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Abstract: This work demonstrates how full modelling power in statistically mixed models can be used to study generaliza-
bility (reliability) coefficients of advanced data from human experimental pain studies utilizing placebo data from drug
screening trials. This can be used to help optimizing outcome parameters from existing data sets.

This study assesses the reliability of an experimental pain
parameter based on electrical stimulation (single and
repeated) of skin and muscle tissues and on chemical stimu-
lation (6% saline) of muscle tissue. The data compiled were
based on placebo data from a three · three cross-over
designed study with repeated measurements within each per-
iod. The reliability coefficients of interest were: reliability
between two measurements taken in an hour's duration
within the same period (2SP) and reliability between two
measurements taken at the same time points in different
periods (2DP). The overall variation of the pain recording
was characterized using the coefficient of variation (CV) and
sample sizes were estimated for comparison purposes.

Generally, the pain measurements showed a moderate
overall variability with a mean coefficient of variation value
of 32% (range 14–39%) with the lowest variation for the
temporal summation data (14%). This renders these tests
useful for analgesic testing recruiting useful sample sizes in
cross-over design (N ¼ 8 for temporal summation from skin,
N ¼ 22 for temporal summation from muscles, 95%), but
may be unhandy in parallel design (N ¼ 14 and N ¼ 48,
respectively, 95%). For both single electrical stimulation and
chemical stimulation, a higher number of volunteers are
needed in both cross-over and parallel designs.

Pain is a multidimensional unpleasant sensory and
emotional experience and cannot as such be represented or
described by a single parameter or number. Hence, assessing
pain quantitatively is a challenging task. However, different
possibilities in human experimental pain research exist to
assess quantitatively various aspects of and mechanisms
involved in the complex sensory experience of pain.

Human experimental pain research involves two separate
topics: (i) Standardized activation of the nociceptive system;
and (ii) Assessment of the evoked responses. The ultimate
goal of modern pain assessment procedures is to obtain a
better understanding of mechanisms involved in pain trans-
duction, transmission, and perception under normal and
pathophysiological conditions. Such a mechanism-based
approach can provide better characterization, prevention
and management of pain. In recent years, human experi-
mental pain models have been developed as bio-markers to
be used in early drug development for screening of analgesic
potency of new and existing analgesics [1].

In experimental studies designed for screening analgesics,
human experimental pain models provide a means to
overcome some factors that confound clinical drug trials.
These models allow the investigator to control the nature,
localization, intensity, frequency and duration of the induced
pain stimulus, and provide standardized quantitative
measures of a psychophysical response [2]. However, most
experimental pain stimuli cannot mimic clinical pain but
may act as a surrogate model and hence act as a biomarker
for analgesic efficacy in patients. The use of multi-modal,
multi-tissue differentiated experimental pain stimulation
provides a possibility to differentiate the pain responses and
provide a mechanism-based evaluation [3] of analgesic efficacy.

In drug screening trials, it is mandatory that the pain tests
are reproducible, valid and respond in a uniform way to
changes in nociceptive excitability [1]. Many clinical pain
measures are based on clinicians’ or patients’ subjective
observations, whereas the experimental measures theoreti-
cally are more stable because the nociceptive input (stimulus
intensity) can be standardized. Clinical as well as experi-
mental pain measures are, however, prone to errors and
variability, some owing to their subjective nature. Before
such measures are ready for application in drug trials, they
should be highly reliable to avoid type I and type II errors.
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Reliability coefficients express the ability to differentiate
among subjects. They are ratios of variances: in classical
terms, the variance attributed to the difference among
subjects, divided by the total variance [4]. Such parameters
should be known and minimized, and practical as well as
theoretical considerations should be optimized to be able to
perform the most reliable clinical trials.

As stated by Fleiss [5]: ‘The most elegant design of a
clinical study will not overcome the damage by unreliable
or imprecise measurement.’ In clinical trials, one typically
wants to differentiate among treatments. If reliability is low,
the ability to differentiate between the different subjects in the
different treatment arms decreases. One of the consequences of
unreliability described by Fleiss is an increase in sample size
for trials with a primary parameter exhibiting low reliability.

The classical theory behind the estimation of reliability
can be extended to the Generalizability Theory (GT) by
estimating the magnitude of multiple sources of measure-
ment error and providing reliability and generalizability
coefficients tailored to the proposed use of the measurement
and isolating major sources of error so that a cost-efficient
measurement design can be built [6]. By investigating other
sources of error, the clinical trialist could learn about
performance of scales or other measurements in certain
subgroups and the impact of such factors on reliability.

This article aims at applying the concepts of the GT on
selected experimental pain measures used in drug screening
trials (data from the study of Olesen et al. [7]) with focus on
the sources of variance and their impact on the reliability
and generalizability of the measurements. This information is
important for powering cross-over and parallel experimental
drug screening pain trials.

Materials and Methods

Study subjects. Eighteen healthy, non-smoking, volunteers aged
between 18 and 30 years with a body mass index within the range
of 18–30 kg/m2 completed the study. All subjects were in good
general health with no clinically relevant abnormalities of medical
history, physical examination, clinical or laboratory evaluation. The
subjects were informed about the risk of the study and were paid
for participating. Oral and written informed consent was obtained
from all subjects. The Ethics Committee of Northern Jutland (VN
2004/62) and the Danish Medicines Agency (EUDRACT nr. 2004-
002,605-77) approved the study [7].

Study design. This was a single-centre, double-blind, randomised,
three-way cross-over study in healthy subjects. The experimental tests
included single and repeated electrical stimulation of the skin and
muscle, and intra-muscular saline-evoked muscle pain. Pain intensity
assessments were carried out using a visual analogue scale (VAS), pre
and post dose. Subjects were screened and underwent familiarization
of the experimental tests within 14 days of the initial treatment visit.
They then returned for three treatment visits, each separated by a
minimum of 3 days. Experimental testing commenced 30 min. before
dosing (baseline) and 1, 2, and 3 hrs after dosing. Muscle stimulation
with saline was only done at baseline and 2 hrs after dosing.

Study treatments. Randomized subjects were assigned to receive one
of the three treatments during each period of this cross-over study
with the order of treatment dosing randomized by the use of a Latin

square design. The treatments were: (i) Drug A, (ii) Drug B
or (iii) Placebo. All treatments were supplied unmarked and blister-
packed. Medications were taken orally with 150 ml of water with sub-
jects fasting for 3 hrs before dosing. For the present article, all data
were used for further analysis in order to optimise benefits from GT.

Pain stimulations

During the first visit, each subject went through all pain
tests listed below to ensure that they understood and were
familiarized with the rating procedures and the nature of the
stimuli. They were instructed how to use the continuous
VAS scale where the minimum was 0 ¼ no perception and
the maximum 10 ¼ unbearable pain intensity. The VAS is
simple and efficient to use and has been considered by many
to be reliable as a ratio-scale measure of pain intensity [8].

Single electrical stimulation.

Skin: A computer-controlled constant current stimulator
(University of Aalborg, Denmark) delivered a 25 msec.,
train-of-five, 1 msec. square-wave impulse (perceived as a
single stimulus) to the skin over the sural nerve using two
bipolar Ag/AgCl-electrodes (Neuroline, Medicotest A/S,
Ølstykke, Denmark). The surface of the electrodes was
15 · 10 mm, and the distance between the two electrodes was
15 mm. The current intensity was increased from 1 mA in
increments of 0.5 mA until pain detection threshold. The pain
detection threshold is defined as the intensity when the per-
ceived sensation changes from a mechanical sensation to pain.

Muscle: Similar current pulses were delivered to the anterior
tibialis muscle by needle electrodes (30 · 0.35 mm; Dantec,
Denmark) fully inserted into the muscle belly, placed 1 cm
perpendicularly apart to the surface, starting with a stimu-
lus intensity of 0.5 mA for the single stimulus. The current
intensity was increased stepwise with 0.25 mA until pain
was evoked (pain detection threshold).

Repeated electrical stimulation (temporal summation).

Skin: A 25 msec., train-of-five, 1 msec. square-wave constant
current pulses was used. This stimulus burst was repeated
five times with a frequency of 2 Hz. The current intensity
was increased from 1 mA in steps of 0.5 mA, until a subjec-
tive pain sensation was evoked (pain detection threshold)
during the train of stimuli.

Muscle: The procedures described for the skin was repeated
for the muscle electrodes, starting with a stimulus intensity
of 0.5 mA.

Stimulation of the muscle with hypertonic saline.

Muscle pain was induced by injection of hypertonic saline
(5% NaCl). A computer-controlled syringe pump (IVAC,
model 770, USA) was connected through an extension tube
(IVAC, G30303, extension set with polyethylene inner line)
to a stainless disposable needle (27G, 40 mm). The needle
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was introduced in the left side anterior tibialis muscle, 14 cm
distally from the caudal end of the patella, 2 cm laterally to
the anterior edge of the tibia, and 20 mm in depth. A meas-
ure of 0.5 ml of 5% hypertonic saline was administered over
20 sec. Subjects rated pain intensity continuously for 7 min.
on the electronic VAS. The area below the VAS curve
(AUC-VAS) was calculated as well as the time to peak pain
(TP-VAS) and the maximum VAS score (MAX-VAS).

Statistics

To eliminate errors relating to differences between periods in
baseline pain recordings, the change in stimulus intensity
relative to baseline was used in the calculations.

Reliability and generalizability.

In this section, the GT of Cronbach et al. [9] to estimate
various reliability coefficients of interest is introduced. The
following subsection uses the method of Vangeneugden
et al. [10], who illustrated how full modelling power in
mixed models can be used to study generalizability.

In classical test theory, the outcome of a test is modelled as
two random variables

Y ¼ sþ e; ð1Þ

where Y represents an observation or measurement, s is the
true score, e the corresponding measurement error and
Var(Y) ¼ Var(s) + Var(e). It is assumed that the measure-
ment errors are mutually uncorrelated as well as with the
true score. The reliability (R) of a measuring instrument is
defined as the ratio of the true score variance to the observed
score variance, that is,

ð2Þ

In the case of two parallel measurements, we have Y1 ¼
s + e1 and Y2 ¼ s + e2, with Var(Y1) ¼ Var(Y1) ¼ Var(Y)
and Var(e1) ¼ Var(e2) ¼ Var(e). Therefore, the reliability of
the two measurements equals

ð3Þ

Classical test theory assumes that an observation is a com-
bination of an individual's true score and random measure-
ment error. The assumption that all variance in scores can
be divided into true and error variance is rather simplistic.
The essence of the GT is the recognition that in any measure-
ment situation, there are multiple sources of error variance.
The goal is to attempt identification, measurement and
thereby possibly to find strategies to reduce the influence of
these sources on the measurement in question. Thus, it is
more efficient to investigate all the sources of variability
in a single study using all the data to estimate the variance

between the subjects and the various components of error
variance. This can provide a lot of information on observer
reliability and can determine the relative importance of each
component. The reliability estimates in this report are based
on absolute decisions [10]. This ensures that the total variance
from the model is used to calculate the reliability measures.

By reasonably identifying the most likely sources of error
in a measurement, we have defined our ‘universe’ of gener-
alization. Generalizability coefficients will depend on which
universe, which variance components are considered and
which factors are allowed to vary and which remain fixed. If
the sources that we have identified are trivial, and we have
missed some important sources of error, then there will be a
large amount of variance due to random error. This may
lead to reliability estimates which are biased downwards,
that is, provide low estimates for the reliability coefficients.

Reliability and generalizability via linear mixed models.

Based on the repeated measurements taken on the subjects
within periods of the same study, possible between-subject
and period variability and, the hierarchical nature of the
data, a linear mixed-effects framework is considered. A
linear mixed model is any model which satisfies [11–13]:

ð4Þ

where Yi is the ni-dimensional response vector for subject i,
1 £ i £ N, N is the number of subjects, Xi and zi are (ni · p)-
and (ni · q)- dimensional matrices of known covariates, b is
a p-dimensional vector containing the fixed effects, bi is the
q-dimensional vector containing the random effects, and ei

is an ni-dimensional vector of residual components. D is a
general (q · q) covariance matrix with (i, j) element dij ¼ dji

and
P

i is a (ni · ni) covariance matrix which depends on i
only through its dimension ni, that is, the set of unknown
parameters in

P
i will not depend upon i. Serial correlation is

captured by the realisation of a Gaussian stochastic process,
Wi.

Model (4) is very general and flexible given that it permits
one to estimate different variances; allowing for instance a
different variance for the measurement at each time point.
Additionally, fixed effects can be accommodated. This flex-
ibility enables the calculation of reliability and generalizability
coefficients from data resulting from clinical trials. Based on
equations (2) and (3), a general formula to calculate reliability
can be derived from the linear mixed model (4). Denote by
Yjt the observed measurement of subject i at time point t.
Denote the test-retest reliability between time points s and t
by R (s,t), we have

ð5Þ
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The reliability coefficient is mostly derived via the intraclass
correlation. As Bartko [14] has demonstrated, the intraclass
correlation calculated as a ratio of variances that are estimated
by means of a linear model is only correct when it can be
interpreted as a correlation coefficient. It can be shown that
equation (5) can be derived as a conditional correlation
coefficient [10]. Thus, equation (5) can be used to derive
reliability and various generalizability coefficients for the
linear mixed model framework. Intraclass correlation >0.80
is generally considered excellent [15], but intraclass correlation
>0.60 is acceptable for many purposes in experimental pain
studies [7].

The coefficient of variation reflects the overall variability
of a model and was used to characterize the overall variance.
The coefficient of variation was used to estimate sample
sizes needed for parallel and cross-over studies for com-
parison purposes. The desired power of the analysis was set
to 0.95 and a to 0.05. The estimation was done for the
detection of an analgesic effect producing a 30% decrease or
increase of the pain recording, which has been shown to be
realistic [16]. Sample sizes below 30 are manageable in
advanced experimental pain models. Larger sample sizes
may make the study impractical and expensive to perform
[16].

Let Yipk denote the kth, 1 £ k £ K measurement in period
p, 1 £ p £ P, of a response on subject i, 1 £ i £ N. Also, let
Bip be a baseline measurement in period p for subject i. A
particular realisation of model (4) which will be fitted to our
data sets is given by:

Dipk ¼ meanipk þ b0i þ b1p þ eipk; ð6Þ

where Dipk ¼ Yipk ) Bip and meanipk represent the fixed
effects from the grand mean, baseline, period, treatment,
time, baseline · time and treatment · time. b0i and b1p represent
the between subject variability and between period variability
with Var(b0i) ¼ d0 and Var(b1p) ¼ d1, respectively. We assume
that the errors, e1pk, . . . , enpk, are independent across periods
but correlated within periods. Errors within a period follow
an autoregressive process modelled using a spatial power
function such as where is the residual variance
[10,11]. The correlation between two repeated measure-
ments on a subject within a period is given by qd(k,s). d(k,s) is
the Euclidean distance between time points with d(k,s) ¼ 0
and d(k,s) > 0.

Useful reliability coefficients of interest are the reliability
between measurements taken on the same time point across
different periods (2DP) and the reliability between two
measurements taken in an hour's duration within the same
period (2SP). Based on model (6), these reliability coefficients
and the coefficient of variation (CV) can be calculated as
follows:

SAS version 9.1.3, specifically The Mixed Procedure, was
used for the estimation of reliability and generalizability
coefficients. The delta method can be used to obtain standard
errors and hence confidence intervals for the reliability esti-
mate. The variances based on the delta method are given as:

NQUERYand PASS2005 were used for sample size calcula-
tions based on 2 · 2 cross-over and parallel designs. Calculat-
ing sample size for a parallel design is trivial; thus, we focus
on sample size calculation for cross-over design. This can be
done using standard sample size package for t-test procedure
using MSE/2 as the estimated variance, to obtain the number
of subjects per sequence. Using the cross-over package in
PASS2005 and the standard deviation as mentioned in table 1
yields required sample sizes for a 2 · 2 cross-over design.

Results

In this section, we present the result obtained from applying
the linear mixed model (formula 6) on the motivational data
as well as estimates of generalizability coefficients and sample
sizes. About 0–9.2% of the observations (assessments) were
missing for some of the pain recordings due to technical
problems. The percentage of missingness is <10% and the
analyses based on linear mixed models are valid under the
so-called missing at random assumption [12,13,17], which
means, given the observed data and measured covariates,
there is no further information in the missing data regarding
the process that governs missingness. Thus, neither further
techniques to account for missingness were, nor have to be,
employed. Also, some observations were excluded from the
analyses because they were identified as influential outliers;
depending on pain recordings the number of outlying obser-
vations ranged between 0 and 6 (4%), mostly assessments on
different patients from different periods.

For outcomes derived from response to chemical muscle
stimulation, that is, AUC-VAS, MAX-VAS, and TP-VAS,
models including between period variability could not be
brought to convergence. Furthermore, for the other out-
comes based on electrical stimulation, likelihood ratio tests
derived from mixtures of Chi-squares [12,13] indicated lack
of evidence for substantial between period variability. Even
so, reliability estimates calculated for the later outcomes with
and without the between subject variability (i.e. d1 ¼ 0)
indicate that the periods have very little impact on the
reliability of the measurements (table 2). Thus, henceforth,
we present results from models without the between period
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variability. The generalizability coefficients and coefficients
of variations for each pain recording are listed in table 3.
Table 1 presents the calculated sample sizes required to
detect a 30% change of pain parameter where the value of
power is set to 90% and 95%.

Single electrical stimulation.

Skin – pain detection threshold. For single electrical stimula-
tion on the skin, the pain threshold showed a relatively high
reproducibility within periods and a low reproducibility
across periods. This can be seen from the high reliability
between two measurements taken in an hour's duration
within the same period (2SP ¼ 0.78) and the low reliability
between two measurements taken at the same time point in
different periods (2DP ¼ 0.10) (table 3). This showed that the
volunteers were able to reproduce their own pain recordings
within periods but could not do so across periods. The pain
threshold had a moderate coefficient of variation value
(31%), which renders it useful in the testing of analgesics for
cross-over experimental design but require moderate sample
sizes for parallel experimental design (table 1).

Muscle – pain detection threshold. When single electrical
stimulation was applied to the muscle, the pain detection
threshold showed high reproducibility within the same
periods (2SP ¼ 0.75) and very low reproducibility across
different periods (2DP ¼ 0.07). It also showed a moderate
overall variability with a coefficient of variation value of
39% (table 3). Moderate sample sizes are required for a
cross-over study unlike for a parallel study which requires a
large number of patients rendering such studies unhandy
(table 1). This test may be useful for testing analgesic effects
for cross-over studies.

Repeated electrical stimulation (temporal summation).

Skin – summation pain detection threshold. Pain detection
threshold for temporal electrical stimulation on the skin
showed moderate and low reproducibility within periods
(2SP ¼ 0.54) and between periods (2DP ¼ 0.21), respectively.
However, the coefficient of variation value is low (14%)
indicating a small overall variation (table 3). Furthermore,
very realistic sample sizes are required for both cross-over
(N ¼ 8, 95%) and parallel (N ¼ 14, 95%) studies (table 1).
Thus, the test will be sensitive to analgesic modulation for
both cross-over and parallel experimental designs.

Table 1.
Sample sizes required to detect an analgesic effect of producing a 30% decrease of the average pain recordings with a significance level of 0.05
and power set to both 0.90 and 0.95, in a cross-over and a parallel design are presented. These sample sizes are for comparison purposes as
a 30% reduction in the specific endpoint may not be of clinical relevance. The standard deviations and magnitude of a 30% reduction of the
mean value for each pain recording are also presented. Change to be detected holds the corresponding 30% reduction of the overall mean of a
given Response. Standard deviation represents the corresponding standard deviation obtained from the model required for testing
treatment effect. Cross-over and Parallel show the required number of subjects for cross-over and parallel designs, respectively, based on 90%
and 95% power. PDT ¼ Pain detection threshold.

Tissue Response, stimulus
Change to
be detected

Within standard
deviation

Total standard
deviation

Cross-over Parallel

90% 95% 90% 95%

Skin PDT, Single electrical (mA) 12.03 11.30645 11.93063 22 26 44 54
PDT, Temporal electrical (mA) 1.66 0.66296 0.78740 8 8 12 14

Muscle PDT, Single electrical (mA) 11.24 13.97856 14.39583 36 44 72 88
PDT, Temporal electrical (mA) 0.75 0.646265 0.69282 18 22 38 48
AUC-VAS (arbitrary units) 163.45 170.9703 202.21450 26 32 68 82
MAX-VAS (arbitrary units) 11.80 12.79742 15.01832 28 34 72 88
TP-VAS (sec) 26.79 31.47948 33.95394 32 38 70 86

Table 2.
Reliability (2DP [two measurements at different periods] and 2SP [two measurements at same period]) estimates when between period
variability is considered and ignored in the modelling process. Period Effect assumes that there is extra variability induced by the different
periods in the cross-over design, implying that the parameter d1 is to be estimated in the modelling process. No Period Effect assumes that
there is no extra variability induced by the different periods in the cross-over design and d1 ¼ 0 in the modelling process. PDT ¼ Pain
detection threshold.

Tissue Response, stimulus

2DP 2SP

With between
period variability

Without between
period variability

With between
period variability

Without between
period variability

Skin PDT, Single electrical (mA) 0.096 0.098 0.769 0.784
PDT, Temporal electrical (mA) 0.256 0.210 0.335 0.541

Muscle PDT, Single electrical (mA) 0.065 0.072 0.742 0.748
PDT, Temporal electrical (mA) 0.137 0.152 0.642 0.649
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Muscle – summation pain detection threshold. When the
muscle was stimulated using temporal electrical stimulation,
the pain detection threshold showed a high reproducibility
within the same periods (2SP ¼ 0.65) and a low reproduci-
bility across different periods (2DP ¼ 0.15). It also showed a
moderate overall variability with a coefficient of variation
value of 30% (table 3). The sample sizes required to detect a
30% reduction in the pain detection threshold for cross-over
studies are reasonable (N ¼ 22, 95%), but less useful sample
sizes are required for parallel studies (N ¼ 48, 95%), (table 1).
The high within period reproducibility may render this test
useful for testing analgesic effects in cross-over studies.

Intramuscular hypertonic saline.

AUC-VAS. The area under the VAS curve was not repro-
ducible, neither within nor between periods (table 3). The
overall variability was 37%. As a consequence, the required
sample size for detecting a 30% modulation of the pain
response in a cross-over study was 32 and 82 for parallel
studies (table 1).

MAX-VAS. The maximum VAS score was not reproducible,
neither within nor between periods (table 3). A coefficient of
variation value of 38% indicated a moderate overall variation.
Hence, the sample sizes required to detect a 30% modulation
in a cross-over study were 34 and 88 for parallel studies
(table 1).

TP-VAS. The time to peak VAS was not reproducible, neither
within nor between periods (table 3). A coefficient of vari-
ation of 38% indicated a moderate overall variation. Hence,
the sample sizes required to detect a 30% modulation in the
response for the cross-over study were 38 and 86 for parallel
studies (table 1).

Discussion

The present study showed that particular temporal summa-
tion assessed from the skin is a highly reliable parameter
that can be used in both cross-over and parallel studies with

a sample size of 8 and 14, respectively (able to detect a 30%
decrease, P < 0.05, power 0.95). Temporal summation is a
very important and potent pain mechanism. In humans,
central integration manifested as temporal summation
(increased pain reaction in volunteers or patients to a train
[e.g. 5 pulses] of repeated [e.g. 2 Hz] stimuli) is assumed to
represent the initial phase of the wind-up process as seen in
animals [18–21] and represents relevant and potent mechan-
isms in central sensitization.

Temporal summation is facilitated in experimentally
induced hyperalgesic areas [22] and in patients with different
chronic pain conditions (neuropathic, musculoskeletal) [23–
25]. Temporal summation is difficult to block pharmacolo-
gically but drugs efficient in inhibiting central sensitization
(in e.g. neuropathic pain) also block temporal summation
[26,27].

Multi-modal, multi-tissue-differentiated experimental
pain models offer a unique opportunity of comprehensive
assessment of effects of analgesics and reveal pharmacological
insight into new and existing compounds. This may help the
development and targeting of new analgesics. The experi-
mental pain model can be used in either cross-over or parallel
studies, and understanding the variability for different experi-
mental pain parameters is therefore important.

The assessment of observer reliability is essential for the
interpretation of medical observations both in fundamental
research as well as in medical practice [28]. Cronbach et al.
[9] devised the GT, which essentially recognises multiple
sources of error variance in any measurement situation and
hence can be used to estimate multiple reliability coefficients.
Shavelson et al. [6] and Dunn [29] made a plea for more
extensive use of GT studies. Shavelson et al. [6] surmised that
one of the reasons why GT studies are not widely used is the
cost to set up generalizability studies.

Following the ideas of Vandeneugden et al. [10], we used
clinical trial data (placebo) to estimate (reliability) generaliz-
ability coefficients using linear mixed models. This approach
measures the contribution of different sources of variation
to the total measurement error, after accommodating fixed
effects, the most prominent one being the treatment effect.

Table 3.
Results obtained from the statistical analysis of the various pain recordings from skin and muscle. Subject represents the between subject
variability. Corr holds the value for the correlation between successive repeated measurements within a period of the study. Residual shows
the residual variance for each pain recording. 2DP (two measurements at different periods) and 2SP (two periods at same period) represent
the reliability between two measurements taken at the same time point in different periods and the reliability of two measurements taken an
hour apart within the same period, respectively. Coefficient of variation is the estimate for the coefficient of variation based on the total
variance of each pain recording. PDT ¼ Pain detection threshold.

Tissue Response, stimulus Subject Corr Residual 2DP 2SP CV (%)

Skin PDT, Single electrical (mA) 15.55 0.76 143.04 0.10 0.78 31
PDT, Temporal electrical (mA) 0.14 0.42 0.51 0.21 0.54 14

Muscle PDT, Single electrical (mA) 15.64 0.73 200.88 0.07 0.75 39
PDT, Temporal electrical (mA) 0.09 0.59 0.51 0.15 0.65 30
AUC-VAS (arbitrary units) 11659.86 )0.15 29230.84 0.29 0.39 37
MAX-VAS (arbitrary units) 61.78 0.15 163.77 0.27 0.39 38
TP-VAS (sec) 161.91 0.22 990.96 0.14 0.33 38
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The goal is to identify important sources of variability in a
measurement situation from the outset and attempt to
quantify these sources of error. Our motivational data were
based on a three · three cross-over design with repeated
measurements within each period. We assumed the following
sources of variance: between period variability, between
subject variability, serial correlation between the measure-
ment within a period for a given subject, and within subject
variability (residual variance). Based on these sources of
variability, the following reliability coefficients were of inter-
est: reliability between two measurements taken in an hour's
duration within the same period (2SP) and the reliability
between two measurements taken at the same time point in
different periods (2DP).

The within-subject variation makes up a dominant part
of the total variability for all assessment parameters. We
should allow for the fact that some sources of variability
might have gone unnoticed. One also has to consider the
fact that including too many sources of error makes the
mixed models complicated, and getting such models to con-
verge is not always a trivial task. Hence, it is important to
identify important and meaningful sources of error to
ensure convergence of the mixed models and obtain stable
estimates of the variance parameters.

As expected, the reliability between two measurements
taken an hour apart within a period is consistently consider-
ably higher than the reliability between two measurements
taken at the same time point between different periods. This
probably reflects the fact that the various devices and stimuli
are difficult to place in exactly the same position between
periods [30].

Conclusion

Although validation studies can be initiated, it may be more
practicable to use existing clinical trial data for assessing
and estimating reliability coefficients of interest, after cor-
recting for fixed effects (the most prominent being treatment
effect), using GT. The present results also indicate that the
usual reliability studies, using only one period without
administration of treatments, lack the ability to capture the
very low reliability across periods.

In settings where the within subject variability is much
less than the total variability, the ‘gain’ in using cross-over is
much greater in terms of reduction in the number of subjects.
However, the within subject variability constitutes a dominant
part of the total variability for this study. Consequently,
twice the number of subjects in a cross-over is not quite
different as compared to a parallel design. In spite of this, the
investigator may prefer to have longer duration trials as
compared to enrolling a little more than twice the number of
subjects for parallel studies.

We have illustrated that other sources of variability may
have an impact on the reliability of an outcome and that
reliability studies with one period miss to capture the low
reliability across periods. Therefore, performing pilot cross-
over trials is the appropriate way to assess reliabilities if the

investigator considers using such experimental designs.
Essentially, the administration of treatments during these
pilot studies does not prevent the estimation of reliabilities in
an appropriate and sensible way.
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