment group A and treatment
group B, respectively.
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Figure 2: Toenail Data. Evolution of the observed percentage of severe toenail infections in the two
treatment groups separately.

3 Modeling Frameworks

Let the random variable Yij denote the response of interest, for the ith study subject, designed to
be measured at occasions tij , i = 1, . . . , N , j = 1, . . . , ni. The outcomes can conveniently be

grouped into a vector Y i = (Yi1, . . . , Yini
)′. In addition, define a vector of missingness indicators

Ri = (Ri1, . . . , Rini
)′ with Rij = 1 if Yij is observed and 0 otherwise.

In principle, one would like to consider the density of the full data f(yi, ri|θ,ψ), where the parameter

vectors θ and ψ describe the measurement and missingness processes, respectively. Covariates are
assumed to be measured and grouped in a vector xi, though generally suppressed from notation.

Let us formalize the frameworks, touched upon in the introduction (Little, 1995; Molenberghs and
Kenward, 2007).

The selection model (SeM) framework is based on the following factorization (Rubin, 1976; Little
and Rubin, 2002):

f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ). (1)

The first factor is the marginal density of the measurement process and the second one is the density

of the missingness process, conditional on the outcomes. The pattern-mixture models (PMM) (Little,
1993, 1994) uses the reverse factorization

f(yi, ri|θ,ψ) = f(yi|ri, θ)f(ri|ψ). (2)

The conventional shared-parameter model (SPM) (Wu, and Carroll, 1988; Wu, and Bailey, 1988,

1989) assumes a vector of random effects bi, conditional upon which the measurement and dropout
processes are independent:

f(yi, ri|bi, θ,ψ) = f(yi|bi, θ)f(ri|bi,ψ), (3)

and hence

f(yi, ri|θ,ψ) =

∫
f(yi|bi, θ)f(ri|bi,ψ)f(bi) dbi. (4)
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Here, bi are shared parameters, often taking the form of random effects and following a specific

parametric distribution. For our purposes, we will need a slightly more general SPM formulation, as
presented by Creemers et al (2008). Indeed, while most formulations assume that a single, common

set bi drives the entire process, one can expand bi to a set of latent structures:

f(yo
i |gi,hi, ji, `i)f(ym

i |yo
i , gi,hi, ki,mi)f(ri|gi, ji, ki ni), (5)

where gi, hi, ji, ki, `i, mi, and ni are independent random-effects vectors, vectors of latent
variables, etc. Obviously, a conventional SPM formulation follows by removing all random effects

but gi. For convenience, write bi = (gi,hi, ji, ki, `i,mi,ni).

4 Ignorability and the Likelihood: No Further Issues?

A further very useful concept that we need is ignorability. The contribution to the likelihood of
subject i, based on (1), equals

Li =

∫
f(yi|θ)f(ri|y

o
i , y

m
i ,ψ) dym

i . (6)

In general, (6) does not simplify, but under MAR, we obtain:

Li = f(yo
i |θ)f(ri|y

o
i ,ψ). (7)

Hence, likelihood and Bayesian inferences for the measurement model parameters θ can be made
without explicitly formulating the missing data mechanism, provided the parameters θ and ψ are

distinct, meaning that their joint parameter space is the Cartesian product of the two component
parameter spaces (Rubin, 1976). For Bayesian inferences, additionally the priors need to be inde-
pendent (Little and Rubin, 2002). It is precisely this result which makes so-called direct-likelihood

analyses, valid under MAR, viable candidates for the status of primary analysis in clinical trials and
a variety of other settings (Molenberghs et al, 2004; Molenberghs and Kenward, 2007).

In spite of the appeal of ignorability for likelihood-based analysis of incomplete data under MAR,

Molenberghs, Verbeke, and Beunckens (2008) have brought forward generic issues arising when fitting
models to incomplete data: (i) the classical relationship between observed and expected features is

convoluted since one observes the data only partially while the model describes all data; (ii) the
independence of mean and variance parameters in a (multivariate) normal is lost, implying increased

sensitivity, even under MAR; (iii) also the well-known agreement between the frequentist ordinary
least squares (OLS) approach and maximum likelihood estimation methods for normal models is lost,
as soon as the missing data mechanism is not of the MCAR type, with related results holding in

the non-normal case; (iv) in a likelihood-based context, deviances and related information criteria
cannot be used in the same vein as with complete data since they provide no information about a

model’s prediction of the unobserved data; and, in particular, (v) several models may saturate the
observed-data degrees of freedom, while providing a different fit to the complete data, i.e., they

only coincide in as far as they describe the observed data; as a consequence, different inferences
may result from different saturated models, where ‘saturation’ is to be understood in terms of the

observed but not the full data.

Based on these considerations, it follows that model assessment should always proceed in two steps.
In the first step, the fit of a model to the observed data should be carefully assessed, while in the
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second step the sensitivity of the conclusions to the unobserved data given the observed data should

be addressed. Gelman et al (2005) proposed an approach to this effect, the essence of which is
as follows. First, a model is fitted to the observed data. Under the fitted model, and assuming

ignorable missingness, datasets simulated from the fitted model should ‘look similar’ to the actual
data. Therefore, multiple sets of data are sampled from the fitted model, and compared to the
dataset at hand. Because what one actually observes consists of, not only the actually observed

outcome data, but also realizations of the missingness process, comparison with the simulated data
would also require simulation from, hence full specification of, the missingness process. This added

complexity is avoided by augmenting the observed outcomes with imputations drawn from the fitted
model, conditional on the observed responses, and by comparing the so-obtained completed dataset

with the multiple versions of simulated complete datasets. Such a comparison will usually be based on
relevant summary characteristics such as time-specific averages or standard deviations. As suggested

by Gelman et al (2005), this so-called data-augmentation step could be done multiple times, along
multiple-imputation ideas from Rubin (1987).

5 Defining Missing at Random

The taxonomy of missing data mechanisms, introduced by Rubin (1976) and informally described in

the introduction, is customarily formalized using the second factor on the right hand side of (1): A
mechanism is MAR if f(ri|yi,ψ) = f(ri|yo

i ,ψ). In the MNAR case, missingness depends on the

unobserved outcomes ym
i , regardless of the observed outcomes and the covariates.

Molenberghs et al (1998, 2007), among others, formulated MAR in the PMM setting:

f(ym
i |yo

i , ri, θ) = f(ym
i |yo

i , θ). (8)

This means that, in a given pattern, the conditional distribution of the unobserved components
given the observed ones equals the corresponding distribution marginalized over the patterns. Note

that, owing to this result, MAR can be formulated in terms of R given Y , but also in terms of Y

given R. These authors also operationalized the definition by so-called identifying restrictions. For

example, in a pattern where, say, three out of five measurements are obtained, the distribution of the
fourth outcome given the first three is identified from patterns with either four or all measurements

obtained. At the same time, the distribution of the fifth measurement given the earlier four is then
identified from the completers, the only pattern with the fifth, and last, measurement observed.
These restrictions are termed available case missing value restrictions (ACMV) by Molenberghs et al

(1998).

Creemers et al (2008) characterized MAR in the SPM framework. Their general result, while providing
necessary and sufficient conditions, is in terms of an integral equation and therefore is less intuitive

and quite impractical. That is why we here restrict attention to a useful sub-family of SPM-based
MAR models, defined by the following sub-class of model (5):

f(yo
i |ji, `i)f(ym

i |yo
i ,mi)f(ri|ji,ni), (9)

where ji, `i,mi, and ni are independent random-effects vectors. The are the general SPM models for

which information about the missing outcomes stems is allowed to come from the observed outcomes
but, given these, not further from shared random effects. Just like in PMM characterization (8), the

appropriate conditional density of the missing components given the observed components is fully
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unidentified. This is in contrast to the SeM framework, where the factorization is such that the data

carry some information about all factors, which are then fully identified by making further restrictive
modeling assumptions.

6 Every MNAR Model Has an MAR Counterpart

The correctness of an (MNAR) model fitted to imcomplete data can be verified only in as far as it fits

the observed data. Thus, evidence for or against MNAR can be provided solely within a particular,
predefined parametric family, the plausibility of which cannot be verified in empirical terms alone.

Hence, an omnibus assessment of MAR versus MNAR is not possible, since every MNAR model
can be doubled up with a uniquely defined MAR counterpart, producing exactly the same fit as the

original MNAR model, in the sense that it produces exactly the same predictions to the observed data
as the original MNAR model, and depending on exactly the same parameter vector. Molenberghs

et al (2007) showed that, while this so-called MAR counterpart generally does not belong to a
conventional parametric family, its existence has important ramifications.

The construction of such a counterpart proceeds in four steps: (1) fitting an MNAR model to the
data; (2) reformulating the fitted model in PMM form; (3) replacing the density or distribution of

the unobserved measurements given the observed ones and given a particular response pattern by its
MAR counterpart; (4) establishing that such an MAR counterpart uniquely exists.

In the first step, fit an MNAR model to the observed set of data, using the observed data likelihood:

L =
∏

i

∫
f(yi

o, yi
m, ri|θ,ψ)dyi

m. (10)

Upon denoting the obtained parameter estimates by θ̂ and ψ̂ respectively, the fit to the hypothetical
full data is

f(yi
o, yi

m, ri|θ̂, ψ̂) = f(yi
o, yi

m|θ̂)f(ri|yi
o, yi

m, ψ̂). (11)

To undertake the second step, full density (11) can be re-expressed in PMM form as:

f(yi
o, yi

m|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂) = f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi

m|yi
o, ri, θ̂, ψ̂). (12)

In line with what has been said before, the final term on the right hand side of (12), f(yi
m|yi

o, ri, θ̂, ψ̂),

is not identified from the observed data but rests solely on model assumptions.

The third step requires replacing this factor by the appropriate MAR counterpart: f(yi
m|yi

o, ri, θ̂, ψ̂)
needs to be replaced with

h(yi
m|yi

o, ri) = h(yi
m|yi

o) = f(yi
m|yi

o, θ̂, ψ̂), (13)

where the h(·) notation is used for shorthand purposes. The above construction does not lead to

a member of a conventional parametric family. While this obviously implies limitations on its use,
such is not dissimilar to the construction of some semi- and non-parametric estimators. Also, it helps

understand that an overall, definitive conclusion about the nature of the missing data mechanism,
solely based on the observed outcomes, is not possible, even though one can make progress if attention
is confined to a given parametric family, in which one puts sufficiently strong prior belief (Jansen et

al , 2006).
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The key computational consequence is the need to determine h(yi
m|yi

o) in (13). To this end, the

aformentioned ACMV identifying restrictions can be used.

The characterization MAR in the SPM setting, owing to Creemers et al (2008) and discussed in

Section 5, enables the construction of an MAR counterpart to an arbitrary SPM of the form (5).
Practically, this is done by a-posteriori integrating over the shared random effects in the densities

describing the unobserved measurements, given the observed ones, where integration takes place
over the densities of gi, hi, and ki, with fitted parameters plugged in. Precisely, one replaces

f(ym
i |yo

i , gi,hi, ki,mi) with

h(ym
i |yo

i ,mi) =

∫

g
i

∫

hi

∫

ki

f(ym
i |yo

i , gi,hi, ki,mi)dgidhidki (14)

It is clear that this marginalization is merely describing the model-based prediction of the unobserved

outcomes, given the observed ones. Hence, the choice for h(·) does not alter the fit.

7 Longitudinal Data With Dropout: Non-future Dependence

When measurements are taken longitudinally, it is good practice to ensure that the implied time
dependencies are logical from a substantive standpoint. For example, in a variety of contexts, such

as growth, regression functions over time may be constrained to non-decreasing forms.

Let us turn to the nature of the missingness mechanism. Throughout the section, assume that
missingness is confined to dropout. From a SeM perspective, one often classifies missing data

mechanisms as (Diggle, and Kenward, 1994): (1) independent of outcomes; (2) dependent on
previous measurements only; (3) dependent on the current and perhaps previous measurements only;

(4) fully arbitrary, i.e., where missingness can depend on previous, current, and future measurements.
Evidently, (1) is MCAR, (2) is MAR, and (4) is fully unrestricted MNAR. The last category is not

always desired. For example, (Diggle, and Kenward, 1994) did not consider (4) but restricted MNAR
to mechanism (3). While restrictive, this is appealing since preventing dropout at a given point in
time to depend on future measurements, i.e., non-future dependent.

Clearly, the above ideas are easy to frame within the SeM family. Kenward, Molenberghs, and Thijs

(2003) and Creemers et al (2008) underscored that the situation is less clear in the PMM and SPM
families and then provided translations. These will be considered in Section 7.1, with illustrations

offered in Section 7.2.

7.1 Non-future Dependence in the PMM and SPM Frameworks

Because we are restricting attention to monotone missingness, we can easily indicate a drop-out pat-

tern by the numbers of observations made. In this sense, pattern t collects all individuals with the first
t measurements taken (t = 1, . . . , n). Thijs et al (2002) constructed a general identifying-restrictions
framework in which the distribution of the (t+1)th measurement, given the earlier measurements, in

pattern t, yt+1 say, is set equal to a linear combination of the corresponding distributions in patterns
t + 1 to n. Since this family is characterized by the use of observable distributions to identify the

unobservable ones, we term it the ‘interior’ family of identifying-restrictions. Three members of this
family are studied in detail by Thijs et al (2002): complete-case missing value restrictions (Little,

1993), where information is borrowed from the completers only, the aforementioned ACMV, and
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neighboring-case missing value restrictions, where information is borrowed from the closest available

pattern.

The equivalence of ACMV and MAR is important in that it enables us to make a clear connection

between the selection and pattern-mixture frameworks. By implication, the other members of the
interior family are of MNAR type, while at the same time there do exist MNAR type restrictions

that are not captured by this family. We will now characterize missing-data mechanisms that prevent
missingness from depending on future unobserved measurements, for the SeM, PMM, and SPM

frameworks in turn.

Starting with the SeM family, let r = t ≤ n be the number of measurements actually observed. The
selection model factorization for this context is given by

f(y1, · · · , yT , r = t) = f(y1, · · · , yT )f(r = t|y1, · · · , yT ).

One can now formulate missing non-future dependent as

f(r = t|y1, · · · , yT ) = f(r = t|y1, · · · , yt+1). (15)

Note that MAR is a special case of missing non-future dependent, which in turn is a sub-class of
MNAR.

Using the notational system of this section, pattern-mixture models take the form:

f(y1, · · · , yT , r = t)

= ft(y1, · · · , yt)ft(yt+1|y1, · · · , yt)ft(yt+2, · · · , yT |y1, · · · , yt+1)f(r = t), (16)

where ft(y1, · · · , yT ) = f(y1, · · · , yT |r = t). The first three factors in (16) are referred to as the

distributions of past, present, and future measurements, respectively. Only the first and the fourth
factors are identifiable from the data.

Within the PMM framework, define non-future dependent missing value restrictions as:

f(yt|y1, · · · , yt−1, r = j) = f(yt|y1, · · · , yt−1, r ≥ t − 1), (17)

for all t ≥ 2 and all j < t − 1. Non-future missing values is not a comprehensive set of restrictions,
but rather leaves one conditional distribution per incomplete pattern unidentified:

f(yt+1|y1, · · · , yt, r = t). (18)

In other words, the distribution of the ‘current’ unobserved measurement, given the previous ones,

is unconstrained. This implies that the NFMV class contains members outside of the interior family,
where every restriction takes the form of a linear combination of observable distributions. Conversely,

(17) excludes such mechanisms like complete-case missing values and neighboring-case missing val-
ues, showing that there are members of the interior family that are not of non-future missing values

type. Finally, choosing (18) of the same functional form as (17) establishes available-case missing
values as a member of the intersection of the interior and non-future missing values families. The

latter is particularly important since it shows, because of the equivalence of ACMV and MAR, that
MAR belongs to both families. Kenward, Molenberghs, and Thijs (2003) formally showed that NFD

and NFMV are equivalent. Kenward, Molenberghs, and Thijs (2003) offered practical implementation
strategies.
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SeM : MCAR ⊂ MAR ⊂ NFD ⊂ general MNAR

l l l l

PMM : MCAR ⊂ ACMV ⊂ NFMV ⊂ general MNAR

⊃ 6=
⊂

interior

l l l l

SPM : MCAR ⊂ general ⊂ general NFD ⊂ general MNAR

∪ ∪

MAR subclass ⊂ NFD subclass

Figure 3: Relationship between nested families within the selection model (SeM), pattern-mixture

model (PMM), and shared-parameter model (SPM) families. MCAR: missing completely at random;
MAR: missing at random; MNAR: missing not at random; NFD: non-future dependence; ACMV:

available-case missing values; NFMV: non-future missing values. The vertical two-headed arrows
indicate equivalence between mechanisms across model families.

Let us turn to SPM. First, note that (15) can be seen as a longitudinal dropout-based definition
of MAR, “one component shifted to the right,” i.e., where yt+1, in spite of its missingness, is also

allowed to influence missingness. Given that the characterization of MAR by Creemers et al (2008)
was derived from the standard MAR definition, it immediately follows that a characterization of NFD-
SPM is, again, in terms of an integral equation. The interested reader will find details in Creemers

et al (2008). Here, we restrict attention to the sub-class (9). Define a sub-class of shared-parameter
model (5):

f(ypc
i |ji, `i)f(yf

i |y
pc
i ,mi)f(ri|ji,ni), (19)

where ji, `i, mi, and ni are independent random-effects vectors. The subscript ‘pc’ refers to ‘pre-
vious and current,’ while ‘f’ refers to ‘future.’ Hence, (19) offers a class of missing-data mechanisms
that belongs to the NFD family. The relationship between the various mechanisms in the three

families is depicted in Figure 3.

7.2 Analysis of the Toenail Data

We will first analyze the entire longitudinal profile of continuous outcomes (unaffected nail length),

and then switch to the binary outcome (severity of infection) then confining attention to the first
and last time points.

7.2.1 Continuous Unaffected Nail Length

Consider a general model of the form (5), with random effects confined to gi, i.e., common to
all three components. For the measurement model, assume a linear mixed model (Verbeke and
Molenberghs, 2000), with general form:

Y i|gi ∼ N (Xiβ + Zigi, Σi), (20)

gi ∼ N (0, D). (21)
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Based on (20) and (21), the so-called marginal model can be derived

Y i ∼ N (Xiβ, ZiDZ ′
i + Σi). (22)

To compute the model’s prediction for the unobserved data, given the observed measurements, the
corresponding density needs to be derived. To this end, first decompose the mean and variance in

(20) as (
Y o

i

Y m
i

)∣∣∣∣∣ gi ∼ N

[(
Xo

i

Xm
i

)
β +

(
Zo

i

Zm
i

)
gi,

(
Σoo

i Σom
i

Σmo
i Σmm

i

)]
.

This expression can easily be used to construct the conditional density:

Y m
i |yo

i , gi ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1 Xo
i )β + Σmo

i {Σoo
i }−1

yo
i + (Zm

i − Σmo
i {Σoo

i }−1 Zo
i )gi,

Σmm
i − Σmo

i {Σoo
i }−1 Σom

i

]
. (23)

Now, (23) corresponds to the model as formulated, and will typically be of the MNAR type. To
derive the MAR counterpart, we need to integrate over the random effect. With similar logic that

leads to (22), now applied to (23), produces:

Y m
i |yo

i ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1 Xo
i )β + Σmo

i {Σoo
i }−1

yo
i ,

(Zm
i − Σmo

i {Σoo
i }−1 Zo

i )D(Zm
i − Σmo

i {Σoo
i }−1 Zo

i )′

+Σmm
i − Σmo

i {Σoo
i }−1 Σom

i

]
. (24)

For the unaffected nail length, we choose for (20)–(21):

E(Yij|gi, Ti, tj,β) = β0 + gi + β1Ti + β2tj + β3Titj , (25)

gi ∼ N (0, d), and Σi = σ2I7, where I7 is a 7×7 identity matrix. Further, Ti = 0 if patient i received
standard treatment and 1 for experimental therapy (i = 1, . . . , 298). Finally, tj is the time at which

the jth measurement is taken (j = 1, . . . , 7).

Given these choices, (23) and (24) simplify to

Y m
i |yo

i , gi ∼ N (Xiβ + Zm
i gi, σ

2Ii), (26)

Y m
i |yo

i ∼ N (Xiβ, dJi + σ2Ii), (27)

with Ii an identity matrix and Ji a matrix of ones, the dimensions of which are equal to the number
of missing measurements for subject i. Especially owing to the conditional independence assumption,

the simplification is dramatic.

Next, let us formulate a model for the missingness mechanism in (5). The sequence ri can take one
of two forms in our case. Either, it is a length-7 vector of zeros, for a completely observed subject,

or it is a sequence of k zeros followed by a sole one 1 ≤ k ≤ 6, for someone dropping out. Note
that k is 1 at least, since for everyone the initial measurement has been observed. It is convenient

to assume a logistic regression of the form:

logit [P (Rij = 1|Ri,j−1 = 0, gi, Ti, tj, γ)] = γ0 + γ01gi + γ1Ti + γ2tj + γ3Titj, (28)
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Table 3: Toenail Data. Continuous, longitudinal unaffected-nail-length outcome. Parameter esti-
mates (standard errors) for the model specified by (25) and (28).

Unaffected nail length Dropout

Effect Parameter Estimate (s.e.) Parameter Estimate (s.e.)

Mean structure parameters

Intercept β0 2.510 (0.247) γ0 -3.127 (0.282)

Treatment β1 0.255 (0.347) γ1 -0.538 (0.436)

Time β2 0.558 (0.023) γ2 0.035 (0.041)

Treatment-by-time β3 0.048 (0.031) γ3 0.040 (0.061)

Variance-covariance structure parameters

Residual variance σ2 6.937(0.248)

Scale factor γ01 -0.076 (0.057)

Rand. int. variance τ2 6.507 (0.630) γ2
01τ

2 0.038 (0.056)

(j > 1), where γ01 is a scale factor for the shared random effect in the missingness model; forcing
the variance in the measurement and dropout indicator sequences to be equal would make no sense.

As a result, γ01gi ∼ N (0, γ2
01d). The model specified by (25) and (28) can easily be fitted using, for

example, the SAS procedure NLMIXED. Details are provided in Creemers et al (2008).

Parameter estimates and standard errors are displayed in Table 3. It is noteworthy that the scale

factor γ01 is estimated to be negative, even though it is not significant. While we should not overly
stress its importance, there is some indication that a higher subject-specific profile of unaffected nail

length corresponds with a lower dropout probability, which is not surprising. The magnitude of the
scale factor allows us to ‘translate’ the subject-specific effect from the continuous outcome scale,

expressed in mm, to the unitless logit scale on which the probability of missingness is described. Note
that the random-intercept variance is highly significant among unaffected nail length outcomes; the
same is not true for the dropout model, with p = 0.2487, using a 50 : 50 mixture of a χ2

0 and χ2
1

distribution (Verbeke and Molenberghs, 2000).

Figure 4 displays the incomplete profiles, extended beyond the time of dropout, using prediction
based on: (1) the original model (dashed lines); (2) the MAR counterpart (solid lines). Within each

of the treatment arms, three profiles are highlighted. The MAR counterpart reduces all predictions
to the same profile, whereas the MNAR models predicts different evolutions for different subjects,

implied by the presence of the random effect. The simple MAR-based prediction structure follows
directly from the conditional independence assumption, present in (26). When deemed less plausible,

the fully general structure (23) can be implemented.

7.2.2 Dichotomous Severity of Infection

Let us turn attention to the binary severity of infection outcome, for the pair of time points formed
by the always recorded initial measurement and the sometimes missing final point in time. The data

are displayed in Table 4. By way of illustration, we will assume a single dichotomous random effect,
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Figure 4: Toenail Data. Individual profiles of subjects with incomplete data, for each treatment
arm, extended using MNAR Model (25) (dashed line) and using the model’s MAR counterpart (solid

line). In each group, three subjects are highlighted.

of the gi type. This imposes a latent-class structure. Decompose the cell probabilities as:

πgi1i2rt = πgπi1|gπi2|i1gtπr|g, (29)

with g = 0, 1 indicating the latent class, i1, i2 = 0, 1 non-severe versus severe infection at the first

and last occasions, respectively, r = 0, 1 referring to the dropouts versus completers groups, and
t = 0, 1 denoting standard versus experimental treatment arm. The probability factors on the right

hand side of (29) are modeled as:

πg =
eαg

1 + eα
,

πi1|g =
e(β0+β1g)i1

1 + eβ0+β1g
, (30)

πi2|i1gt =
e(γ0+γ1i1+γ2g+γ3i1g+γ4t)i2

1 + eγ0+γ1i1+γ2g+γ3i1g+γ4t
, (31)

πr|g =
e(δ0+δ1g)r

1 + eδ0+δ1g
.

In Model ‘Bin1’, we will set β1 = 0 in (30) for reasons of identifiability. In Model ‘Bin2’, γ2 = γ3 = 0
in (31). This implies the latter model is of the MAR type, and hence its MAR counterpart will
equal the original model. Fitted counts are presented in Table 4. For the dropout group, both the

fit to the pair of observed counts and the prediction of the underlying unobserved two-by-two table
is given. Note that the MAR counterpart preserves the distribution of the first outcome, within

each treatment and dropout group; the difference between original model and MAR counterpart is
confined to the distribution of the second outcome, given the first one. The fits of the models is

obtained by replacing all quantities in (29) by their estimates, followed by summing over g. The
MAR counterpart is obtained as πgi1i2rt = πgπi1|gπ̃i2|i1tπr|g, where

π̃i2|i1t =
∑

g

πgπi2|i1gt.

Parameter estimation by both maximum likelihood, as well as the EM algorithm Dempster, Laird,
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Table 4: Toenail Data. Bivariate binary severity index at first and last time points. The observed
data are shown, as well as the fit of Models ‘Bin1’ and ‘Bin2’, together with their corresponding
bodyguards. Both the fit to the observed data as well as to the hypothetical complete data are

shown.

Standard treatment Experimental treatment

Completers Dropouts Completers Dropouts

Observed data

77 5

42 9

10

3

79 3

42 3

11

6

Fit of Model ‘Bin1’

76.85 5.66

40.60 7.99

9.04 0.34

4.62 0.90

9.38

5.52

81.21 2.43

45.62 3.63

9.36 0.15

5.19 0.41

9.51

5.60

Fit of Model ‘Bin1(MAR)’

77.12 5.39

40.61 7.98

8.77 0.61

4.62 0.91

9.38

5.52

81.32 2.32

45.63 3.63

9.24 0.26

5.18 0.41

9.51

5.59

Fit of Model ‘Bin2’≡‘Bin2(MAR)’

75.86 5.58

41.50 8.15

9.72 0.72

3.74 0.73

10.44

4.47

80.16 2.40

46.61 3.72

10.27 0.31

4.20 0.34

10.58

4.53

and Rubin (1977) is particularly easy. For direct likelihood, the log-likelihood function takes the form

` =
∑

i1,i2,t

Zi1i2,r=1,t ln

(
∑

g

πgπi1|gπi2|i1gtπr=1|g

)
+
∑

i1,t

Zi1,r=0,t ln

(
∑

g

πgπi1|gπr=0|g

)
, (32)

where Zi1i2,r=1,t and Zi1,r=0,t are the observed-data counts, with obvious notation. Maximization
then proceeds by feeding (32) to a standard numerical optimizer.

The complete-data log-likelihood, needed for the EM algorithm, takes the form:

`∗ =
∑

g,i1,i2,r,t

Z∗
gi1i2rt ln

(
πgπi1|gπi2|i1gtπr|g

)

=
∑

g

Z∗
g++++ ln (πg) +

∑

g,i1

Z∗
gi1+++ ln

(
πi1|g

)

+
∑

g,i1,i2,t

Z∗
gi1i2+t ln

(
πi2|i1gt

)
+
∑

g,r

Z∗
g++r+ ln

(
πr|g

)
. (33)

Here, Z∗
gi1i2rt is the (hypothetical) count in bivariate severity category (i1, i2), in missingness group

r, treatment arm t, and allocated to latent class g. To proceed, the expected values of the complete-
data sufficient statistics need to be computed. Thanks to the multinomial structure of `∗, this is
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straightforward and hence the E step consists of:

E
(
Z∗

g++++

)
= πgZ++++,

E
(
Z∗

gi1+++

)
= πgπi1|gZi1+++

E
(
Z∗

gi1i2+t

)
= πgZi1i2,r=1,t + πgπi2|i1gtZi1+,r=0,t,

E
(
Z∗

g++r+

)
= πgπr|gZ++r+.

Finally, the M step takes the form of four separate logistic regressions, in the α, β, γ, and δ

parameters, respectively, i.e., for each of the four terms in (33).

8 Data-enriched Structures

The results of Section 6 are not confined to incomplete data. Verbeke and Molenberghs (2008) show

that the results hold for all coarsened-data and data-augmented settings. By coarsening, a term
coined by Heitjan (Heitjan and Rubin, 1991; Zhang and Heitjan, 2007), one refers to the fact that

the observed data are coarser than the hypothetically conceived data structures and for which models
are built, and encompass incomplete, censored, grouped, and truncated data. Data augmentation

refers to the introduction of unobservables such as random effects, latent variables, and latent classes.
We capture both of these families under the common denominator data enrichment.

Assume data Zi for an independent unit i = 1, . . . , N are augmented with ci. The ci can take any
conventional enriched-data form. For example, the vector can refer to missing measurements, random

effects, or perhaps a combination of both. An example of a setting where the latter situation arises
naturally is the SPM framework. Assume further a joint model of the generic form f(zi, ci|θ,ψ),

where covariates have been suppressed for notational simplicity. Consider the factorizations:

f(zi, ci|θ,ψ) = f(zi|ci, θ)f(ci|ψ), (34)

= f(zi|θ,ψ)f(ci|zi, θ,ψ). (35)

Borrowing terminology from the hierarchical-models context, such as mixed models, every factor in
both (34) and (35) can usefully be given a name. The left hand side is the joint model. Let us turn to

the right hand side. The first factor in (34) is the hierarchical model and the second one is the prior
density for the enriched data. The first factor in (35) may be termed the marginal model , whereas

the second one is the posterior density of the enriched data. The above terminology makes clear the
obvious link between (34)–(35) and the mixed-model setting. The link with incomplete data follows
by setting ci ≡ ym

i and zi = (yo
i , ri). Hence, again, we are naturally led to the PMM framework.

In PMM factorization (12), the marginal model is factored further, but this is immaterial. The key
is the third factor on the right hand side of (12), i.e., the second factor in (35).

The practical implication is as follows. Assume that data zi are enriched with ci. Then, any model

(34) formulated for and fitted to such data, can be replaced by an infinite family of models, all of
which retain the fit to the observed data. This is done by preserving the marginal model f(zi|θ̂, ψ̂)

and replacing the posterior density f(ci|zi, θ̂, ψ̂) by an arbitrary density

f(di|zi, γ). (36)
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Here, di rather than ci is used to indicate that there need not be any connection between the original

and substituted enriched data. Also, the new density (36) can be parameterized by a completely new
parameter γ.

8.1 Illustration: Linear Mixed-effects Models

Let us illustrate these ideas for the linear mixed model (Verbeke and Molenberghs, 2000), with

notation as in Section 3, the fully hierarchically specified linear mixed-effects model takes the form
(Verbeke and Molenberghs, 2000):

Y i|bi ∼ N (Xiβ + Zibi, Σi), (37)

bi ∼ N (0, D), (38)

where β is a vector of fixed effects, and Xi and Zi are design matrices. The marginal model and

posterior distribution of the random effects are:

Y i ∼ N (Xiβ, Vi = ZiDZ ′
i + Σi), (39)

bi|Y i ∼ N [DZ ′
iV

−1
i (Y i − Xiβ), (Z ′

iΣ
−1
i Zi + D−1)−1]. (40)

Finally, the empirical Bayes predictions (Carlin and Louis, 1996; Verbeke and Molenberghs, 2000)
and predicted values of the outcomes are:

b̂i = E(bi|Y i) = DZ ′
iV

−1
i (Y i − Xiβ), (41)

Ŷ i = (ZiDZ ′
i) · V

−1
i yi + (Σi) · V

−1
i Xiβ, (42)

the latter representing the familiar “weighted average” of the transformed observed outcomes V −1
i yi

and the transformed marginal mean V −1
i Xiβ.

To illustrate the arbitrariness brought forward by our results, and in this case referring to the posterior
density of the random effects, let us replace the normally distributed random effects by a vector of

ni independent exponential random effects, where each outcome component Yij is paired with an
exponential random effect gij. The conventional density for an exponential variable φ is

f(φ) = δe−φδ . (43)

Further, choose δ = eγjyij . Straightforward algebra leads to the following model equations:

f(qi|yi) =
ni∏

j=1

eγjyij e−qijeγj yij
, (44)

f(qi) =
∑

m




ni∏

j=1

(−qij)
mj

mj !



 eµ
′

i
λm+ 1

2
λ

′

mViλm, (45)

f(yi|qi) =

∏ni

j=1 eγjyij e−qije
γj yij

e−µ
′

i
λm− 1

2

[
(yi−µi)

′V −1

i
(yi−µi)+λ

′

mViλm)
]

(2π)ni/2|Vi|1/2
∑
m

(∏ni

j=1
(−qij)

mj

mj !

) , (46)

q̂ij = e−γjyij (47)
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ŷi =

∑
m

[∏ni

j=1
(−e

−γj yij )
mj

mj !

]
eµ

′

i
λm+ 1

2
λ

′

mViλm(µi + Viλm)

∑
m

[∏ni

j=1
(−e

−γj yij )
mj

mj !

]
eµ

′

i
λm+ 1

2
λ

′

mViλm

, (48)

where m ranges over all non-negative integer vectors m = (m1, . . . , mni
), and λm has components

λmj = (mj + 1)γj.

There is an obvious consequence to these developments regarding the meaning of model parameters.
Indeed, in specifying the original hierarchical model (37)–(38), the parameters β, Σi, and D in gen-

eral, but D in particular, are part of a hierarchical specification. Since (39)–(40) taken together are
equivalent to the original pair of equations, one might argue there still is the hierarchical interpreta-
tion. The difference now is that all three sets of parameters occur in each of the two models, whereas

in the original specification (37)–(38) there is a separation between β and Σi on the one hand and
D on the other hand. However, it has been argued by many (Verbeke and Molenberghs, 2000, 2003;

Molenberghs and Verbeke, 2007) that there is a fundamental difference in parameter interpretation,
even to the point of bearing on the inferences made, when one solely considers the marginal model

(39). This is clear when considering the model composed of (39) and, for example, (44). Indeed, now
all three parameters β, Σi, and D feature in the marginal model only. The hierarchical parameters,

γj in our particular instance, are completely separated from the marginal ones. This further implies
that the so-called hierarchical parameter is estimable only because it also occurs in marginal model

(39) for which, by definition, there is information in the data. Put differently, in the conventional
hierarchical marginal model, all parameters are identifiable from marginal model (39), which is the
only channel by which the data convey information. The model merely appears interpretable at a

hierarchical, or enriched, level since (40) contains these, and only these parameters.

8.2 Analysis of the Toenail Data

For the unaffected nail length, and with notation as in Section 7.2, let us specify a linear mixed-effects

model (37)–(38):

Yij|(bi0, bi1) ∼ N (β0 + bi0 + (β1 + bi1)tj + β2Ti + β3Titj , σ
2), (49)

(
bi0

bi1

)
∼ N

[(
0

0

)
,

(
d00 d01

d10 d11

)]
. (50)

Parameter estimates and standard errors are presented in Table 5.

We are now able to supplement the model specified by (49)–(50) with the exponentially defined

models. Let us choose, for illustration, the exponential model. This implies that the marginal model
resulting from (49)–(50) is retained:

Y i|(bi0, bi1) ∼ N [Xi(β0, β1, β2, β3)
′ + Zi(bi0, bi1)

′, σ2Ini
+ Z ′

iDZi], (51)

and coupled with (44). Here, Xi and Zi are the obvious ni × 4 and ni × 2 design matrices,

respectively. Then, we can calculate empirical Bayes predictions under both the normal and the
exponential model. These produce two different subject-specific profiles, in addition to the observed-

data and marginal mean profiles. Note that, for the posterior density (44), we have the freedom to
specify the parameters γj, since there is no information contained in the data. We set them equal to
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Table 5: Toenail Data. (Unaffected nail length outcome). Parameter estimates (standard errors)

for the model specified by (49) and (50).

Effect Parameter Estimate (Standard error)

Fixed effects:

Intercept β0 2.4562 (0.2400)

Dose effect β1 0.5932 (0.0450)

Time effect β2 0.2792 (0.3375)

Dose by time interaction β3 0.0350 (0.0627)

Variance components:

Random intercept variance d00 7.3174 (0.6952)

Random slope variance d11 0.2239 (0.0231)

Random effects covariance d01 -0.4985 (0.0982)

Residual variance σ2 3.1508 (0.1245)

γj = 0.05. Figure 5 presents these four profiles for four selected subjects, two from each treatment

arm, respectively. It is clear that the exponential choice produces predictions that lie much closer
to the marginal mean profile and further away from the observed profile, than is the case with the

normal random effects.

9 Sensitivity Analysis

In the previous sections, we have reviewed a number of issues the analyst ought to be aware of

when dealing with incomplete data, arising from clinical or other studies. Many can be captured
under the general denominator that models not only describe the observed data, but also “make
statements” about the unobserved data given the observed ones. To further address this, a variety

of sensitivity analysis routes have been proposed. For our purposes, one could informally define a
sensitivity analysis as a way of exploring the impact of a model and/or selected observations on the

inferences made when data are incomplete. However, the concept of sensitivity analysis is both older
and broader.

Sensitivity analysis, generically defined as assessment of how scientific conclusions depend on model

assumptions, influential observations and subjects, and the like, has a long history in statistics. Early
instances include Cornfield’s work in the context of causal inference (Holland, 1986) and the study of

the independent censoring assumption’s impact in time-to-event analyses, to which a large part of a
joint US Air Force, National Cancer Institute, and Florida State University sponsored conference was
devoted (Proschan and Serfling (1974), and several contributions therein, in particular by Fisher and

Kanarek). A different strand is formed by input/output sensitivity in industrial applications (Haug,
Choi, and Komkov, 1986).

Even when confining attention to the field of incomplete data, research is vast and disparate. This is
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Figure 5: Toenail data. For 4 selected subjects, two per treatment arm: (1): observed profile; (2)
marginal mean profile (which solely depends on treatment); (3) prediction from the normal model

(42); (4) prediction from the exponential model.

not a negative point, rather it reflects broad awareness of the need for such sensitivity analysis. Earlier
work on incomplete data was virtually exclusively focused on the formulation of ever more complex

models. Both the pattern-mixture model framework (Little, 1993, 1994) and the shared-parameter
framework (Wu, and Carroll, 1988; Wu, and Bailey, 1988, 1989) have provided useful vehicles for

model formulation. In a pattern-mixture model, the outcome distribution is modeled conditional
on the observed response pattern, as opposed to the selection model framework, used throughout

this manuscript, where the unconditional outcome distribution is the centerpiece, sometimes supple-
mented with a model describing the non-response process, given the outcomes. In a shared-parameter

model, the outcome and non-response processes are considered independent, given a set of common
latent variables or random effects, which are assumed to drive both processes simultaneously. A
particularly versatile research line is geared towards the formulation of semi-parametric approaches

(Robins et al, 1995; Scharfstein, Rotnitzky, and Robins, 1999). Whereas in the parametric context
one is often interested in quantifying the impact of model assumptions, the semi-parametric and

non-parametric modelers aim at formulating models that have a high level of robustness against the
impact of the missing data mechanism. A number of authors have aimed at quantifying the impact

of one or a few observations on the substantive and missing data mechanism related conclusions
(Copas and Li, 1997; Verbeke et al, 2001; Troxel et al, 1998).

A number of early references pointing to the aforementioned sensitivities and responses there to in-
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clude Rosenbaum and Rubin (1983), Nordheim (1984), Little (1994b), Rubin (1994), Laird (1994),

Vach and Blettner (1995), Fitzmaurice, Molenberghs, and Lipsitz (1995), Fitzmaurice, Molenberghs,
and Lipsitz (1995), Molenberghs et al (1999), Kenward (1998), and Kenward and Molenberghs

(1999). Rosenbaum and Rubin (1983) is a pivotal reference for its propensity-scores basis, a tech-
nique useful with incomplete data and beyond. A propensity score is, roughly, the probability of an
observation being missing or an indication thereof. The method has been used as a basis for missing-

data developments in general and sensitivity analysis in particular. For example, it is strongly con-
nected to more recent inverse probability weighting methods, as well as to certain forms of multiple

imputation (Rubin, 1987).

Apart from considering pattern-mixture models (PMM) for their own sake, they have been considered
by way of a useful contrast to selection models, either (1) to answer the same scientific question,

such as marginal treatment effect or time evolution, based on these two rather different modeling
strategies, or (2) to gain additional insight by supplementing the selection model results with those
from a PMM approach. Pattern-mixture models also have a special role in some multiple imputation

based sensitivity analyses. Examples of PMM applications can be found in Cohen and Cohen (1983),
Muthén, Kaplan, and Hollis (1987), Allison (1987), McArdle and Hamagani (1992), McArdle and

Hamagani (1992), Little and Wang (1996), Little and Yau (1996), Hedeker and Gibbons (1997),
Hedeker and Gibbons (1997), Hogan and Laird (1997), Ekholm and Skinner (1998), Molenberghs,

Michiels, and Kenward (1998), Michiels, Molenberghs, and Lipsitz (1999), Verbeke, Lesaffre, and
Spiessens (2001), Michiels et al (2002), Thijs et al (2002), and Rizopoulos, Verbeke, and Molen-

berghs (2008). Whereas the earlier references primarily focus on the use of the framework as such,
the later ones emanate a gradual shift towards sensitivity analysis applications. Molenberghs et

al (1998) and Kenward, Molenberghs, and Thijs (2003) studied the relationship between selection
models and PMMs. The earlier paper presents the PMM’s counterpart of MAR, whereas the later
one states how pattern-mixture models can be constructed such that dropout does not depend on

future points in time.

Turning to the shared-parameter (SPM) framework, one of its main advantages is that it can easily
handle non-monotone missingness. Nevertheless, these models are based on very strong parametric

assumptions, such as normality of the shared random effect(s). Of course, sensitivities abound in the
selection and PMM frameworks as well, but the assumption of unobserved, random, or latent effects,

further compounds the issue. Various authors have considered model extensions. An overview is
given by Tsonaka, Verbeke, and Lesaffre (2007), who consider shared parameter models without

any parametric assumptions for the shared parameters. A theoretical assessment of the sensitivity
with respect to these parametric assumptions is presented in Rizopoulos, Verbeke, and Molenberghs
(2008).

Beunckens et al (2007a) proposed a so-called latent-class mixture model , bringing together features of

all three frameworks. Information from the location and evolution of the response profiles, a selection
model concept, and from the dropout patterns, a pattern-mixture idea, is used simultaneously to

define latent groups and variables, a shared-parameter feature. This brings several appealing features.
First, one uses information in a more symmetric, elegant way. Second, apart from providing a

more flexible modeling tool, there is room for use as a sensitivity analysis instrument. Third, a
strong advantage over existing methods is the ability to classify subjects into latent groups. If done

with due caution, it can enhance substantive knowledge and generate hypotheses. Fourth, while
computational burden increases, fitting the proposed method is remarkably stable and acceptable
in terms of computation time. Clearly, neither the proposed model nor any other alternative can
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be seen as a tool to definitively test for MAR versus MNAR, as discussed earlier. This is why the

method’s use predominantly lies within the sensitivity analysis context. Such a sensitivity analysis is
of use both when it modifies the results of a simpler analysis, for further scrutiny, as well as when it

confirms these.

As stated earlier, a quite separate, extremely important line of research starts from a semi-parametric

standpoint, as opposed to the parametric take on the problem that has prevailed throughout this
chapter. Within this paradigm, weighted generalized estimating equations (WGEE), proposed by

Robins et al (1995) and Robins and Rotnizky (1995) play a central role. Rather than jointly mod-
eling the outcome and missingness processes, the centerpiece is inverse probability weighting of a

subject’s contribution, where the weights are specified in terms of factors influencing missingness,
such as covariates and observed outcomes. These ideas are developed in Robins et al (1998) and

Scharfstein, Rotnitzky, and Robins (1999). Robins, Rotnitzky, and Scharfstein (2000) and Rotnitzky
et al (2001) employ this modeling framework to conduct sensitivity analysis. They allow for the
dropout mechanism to depend on potentially unobserved outcomes through the specification of a

non-identifiable sensitivity parameter. An important special case for such a sensitivity parameter, τ
say, is τ = 0, which the authors term explainable censoring, which is essentially a sequential version

of MAR. Conditional upon τ , key parameters, such as treatment effect, are identifiable. By varying
τ , sensitivity can be assessed. As such, there is similarity between this approach and the interval of

ignorance concept, touched upon in the second paragraph of the next section. There is a connection
with pattern-mixture models too, in the sense that, for subjects with the same observed history

until a given time t − 1, the distribution for those who drop at t for a given cause is related to the
distribution of subjects who remain on study at time t.

Fortunately, it is often possible in problems of missing data, to bring in assumptions that are external
to this study, in the sense of them being untestable from its data, but that are implied by the scientific

body of knowledge surrounding the problem. An example is the so-called exclusion restriction in
certain problems of causal inference. When such assumptions are brought in, the missing data

distribution can become identifiable or, at least, the universe of possibilities may be reduced in size.
In particular, such knowledge may provide external evidence against MAR. Key references include

Angrist, Imbens, and Rubin (1996), Little and Yau (1996), and Frangakis and Rubin (2002). Their
work is geared towards both study design and analysis methodology that can integrate such external

knowledge.

Thus clearly, the field of sensitivity analysis, for incomplete data and beyond, is both blessed with
a long and rich history and vibrantly alive. The amount of work in this field is vast. Classifying
sensitivity analysis methods by means of a useful taxonomy is easier said than done. One could

categorize according to the model family to which they are directed within which they are cast.
Alternatively, one can distinguish between context-free techniques and methods that make use of

substantive considerations. Some methods make simplifying assumptions and specific choices. For
example, a number of sensitivity analysis tools are based upon considering a scalar or low-dimensional

sensitivity parameter, often positioned within the original model at one of many possible locations.
Such choices are entirely reasonable, and ought to be seen as a pragmatic compromise between the

desire to explore sensitivity while keeping the ensuing analysis practically feasible and interpretable.
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10 Concluding Remarks

In this paper, we have reviewed complexities that can and often will arise when data are incomplete

or otherwise coarser than actually or counterfactually possible. It has been indicated that, already
under MAR and/or ignorability, care needs to be taken since results stemming from complete-data

analysis may no longer hold and intuition based there upon misleading. This notwithstanding, MAR
plays a pivotal role and it is appealing to have it operationally defined in all three frameworks,
selection models, pattern-mixture models, and shared-parameter models. At the same time, every

MNAR model can be teamed up with an counterpart that is MAR and produces exactly the same
fit to the observed data; this implies that in a fundamental sense it is not possible to distinguish

between MAR and MNAR. Whereas this result holds for incomplete data, it holds more broadly for
the entire family of data-enriched structures, encompassing coarsened and augmented data settings.

Furthermore, in a longitudinal setting, it is in all three frameworks possible to constrain missing-
data mechanisms to the non-future dependent subclass of MNAR, such that missingness depends

on the current, possible unobserved, measurement, but not on future ones. All of this points to a
great danger for inferences and hence conclusions to be based on unverifiable assumptions, leading

to sensitivity analysis. Without going into a great amount of detail, a perspective on sensitivity
analysis has been offered. Details can be found, for example, in Molenberghs and Kenward (2007)
and Fitzmaurice et al (2008).
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