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A strategy for the prior processing
of high-resolution mass spectral data
obtained from high-dimensional combined
fractional diagonal chromatography
Dirk Valkenborg,a,b∗ Grégoire Thomas,c Luc Krols,d Koen Kasc and
Tomasz Burzykowskib

Combined fractional diagonal chromatography (COFRADIC) is a novel suite of gel-free technologies for the identification of
biomarkers in complex peptide mixtures. For this purpose, reversed-phase high performance liquid chromatography (HPLC)
technology and, in this case, matrix assisted laser desorption /ionization- time of flight (MALDI-TOF) mass spectrometers are
extensively used. The particular characteristic of COFRADIC mass spectrometry data is the high number of chromatographic
fractions, over which a peptide can be scattered. This can obstruct the quantification of the peptide abundance in the biological
sample, which is required for statistical analysis. On the other hand, because of the superior peptide sorting properties of the
methodology, the mass spectra become less crowded. Consequently, each peptide appears in a mass spectrum as a series of
peaks with peak heights proportional to the probability of occurrence of the isotopic variants of the peptide. In this manuscript,
we propose an analysis strategy concerned with the preprocessing of COFRADIC mass spectra prior to a downstream statistical
analysis. The preprocessing algorithm produces for each mass spectrum a peptide list by exploiting the characteristic features
that should be associated with peaks corresponding to an isotopically resolved cluster of peptide peaks. This reduction step
is necessary to facilitate the clustering used in a next step to assemble the validated monoisotopic peptide peaks found over
several fractions into a single peptide abundance. To assess the performance of the algorithm, two technical experiments were
conducted. The proposed strategy is memory and computationally efficient. Copyright c© 2008 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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Introduction

In the search for new biomarkers, surrogate endpoints, or markers
for classification of diseases, shotgun proteomic techniques are
often used to rapidly visualize and compare the protein content
in complex mixtures. These shotgun proteomic techniques
mostly incorporate multidimensional liquid chromatography (LC),
mass spectrometry (MS), and database-searching algorithms,
and are characterized by the enormous amount of generated
data. We focus particularly on combined fractional diagonal
chromatography (COFRADIC), introduced by Gevaert et al.,[1] as
an example of a high-dimensional LC technique for the separation
of dense protein mixtures such as serum. To provide a better
understanding of the complexity of the data generated from the
COFRADIC methodology, the procedure and typical characteristics
of this separation technique will be briefly explained. For more
details on the COFRADIC methodology and the MS settings, we
refer to the paper of Sandra et al.,[2] which describes the procedures
quite extensively.

The basic strategy of the N-terminal COFRADIC, which focuses
on amino-terminal peptides for reducing and separating complex
protein mixtures, can be summarized in five consecutive steps.
First, proteins from a biological sample are acetylated. This means
that an acetyl group is introduced to the amino acid lysine

(K) and to the N-terminus of the protein. In the second step,
the protein is digested (in this case, by trypsin) to peptides.
Trypsin cleaves only the C-terminus of arginine (R), since lysine is
acetylated. There are now two kinds of peptides in the mixture:
those that first formed the original protein N-terminus, and those
resulting from the proteolytic cleavage with trypsin. The former
carry acetylated amines, while the latter present a free amine (i.e.
a free new N-terminus). In the third step, the complex peptide
mixture is separated during primary fractionation on a reversed-
phase high-pressure liquid chromatography (RP-HPLC) column,
which separates the sample on the basis of its hydrophobicity.
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In the fourth step, each collected fraction undergoes a chemical
modification of a target subset of peptides to alter the column
retention properties. In this case, the free amines, generated
during the tryptic digest, are modified by 2,4,6-trinitrobenzene
sulfonic acid (TNBS), such that the altered peptide becomes more
hydrophobic and shifts to higher retention times. The N-terminal
peptides of the proteins, which were acetylated prior to digestion,
remain unaltered during the TNBS modification. During the fifth
step, each of the fractionated and modified sample is further
separated on a RP-HPLC column under identical conditions as the
primary fractionation. During this refractionation, the N-terminal
peptides elute from the column at approximately the same time
as in the primary fractionation. On the other hand, internal
peptides, modified by TNBS, shift out of the original collection
interval and are separated from the N-terminal peptides. Hence,
theoretically, a protein is represented by its acetylated N-terminal
peptide, while the internal peptides are filtered out from the
sample. This procedure maximally reduces the complexity of the
peptide mixture, as only one peptide per protein is retained in
the sample. Because the N-terminal peptide is used as a signature
to link to the parental protein, it is of paramount importance
that this peptide is observed in the mass spectrum, and that it
gives rise to a positive and unique identification on tandem MS
or, equivalently, MS2; otherwise, information about the protein
is lost from the sample. It should be noted that the complex
process to link the selected N-terminal peptide to its parent
protein is not discussed in this paper. Note that each obtained
COFRADIC fraction is spotted onto a MALDI plate. Thus, each
fraction gives rise to a single mass spectrum. When processing
the N-terminal COFRADIC fractions on a high-resolution mass
spectrometer, one expects less crowded and better resolved mass
spectra.

The particular characteristics of COFRADIC MS data are as
follows:

• For a single biological sample, a large number of mass spectra
are obtained, corresponding to the number of fractions
generated by the primary and secondary chromatographic
fractionation, which results in an enormous amount of data
(in the considered case approximately 3.88 GB per biological
sample).

• A peptide can be present in the spectra from several fractions;
to obtain its overall abundance, information from multiple
spectra needs to be combined.

• The data quality can differ between consecutive MALDI-TOF
mass spectra.

Of course, these characteristics are inherent to most high-
throughput gel-free proteomic experiments and therefore the
proposed strategy should also be applicable to other LC-MS
settings. The only requirement is that the spectra are generated
from high-mass-accuracy, high-resolution LC-MS systems, i.e., the
individual isotopic variants of a peptide should be discernable
in the mass spectrum. However, in this paper we focus on the
COFRADIC setting.

Clearly, a major obstacle of peptide-based protein identification
is the huge number of tandem MS analyses required. The number
of peptides selected for identification is data-dependent, i.e.,
mostly highly abundant peptides are selected for sequencing. As
indicated by Li et al.,[3] such an approach can lead to serious
undersampling of the available information in the biological
sample. Also, because mostly abundant peptides are selected
for identification on MS2, this can cause a poor dynamic range.

However, when screening and comparing whole proteomes
between different biological conditions, the main interest is
not necessarily the identification of all proteins, but rather the
identification of differentially expressed proteins. Hence, instead of
pursuing an MS2 interrogation on ‘every’ detected (and abundant)
peptide peak, we may target selected sets of ‘interesting’ peptides
from MS1 by using well-known statistical analysis methods. Of
course, this requires a stable preprocessing algorithm to handle
the amount of N-terminal COFRADIC MS data. Therefore, our aim is
to introduce a strategy concerned with the prior processing of MS1
mass spectral data generated from a COFRADIC setting, to which
the techniques for a quick, automated, and yet sensitive analysis,
which we develop in this paper, can be applied. The proposed
preprocessing strategy is able to translate the massive amount of
data into proteomic profiles, similar to microarray data, such that
classical statistical techniques such as, e.g., SAM[4] can be applied in
the analysis of MS data, so that proteins that are found differentially
expressed can be further investigated on MS2. The prior processing
allows discrimination and scoring of a series of peaks in an MS1
scan that are possibly related to a peptide from those generated
by error. This is achieved by exploiting characteristic features that
should be associated with peaks corresponding to an isotopically
resolved group of peptide peaks. Valid peptide peaks, which are
separated over successive fractions, are assembled in a unique
way, such that they represent the relative abundance of a peptide
in a mixture.

The main reason for the construction of the proposed analysis
strategy is twofold. First, available software packages, such as,
e.g., SpecArray,[3] PEPPeR,[5] and SuperHirn,[6] which can be used
to analyze, combine, and interpret data from high-dimensional
LC and MS as an automated procedure, are based on data-
driven methods or image processing methods to extract the
peptide features from LC-MS. We present an approach that does
not operate on the LC-MS image and we argue that the prior
processing of LC-MS data can be split into two parts. In the first
part, the MS-scans are processed separately, in order to extract
peptide features on the basis of prior biological knowledge about
the peptide’s isotopic distribution, and not on a data-driven
method. In the second part, the extracted peptide features are
combined across the LC-dimension, reconstructing the LC-profile.
This paper gives a detailed description of how prior processing
can transform high-dimensional LC-MS data into a simple protein
list. Note that the proposed strategy operates directly on the
unprocessed, raw ASCII data files, which is supported by most
mass analyzer instruments.

Second, the accuracy of quantification gains a lot from working
on a clear mass spectral signal. Peaks which are due to noise,
nonpeptidic contaminants, complex baselines, or co-eluting
peptides make the detection of differently expressed proteins
much more difficult. This is a general problem when analyzing
complex samples that generate complex LC-MS profiles, as stated
by Schmidt and Aebersold.[7] De-isotoping algorithms used in
commercially available software often lead to the detection of
many spurious peaks, which do not correspond to genuine peptide
peaks. For instance, in the part below 1000 mass-to-charge (m/z),
the software can detect a number of peaks, while this region
is known for its chemical noise and matrix peaks. A possibility
to circumvent this problem is to use information (a score) that
would indicate how well the found peaks correspond to a series
of bonafide peptide peaks. However, most available software
packages do not provide this information.
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Table 1. Peptides found in bovine cytochrome C tryptic digest and
internal standards with information about the coefficient of variation
(CV) before and after total ion count normalization. The CV is based on
384 measurements

Bovine cytochrome c (CC)

CV

nr. Sequence Mass (M) Before After

CC1 IFVQK 633.38 – –

CC2 YIPGTK 677.37 – –

CC3 MIFAGIK 778.44 0.2928 0.1071

CC4 KYIPGTK 805.46 – –

CC5 EDLIAYLK 963.52 0.2810 0.0874

CC6 TGPNLHGLFGR 1167.61 0.2181 0.0256

CC7 GEREDLIAYLKK 1433.78 0.2398 0.0399

CC8 TGQAPGFSYTDANK 1455.66 0.2709 0.0801

CC9 KTGQAPGFSYTDANK 1583.75 0.2662 0.0767

CC10 IFVQKCAQCHTVEK 1632.81 0.2401 0.0816

CC11 GITWGEETLMEYLENPK 2008.94 0.2275 0.0843

CC12 GITWGEETLMEYL 2137.03 0.2184 0.0863

ENPKK

Internal standards (IS)

CV

nr. Sequence Mass (M) Before After

IS1 RPPGF 572.30 – –

IS2 DRVYIHPF 1045.53 0.2435 0.0537

IS3 ZLYENKPRRPYIL 1671.90 0.2072 0.0412

IS4 RPVKVYPNGAED 2464.19 0.2096 0.0725

ESAEAFPLEF

IS5 FVNQHLCGSHLVEALYL 3493.67 – –

VCGERGFFYTPKA

Materials

Two technical experiments were specially designed to evaluate the
proposed analysis strategy concerned with the prior processing of
mass spectra. Further, the experiments were used to answer some
technical questions regarding the reproducibility and variability
of the used COFRADIC setting.

Bovine cytochrome C mass spectra

A peptide mixture of tryptic-digested bovine cytochrome C
was purchased from LC Packings and mixed with five internal
standards from Laser BioLabs used for the calibration of the
mass spectrometer. According to the data sheets of the suppliers,
the bovine cytochrome C tryptic digest and internal standard
mixture contains 17 protein fragments. The amino acid sequence
and theoretical monoisotopic masses (M) of these fragments are
presented in Table 1.

Note that the molecules are protonated by the MALDI-
procedure (MH+). Therefore, the monoisotopic mass, as reported
in Table 1, should be corrected by adding 1.00783 Da. Further, it
should be noted that the third internal standard ’ZLYENKPRRPYIL’
has a ’Z’ in the sequence, indicating uncertainty between pyroGlu
(’Q’) and pyroGln (’E’) at this location. The two forms have the
same mass, however; so this should not affect the detection of the
calibrant in a mass spectrum.

The tryptic-digested bovine cytochrome C and internal stan-
dards were mixed with the matrix molecules and automatically
spotted 384 times by a robot on a stainless steel MALDI-plate with
384 spots. Note that the same mixture was spotted on the MALDI-
plate, in order to evaluate the inter-spot variability. The plate was
processed on a 4800 MALDI-TOF/TOF analyzer (Applied Biosys-
tems) mass spectrometer, which resulted in 384 mass spectra. No
tandem MS information was available to us. These mass spectra
are primarily used for the evaluation of the peptide validation
method described in this paper.

COFRADIC mass spectra

To assess the performance of the peak-assembling algorithm
for COFRADIC described in this paper, we used three technical
COFRADIC replicates of a complex biological mixture: that is,
human blood serum from a healthy volunteer was processed
three times according to the COFRADIC methodology. Note that
only one biological sample is used. This was done to evaluate the
variability introduced by the COFRADIC procedure.

The retention time dimension ranged from 50 to 170 min during
the primary RP-HPLC fractionation and was represented by 30 so-
called primary fractions. This means that one primary fraction
was equivalent to a 4-min collection interval. After modification
of the primary amines by TNBS, the secondary fractionation was
performed under conditions identical to the first separation, except
that the secondary fractions were collected and separated over a
slightly extended interval. In practice, the secondary fractionation
of a primary fraction commences at the elution time of that primary
fraction minus 1 min and stops at the end of that primary fraction
plus 1 min. Therefore the primary fraction, collected in the primary
fractionation during 4 min, is further separated in the secondary
fractionation during 6 min in 48 fractions. This means that one
secondary fraction is equivalent to a collection interval of 7.5 s. As a
result, the biological sample is split into 1440 (secondary) fractions,
which, ideally, cover the complete amount of N-terminal peptides
from the primary fractionation. The m/z dimension ranges from
500 to 4000. Because the peptides detected with MALDI-TOFMS
are mostly singly charged, we use the mass measure dalton (Da)
interchangeably with the term m/z.

Each COFRADIC replicate, i.e., the 1440 fractions, were auto-
matically spotted together with matrix molecules and five internal
standards from Laser BioLabs over four stainless steel MALDI plates
by the same robot. The plates were processed on the same 4800
MALDI-TOF/TOF analyzer (Applied Biosystems). This resulted in
1440 mass spectra per COFRADIC replicate. One spectrum was
represented as a 150000 × 2 data matrix, and took approximately
2.8 MB in raw ASCII format. Thus, one COFRADIC replicate used
approximately 3.88 GB. For technical details about the COFRADIC
methodology and the mass spectrometer settings used to gener-
ate the data, we refer the reader to the paper of Sandra et al.[2]

Methods

A typical feature of COFRADIC data, or more generally LC-MS data,
is that a peptide signal s(t, m/z) is present in two dimensions, where
t represents the retention time dimension and m/z represents
the mass-to-charge dimension. Because of complexity issues,
we consider the peptide signal s(t, m/z) = s1(t) · s2(m/z) as a
combination of two independent signals, with s1(t) denoting the
elution profile and s2(m/z) denoting the mass signal, as proposed

www.interscience.wiley.com/journal/jms Copyright c© 2008 John Wiley & Sons, Ltd. J. Mass. Spectrom. 2009, 44, 516–529
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Load new COFRADIC experiment.

Load new fraction.

Remove additive white noise by undecimated discrete wavelet transform.

Baseline correction with moving average filter on the observed local minima.

Dimensionality reduction by selecting largest local maximum inside a window of 0.9 Da.

Candidate monoisotopic peak picking.

Peptide peak validation using a the polynomial model.

Peptide peak quantification and normalization.

Mass calibration with a quadratic transformation

using the information about internal standards

Last fraction?

Cluster peptide peaks by two-step clustering

over m / z-coordinates and retention time dimension.

Last COFRADIC experiment?

Match peptides over several samples using a two-step clustering algorithm

Analyse peptides' relative abundances across various biological conditions.

Figure 1. Outline of the proposed preprocessing algorithm.

by Hilario et al.[8] Under this assumption, we can first process
each mass spectrum independently over the mass dimension,
for which peptide peaks are selected from the mass spectrum.
In the next step, the selected peptides are assembled over the
retention time (fractions) in order to study the elution profile
in the LC dimension. This approach is especially beneficial for a
high-throughput proteomics framework, considering the massive
amount of generated data, where it is difficult to directly operate
on the complete data set owing to limitations of computing power.
Nevertheless, there are methods that consider the complete LC-

MS map, e.g., the method proposed by Schulz-Trieglaff et al.[9]

They require, however, an intermediate step, in which peptide-
containing regions of a manageable size are selected from the
LC-MS map before further analysis can be applied. We argue that
this step is unnecessary and time consuming, as it can be avoided
by the proposed algorithm. The general outline of the proposed
analysis strategy is depicted in Fig. 1. The light gray labels indicate
the low-level preprocessing steps, the middle gray labels represent
the mid-level processing, and the dark gray labels correspond to
the high-level analysis.

J. Mass. Spectrom. 2009, 44, 516–529 Copyright c© 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/jms
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An unprocessed MS1 mass spectrum typically consists of
numerous intensity measurements, not always representing
valuable information. Therefore, the low-level processing of mass
spectral data is a critical step, because it provides a way to reduce
the dimensionality of the data. For this purpose, we propose a
model for the noise sources of MALDI-TOFMS data. Further, we
suggest signal processing approaches to eliminate the noise, such
that the potential for the detection of valid peptide peaks is
increased.

The different terms contributing to the intensity s2(m/z)
measured at a particular m/z location in a MALDI-TOF mass
spectrum can be presented as follows:

s2(m/z) = δ(m/z) ⊗ P(ac, ab, ms) + B(m/z)

+ δ(m/z) ⊗ M(ac, ab, ms) + c(m/z) + ε (1)

Note that it is not the intention to directly fit this model to
the obtained mass spectra, but rather to use it to illustrate the
components contributing to a mass spectrum. In model (1), δ(m/z)
is a Dirac impulse that represents the monoisotopic mass of a
biochemical molecule. The Dirac impulse is convoluted (symbol:
⊗) with a predefined shape P(ac, ab, ms), where the shape depends
on the atomic composition (ac),[10] abundance (ab) of the peptide,
and mass spectrometer specifications (ms). Only those peaks
that really represent the presence of some biological mass are
considered as the signals of interest. In what follows, other terms
contributing to the mass spectrum are considered as noise. Peaks
M(ac, ab, ms), introduced by chemical compounds such as matrix
or solvent, have a shape similar to biochemical compounds, but
do not contain information about the N-terminal peptides in the
fraction. Further, the baseline B(m/z) and a low- intense oscillation
c(m/z), often referred to as chemical noise, are visible in the
spectrum. In the lower mass regions, mainly below 1500 m/z,
the chemical noise c(m/z) appears as a structured periodic signal.
In the higher mass regions, the chemical noise has an increased
frequency and decreased intensity, while at the end of the mass
range (in this case, near 2500 Da) the chemical noise appears as
low-intense correlated noise. Owing to the low frequency of this
structured noise at the lower mass region, it is difficult to filter
it out from the spectrum without affecting the peptide peaks
P(ac, ab, ms). The last term of the MS signal in Eqn (1) is the normal
random noise ε, and has a minor effect on the signal. Nevertheless,
during the low-level processing (light gray labels in Fig. 1), the
additive noise is removed from the mass spectrum by using the
undecimated discrete wavelet transform proposed by Baggerly
et al.[11] The baseline is removed to improve the reproducibility. To
decrease the complexity of a mass spectrum, the data are reduced
without loss of relevant information, i.e., the information about the
isotopic distribution is retained. These findings are based on the
observations of a controlled experiment, in which the content of a
sample was known, and will be explained later in this paper. There
exist several strategies to filter out information about the isotopic
distribution from the mass spectra. These are usually based on the
peak shape or on the accumulated intensity measures composing
the peak. However, we argue that information about the peak
height (stick representation) should be adequate.

During the mid-level processing (middle gray labels in Fig. 1),
valid peptide peaks are selected from the mass spectrum. After
mass calibration, the peptide peaks, possibly spread over several
subsequent fractions, are aggregated and normalized such that
they represent the relative abundance of the peptide in a sample.

The high-level analysis (dark gray labels in Fig. 1) focuses on
the statistical comparison of peptide abundances from different
biological conditions. In the next sections each of the prior
processing steps are discussed in more detail.

Low-level processing

Baseline correction

Let us define the ion count / as the sum of the intensity mea-
surements for the data points in a mass spectrum corresponding
to the isotopic distribution of a peptide. The ion count is used
as a measure for the relative abundance of a peptide in a frac-
tion. Therefore, it is mandatory to subtract the baseline from the
spectrum before calculating the ion count, so that the baseline
variability does not influence the measure of abundance. Another
reason favoring baseline correction is that, in our approach, for
selecting peptide-related peaks in a mass spectrum, the height
of the peaks is used. The baseline would influence the height
of the observed peaks and, consequently, would complicate the
assessment of valid peptide peaks. Baseline is found by applying
a moving median filter (greedy baseline correction) or a moving
minimum filter (stingy baseline correction) on the observed local
minima in a mass spectrum. For our purpose, the smoothing with
a moving median filter and a window width of 10 Da was found to
be optimal. The dashed line in Fig. 2a represents the baseline. After
interpolating and subtracting the baseline from the MS signal, all
negative values are truncated at zero. The result of the baseline
correction can be seen in Fig. 2b. Baseline correction based on
a moving median filter is fast and yields results comparable to,
e.g., locally weighted scatterplot smoother (LOWESS), but is less
computationally involved.

Data reduction

The data from one mass spectrum contain approximately 150 000
data points. However, we are interested in finding only the group
of peaks corresponding to the isotopic distribution of a peptide.
Therefore, we apply a data reduction technique that reduces
the number of intensity measurements to approximately 3500
without loss of information about the isotopic distribution. The
data reduction is achieved by, first, selecting all the local maxima
from the original spectrum. All other measurements are set to zero.
Second, the largest local maximum inside a window of size less
than 1.0015 Da is selected. In our case, a window of 0.95 Da is used,
because isotopic peaks in a MALDI-TOF spectrum are separated
by approximately 1 Da. The outcome of the data reduction step
can be observed in Fig. 2a, where the selected peaks are indicated
by a cross.

A possible disadvantage of this method is that it captures
information only about the height of peaks in the mass spectrum.
Information about the shape of the peaks is removed during
this process, as it is not relevant for the selection of candidate
monoisotopic peaks. The lack of information about the peak
shape can be problematic if we want to detect overlapping peaks.
However, owing to the peptide sorting properties of the COFRADIC
methodology, it is less likely that peptides with similar nominal
mass are introduced at the same time by the LC-column.[12] In
our case study data, described in the Section on COFRADIC Mass
Spectra, only a few overlapping peptide peaks were observed.
Exact quantification of the amount of overlapping peptides is
difficult, as it requires visual inspection of the data.

www.interscience.wiley.com/journal/jms Copyright c© 2008 John Wiley & Sons, Ltd. J. Mass. Spectrom. 2009, 44, 516–529
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Figure 2. Mass spectrum from bovine cytochrome C mixture. (a) Unprocessed MALDI-TOF spectrum (solid line) with baseline (dotted line) and reduced
mass spectrum (cross). (b) Baseline-corrected MALDI-TOF spectrum (solid line) with two valid monoisotopic peptide peaks (star). The expected isotopic
distributions are indicated by circles.

Undoubtedly, variable data quality can result in a loss of
detection power. Peaks are selected from the data, but this does
not prevent us from selecting peaks generated by noise. In the
next step, noise peaks are removed from the list of local maxima
peaks by using information about peptide’s characteristics.

Mid-level processing

Candidate monoisotopic peak picking

From the list of local maxima obtained by the method described
in the Section on Low-level Processing, we select candidate
monoisotopic peaks. This is done by selecting the peaks fulfilling
the following criteria:

1. There are at least four 1.0015 Da separated consecutive peaks
present in the spectrum. This condition is imposed because the
peaks corresponding to an isotopic distribution of a peptide
should appear as peaks separated by approximately 1 Da.
Depending on machine precision, a margin of 100 ppm is
allowed on the position of the subsequent peaks. The set of
four peaks is called an isotopic cluster.

2. The signal-to-noise ratio of the isotopic cluster is defined as
the intensity of the largest peak in the cluster divided by the
noise. This value should be equal to or larger than 1.5. The
noise is estimated locally by the maximum value of intensity
measurements within a small region of approximately 1 Da
surrounding the corresponding isotopic cluster.

If both conditions are satisfied, then the peak corresponding to
a local maximum is considered as a candidate for a monoisotopic
peptide peak. Peaks that do not pass either of the conditions are
considered noise peaks and are removed from the list of local
maxima.

Peptide peak validation

The relative heights of peaks corresponding to a peptide depend
only on the distribution of the isotopic variants of the peptide.
The prior knowledge about the isotopic distribution allows us to
discriminate in a mass spectrum between a series of valid peptide
peaks and peaks originating from noise. The expected probabilities
of the isotopic distribution are estimated by using the method

proposed by Valkenborg et al.[13] This method predicts the ratios
between the expected probabilities of the successive isotopic
variants, based on a set of theoretical peptides constructed from
the average amino acid averagine proposed by Senko et al.[14] To
validate the candidate for a monoisotopic peptide peak, and to
distinguish it from a series of noise peaks, the Pearson’s chi-squared
test statistic is calculated as:

χ2 =
3∑

i=1

(RE(i) − RO(i))2

RE(i)
(2)

where RE(i) is the ith expected isotopic ratio and RO(i) is the
ith isotopic ratio obtained from the observed peaks in the mass
spectrum. For example, the second observed isotopic ratio RO(2) is
calculated as the height of the third observed peak divided by the
height of the second observed peak, etc. If the obtained value of
this goodness-of-fit measure χ2 is smaller than 0.15, the candidate
peak is considered as a valid monoisotopic peptide peak. The
threshold of 0.15 is obtained via an empirical simulation study and
is kept constant for the analysis of our case study data. It should
be noted that this threshold is not generally applicable to other
LC-MS settings because of the diversity of mass spectrometers
and the possible experimental settings. For instance, an increased
amount of noise can lead to a different threshold value. For
this reason, one should conduct an experiment to determine the
optimal threshold for monoisotopic peptide peak detection before
applying this method to other LC-MS settings.

To validate a candidate for a monoisotopic peptide peak in
an observed mass spectrum, only the first four probabilities of
the isotopic distribution are considered for this goodness-of-fit
measure (see circles in Fig. 2b). The peaks corresponding to the
first four isotopic variants of a peptide are normally easily found
in a mass spectrum. However, one can argue that for low-mass
peptides, the fourth isotopic peak may not be observed when
the abundance is low. In these situations one can consider using
three peaks, while setting the height of the fourth (undetected)
peak to zero. Note that this is a conservative approach, as the
fourth isotopic variant will contribute to the Pearson’s χ2 error in
Eqn (2). This can be interpreted as a penalization for not finding
the fourth peak. An alternative approach is to use three peaks for
the validation of a peptide, but then we need to define another

J. Mass. Spectrom. 2009, 44, 516–529 Copyright c© 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/jms
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threshold. However, because the validation of a peptide is based
on a smaller amount of information, we need to accommodate for
the higher number of noise peaks that will be selected as a valid
peptide peak and, in turn, this will result in a stricter threshold.

Peptide quantification and normalization

For each valid monoisotopic peptide peak, the ion count I of
the data points composing the isotopic cluster is calculated as a
measure of the relative peptide abundance in a fraction. Because
the data quality is not uniform between the consecutive mass
spectra, we need to correct for sample degradation, laser intensity
variations, and fluctuations in ionization efficiency, spotting, and
crystallization. Therefore, the ion count is normalized by the total
ion count (TIC) of a spectrum. The TIC is calculated as the sum of all
intensity measurements composing the spectrum after baseline
correction. One can consider alternate normalization schemes,
such as, e.g., normalization based on a partial ion count. In
this variant, the normalization term ignores the region below
1000 Da to avoid influence of matrix and solvent-related intensity
measurement. However, this strategy was found inferior compared
to TIC normalization.

TIC normalization works well for individual mass spectra, but
may not be as meaningful in LC-MS experiments, where not
the same amount of peptide elutes in the different fractions.
Therefore, an extra normalization step is required to perform
an additional inter-spectrum normalization beside the intra-
spectrum normalization. The issues about the normalization of
high-dimensional LC-MS data are addressed in the Section on
Assembling Peptides.

Mass calibration

Because of the spectrometer’s high mass resolution in the range
between 500 to 4000 Da, the peaks corresponding to the isotopic
variants of a peptide are separately discernable in the mass
spectrum. By contrast, in low-resolution mass spectra, a peptide
will appear as a single peak shape. Because of the high mass
resolution, the monoisotopic mass can be used to define the
location of the peptide in the mass dimension, instead of, e.g.,
the centroid mass. However, the time-of-flight measurement
with a MALDI-TOF mass spectrometer is often affected by an
error. According to Grass et al.,[15] this error can reach up to 1
Da. Normally, the obtained mass spectra are calibrated by the
mass spectrometer, but when the machine calibration fails (i.e.,
ppm > 100), we perform an additional mass calibration via the
quadratic transformation in Eqn (3) using the mass information
of internal standards (calibrants). Obviously, this method works
only when the internal standards are well detectable. The internal
standards are selected on the basis of two criteria:

1. the approximate theoretical location (±5 Da) of the internal
standard;

2. the theoretical mass difference between the internal standards.

We argue that, if the internal standards are present within a
100 ppm error interval, not much improvement can be obtained
by performing a mass calibration. If the location of the internal
standards exceeds the 100 ppm error interval, we perform a mass
correction and indicate the fraction as ’ill calibrated’.

The calibration makes use of the quadratic relation between the
time-of-flight and m/z, as described by[16]:

TOF = β1m/z + β2

√
m/z + β3 (3)

Instead of using the time-of-flight measured in nanoseconds, we
use the dimensionless term tick (or channel) to indicate the time
interval wherein ionized molecules collide with the detector of
the mass spectrometer. The tick value indicates the position of the
corresponding m/z value in the data vector. If the location (TOF in
(3)) of the five internal standards in the data is known, then under
model (3), parameters β1, β2, and β3 can be calculated by the least
squares method using the five theoretical m/z-values (+1.00783
Da for the MALDI-proton) of the internal standards displayed in
Table 1.

Next, we calibrate the mass of a peptide, on the basis of the
obtained values of β1, β2, and β3, by computing

m/zcal. = − β2

2β1
±

√(
β2

2β1

)2

− (β3 − TOF)

β1
(4)

with TOF denoting the location of the validated monoisotopic
peak in the datavector (tick-value).

We can already mention that in the considered case studies (see
Sections on Bovine Cytochrome C Mass Spectra and COFRADIC
Mass Spectra) the mass calibration performed by the mass
spectrometer was satisfactory and did not require any additional
adjustments. Therefore, the proposed mass calibration method
was validated on a set of ill-calibrated mass spectra, for which the
method was proven to work correctly. This can be observed from
the heat maps in Fig. 3, where the dots indicate the local maxima
found in the spectra. The x-axis indicates the mass of the local
maxima and the y-axis indicates the fraction (or mass spectrum),
in which the local maxima were found. The intensity of the local
maxima is indicated by a grayscale; white is low intense and black
is high intense. In panel (a) of Fig. 3, local maxima are shown for
the region near the second internal standard (IS2 in Table 1). The
dark gray vertical stripe at mass 1046.5 Da is the peptide peak
corresponding to the monoisotopic variant of internal standard
IS2. It can be observed that for fractions with numbers ≥ 193,
the internal machine calibration fails to work. This can be seen
by the scattering of, e.g., the monoisotopic peptide peak across
the mass region. After applying the calibration method described
in this section, based on internal standard IS2, IS3, IS4, and IS5
(see Table 1) the local maxima are aligned, as can be seen from
panel (b) of Fig. 3. This means that the vertical stripes are now
reconstructed. Note that the external mass calibration did not work
for the mass spectra near fraction 200. The horizontal middle gray
band at this location indicates a decrease in intensity, which may
be caused by inappropriate ionization due to laser fluctuations
or poor crystallization. Therefore, we could not trace back the
internal standards required to recalibrate the mass spectrum for
the fractions near 200. Probably, this is also the reason why the
internal machine calibration lost track of the internal standards
and could not recover mass calibration after the problem was
solved.

Assembling peptides

After processing of all the mass spectra, the validated monoiso-
topic peptide peaks, separated over different fractions, but
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Figure 3. Partial heat map of the local maxima present in the COFRADIC mass spectra from a biological sample. The focus is on the second internal
standard for which the stripes are the successive peaks corresponding to the isotopic distribution. Panel (a) presents the heat map before mass calibration,
while panel (b) presents the mass-calibrated heat map.
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Figure 4. Heat map of the valid monoisotopic peptide peak for the mass range near 2518 m/z. (a) Valid peptide peaks are projected on the m/z axis,
where a clear separation between the clusters can be observed. (b) The cluster at 2518 m/z is projected at the retention time axis. No further separation
is possible, so the cluster of valid monoisotopic peptide peaks is assembled as a peptide.

originating from the same peptide, must be linked in order to
quantify the abundance of the peptide in the mixture. For this
purpose, a two-step clustering algorithm is proposed to collect the
information about a peptide scattered over different fractions. To
this aim, we assume that peaks that appear in subsequent fractions
and that have approximately the same mass are related to the
same peptide eluted over the fractions. The clustering algorithm
consists of two consecutive steps:

1. The validated monoisotopic peaks, situated in a three-
dimensional space (intensity measure, mass, elution time), are
projected on the mass dimension. As can be seen in panel (a) of
Fig. 4, the data are well separated over the m/z-axis. Hence, in
the mass dimension, clustering is performed using a threshold
of 0.3 Da for the size of the gap that separates the data in the
case study.

2. For a cluster obtained from the previous step, the elution time
dimension (fraction) is now considered (see panel (b) in Fig. 4).
Within each subgroup, the data are projected on the time
dimension. If peptide peaks are found in subsequent fractions,

then these peaks are assumed to be generated by the same
peptide and hence clustered in a single group. In this step, a
gap of 37.5 s is allowed to occur, equivalent to not observing
the peptide in 5 consecutive fractions. The missing gap of 37.5
s is generally accepted by chromatographic experimentalists.

For each group (cluster), a vector with descriptive statistics is
registered containing information about the mean m/z, retention
time, relative abundance, missing observations, etc. Clusters that
manifest themselves over more than 25 min (or 200 fractions)
are discarded from the data because they are assumed to come
from chemical contaminations, matrix, or internal standards. The
two-step clustering algorithm is able to perform the clustering on
the complete set of validated peptide peaks, and does not require
working on local parts of the LC-MS data.

In the next paragraphs, we provide further detail regarding the
calculation and normalization of the peptide abundances. Usually,
the intensity of a peak representing a peptide in a mass spectrum
is mainly influenced by laser intensity, matrix crystallization, ion
suppression, ionization efficiency of a peptide, and the absolute
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Figure 5. Normalized intensity of the third internal standard (IS3) over the retention time dimension for the three COFRADIC replicates.

abundance of the peptide in a fraction. Because optimization of
peptide separation ensures low peptide density for each MALDI
spot, we must adjust the laser intensity in order to ensure that
the peptides give rise to a clear MS1 signal. In the COFRADIC
case example, the laser intensity is tuned once for each LC-
MS run to avoid signal saturation. When saturation occurs, the
information about the isotopic distribution is lost and our de-
isotoping algorithm fails to work. This, of course, affects only
the quantification of peptides that correspond to very abundant
proteins. The compromise made while tuning gives a priority to
accurate quantification of low-abundance proteins. This means
that the mass spectral signal will saturate occasionally for a few
abundant proteins. Another aspect to reduce nuisance in the
data is to ensure reproducible crystallization. To this aim, the
spotting of the biological sample onto MALDI plates is optimized
and automated. Further, the ionization efficiency depends on the
atomic composition of a peptide and the peptide’s ability to absorb
ions. This factor is not of crucial importance, because we do not
want to absolutely quantify the peptide abundance, but rather
want to relatively compare the abundance of particular peptides
across biological conditions. As already mentioned, beside the
TIC-normalization, the normalization of the peptide abundances
in high-dimensional LC-MS data needs extra attention. Note that
we measure the relative abundance of the peptide in a fraction.[17]

Therefore, in order to obtain the relative abundance Pj of peptide
j in the whole sample, we need to weight the peptide abundance
measurements, or equivalently, ion count Iij in fraction i by the
proportional content wi of fraction i in the total biological sample:

Pj =
rt2∑

i=rt1

wi∑
k wk

Iij (5)

where rt1 and rt2 are, respectively, the first and the last fraction,
in which the peptide eluted, while index k goes through the total
number of fractions in the COFRADIC experiment.

Theoretically, an estimate of the content wi of a fraction could
be retrieved from the LC column by means of an optical density
(OD). In practice, we use wi = 1, which is equivalent to summing
the peptide abundances in the fractions. One could also consider
using the LC profile of internal standards to retrieve an estimate of
the OD. This, of course, is possible only when the absolute quantity
of internal standard in each fraction is kept constant. For example,
Fig. 5 presents the measured abundance of the third internal
standard (IS3) over several fractions after TIC normalization. The
amount of internal standard is the same across the fractions,
because it is spiked into the sample after the COFRADIC procedure.
Therefore, we expect the same intensity measure in each fraction.
However, because of ion suppression, the intensity measure of the
internal standard does not appear to be constant. This indicates
that the sample density differs across the fractions. However,
how this fluctuating intensity measure of the internal standards
can be used to estimate the OD of a fraction directly from the
data is a topic for further research. It should be noted that the
periodic fluctuations in Fig.5 are the result of the secondary
chromatographic separation of the 30 primary fractions.

High-level processing

The main goal of quantitative proteomics is to find peptides that
are differentially expressed across different biological conditions.
Therefore, peptides with inaccuracies in mass and retention
time alignment from different LC-MS runs should be matched
over the different experimental conditions. To take into account
these inaccuracies, a clustering algorithm, similar to the one
described previously, is used. Therefore, we assume that clusters
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of monoisotopic peptide peaks with the same mass coordinates
and the same retention time represent the same peptide present
in different samples. We allow for a chromatographic time shift
of 1 min, which corresponds to a misalignment of eight fractions
between the chromatographic separations.

Next, the peptide’s relative abundances are analyzed across
various biological conditions. To avoid redundant comparisons,
the chemical modifications and isoforms of a peptide should
be removed. For this purpose, we could search for possible
modifications on the basis of the mass differences caused by
the modifications reported at the unimod -database.[18] However,
searching for modifications based on mass differences is not very
accurate. Therefore, we argue that, during a statistical analysis, the
effect of a redundant comparison of modifications and isoforms
is negligible. Peptides that are found differentially expressed
across different biological conditions are marked as candidate
biomarkers. However, caution should be taken during this step.
When statistically comparing multiple peptide expressions, one
should correct for multiplicity. A similar issue appears, e.g., in
the analysis of multiple genes in microarrays. In this context,
different methods addressing the multiple testing issue have been
developed (e.g., SAM[4]), which can also be applied to the analysis
of MS data after proper preprocessing.

Next, via tandem MS, the amino acid sequence of the N-terminal
peptide that is found to be differentially expressed for various
groups of samples can be identified and should be linked to
the differently expressed parent protein. To facilitate the peptide
characterization, we can use information from the observed elution
profile of the specific peptide and choose the fraction where most
of the material, i.e., peak with the highest intensity measure, is
eluted from the column.

Results

The algorithm described in the Section on Methods has been
implemented in MATLAB 7.1 release 14SP3 and applied to two
case examples.

In the Section on Bovine Cytochrome C Sample, we discuss the
performance of the de-isotoping algorithm on the 384 bovine
cytochrome C mass spectra. In the Section on Human Blood
Sample, we assess the clustering and assembly algorithm using a
human blood sample of a healthy volunteer, processed three times
(i.e., with technical replicates) by the COFRADIC methodology.

Bovine cytochrome C sample

After processing the 384 spectra with the algorithm described in
the Section on Methods, 12 out of 17 peptides present in the
bovine cytochrome C tryptic digest and internal standard mixture
(see Table 1) were consistently classified as valid monoisotopic
peptide peaks. The algorithm was unable to find the peptides
at 573.3, 634.4, 678.4, and 806.5 Da, and had difficulties with
consistently finding the fifth internal standard, i.e., the peptide at
3494.7 Da. A possible reason for missing the low-mass peptides are
the interfering peaks produced by the matrix (range 500–650 Da)
and the solvent (range 750–850 Da). For the peptide in the higher
mass range, poor ionization efficiency and decreasing resolution
can be a reasonable explanation. However, note that the fifth
internal standard is consistently found in the mass spectra from
the COFRADIC replicates, as will be discussed later.

From Table 1, which lists the peptides in the purchased peptide
mixture, we should expect to find 17 peptides in the mass

Table 2. Peptides found in more than 20% of the 384 bovine
cytochrome C tryptic digest mass spectra

Mass % Mass % Mass %

568.1 100 1322.7 90.1 1633.6 100

650.1 23.7 1340.7 42.4 1649.6 100

779.4 100 1367.7 99.59 1656.6 82.6

817.3 89.8 1377.8 89.3 1672.9 100

861.1 24.0 1419.8 32.3 1820.7 91.7

964.5 100 1434.8 100 2010.0 100

986.5 22.9 1438.8 72.9 2026.0 100

1046.5 100 1456.7 100 2032.0 103.4

1099.5 41.4 1478.7 93.0 2042.0 98.4

1100.5 21.4 1488.7 20.1 2058.0 97.1

1124.6 99.7 1504.5 62.8 2138.1 100

1152.6 98.4 1505.5 26.0 2154.1 100

1168.6 100 1562.9 100 2160.1 97.4

1184.6 100 1567.8 77.3 2170.1 98.4

1196.6 96.1 1584.8 100 2186.1 95.3

1212.6 99.7 1588.8 41.9 2465.2 101.3

1296.7 100 1589.7 46.9

1306.7 100 1606.8 99.7

spectra, but we find more. The monoisotopic masses of the
52 peptides found in more than 20% of the spectra are listed in
Table 2. However, we particularly focus on the validated peptide
peaks that were consistently found in 90% of the 384 spectra.
Besides the 12 valid monoisotopic peptide peaks, which could
be linked to peptides in the purchased sample, the algorithm
nominated 23 extra valid monoisotopic peptide peaks found
in 90% of the spectra. These extra 23 findings might be due
to possible modifications. For example, chemical modification
such as oxidation (+15.99 Da), sodium adduct (+21.98 Da),
tryptophan oxidation to formylkynurenin (+31.99 Da), and tri-
oxidation (+47.97 Da) could be a reasonable explanation for the
peptide with sequence ’GITWGEETLMEYLENPKK’. These possible
modifications for the latter peptide are indicated in Table 2 by
bold numbers and are based on the mass differences as reported
by the unimod database.[18]

Another possible explanation is that some of the found peptides
are artifacts of the proteolytic background.[19] This means that the
tryptic digest is not 100% correct, such that trypsine fails to
cleave arginine or lysine. This can result in more peptides in the
mixture than reported by the supplier. To support this statement,
we used the MS-digest tool from Protein Prospector to perform
an in silico tryptic digest of bovine cytochrome C allowing for 10
miscleavages. In a mass range between 500 and 4000, this resulted
in 99 peptides containing up to eight miscleavages. On the basis
of the monoisotopic mass location of these peptides, 5 out of 99
could be linked to peptides that are observed in the mass spectra
(indicated by underscore in Table 2).

In order to rigorously investigate the possibility of post-
translational modification or proteolytic background, we should
perform a tandem MS step on each of the additional peptides
found by the proposed algorithm. However, we could validate our
finding using an alternate method. We calculated the exact isotopic
distribution for the peptides on the basis of the atomic composition
reported by Protein Prospector or the unimod-database, and
the method proposed by Rockwood.[20] Next, we calculated the
Pearson χ2 errors, as in Eqn (2), with the observed peak ratios from
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Figure 6. Box plots of the ppm for the 12 found bovine cytochrome C tryptic peptides consistently found in the 384 MALDI-TOF mass spectra.

the 384 spectra and the exact isotopic ratios. These errors were
compared with the errors obtained by using the average isotopic
ratio, as explained in the Section on Peptide Peak Validation .
As expected, the Pearson χ2 errors using the exact isotopic ratios
were smaller than the errors obtained by using the average isotopic
ratios. This confirms that the peptides observed in the spectrum
have the same atomic composition as the peptides reported by
Protein Prospector or the unimod database. For example, Fig. S1
in Supporting Information displays a histogram of the errors for
the peptide with a mass of 1296.7 Da (see Table 2). It can be
observed that the errors obtained via the isotopic distribution
based on the atom composition (panel (b)) are much closer to
zero than the errors obtained via the predicted average isotopic
ratios (panel (a)). This also supports our argument in the Section
on Methods that the information about the isotopic distribution is
retained when reducing the data, i.e., the information about peak
heights is enough for a satisfactory detection of peptide-related
peaks in a mass spectrum.

To assess the appropriateness of the TIC normalization discussed
in the Section on Peptide quantification and Normalization, we
calculated the coefficient of variation (CV), CV = σ/µ, with σ

being the sample standard deviation and µ the sample mean of
the peptide abundances measured in the 384 spectra for the 12
detected monoisotopic peptide peaks, reported by the supplier of
the bovine cytochrome C mixture. Table 1 presents the values of the
CV computed before (left) and after (right) the TIC normalization.
It can be observed that the global TIC normalization decreases the
variability of peptide intensities, which is a desired effect. Note
that the CV is approximately constant across the mass range. This
indicates that the mass of the peptide does not influence the
relative magnitude of the variability of the abundance measure.

We also evaluated other normalization schemes, such as
normalization with the TIC of the region above 1000 Da to avoid the
area with matrix peaks, and the normalization with the ion count
of the validated peptides. Both methods appeared to perform
worse in reducing the abundance variability.

To study the internal machine mass calibration, we calculated
the ppm for the 12 found peptides (Table 1) for the 384 replicates,
presented as box plots in Fig. 6. No additional mass calibration
was needed, because the internal standard peaks were within an
interval of 100 ppm around their expected masses. Performing a
mass calibration on these data would not yield an increased mass
precision. It can be observed from Fig. 6 that the peptide coming
from the bovine cytochrome C digest at 1633.8189 m/z is biased
with approximately 120 ppm, which corresponds to a mass shift
of 0.2 Da. The reason for the mass shift is unclear.

To conclude, the constructed de-isotoping algorithm was
capable of distinguishing between valid peptides and noise peaks
in the case study.

Human blood sample

In this section, we describe the application of the proposed
algorithm to the human blood sample case study. In a complex
biological sample, there is an increased probability that two
peptides with the same mass would elute from the RP-HPLC
column at the same time. However, because of the peptide
separation properties of the COFRADIC methodology, the sample
complexity is reduced. Hence, mass spectra become less crowded
and the probability of overlapping peptides is small. The peptide
separation also increases the ability to detect low-abundant
serum proteins, because of an increased sensitivity of the mass
spectrometer.
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Figure 7. Closeup of an arbitrary mass region in the heat map for the first
COFRADIC replicate.

Table 3. Summary statistics for the three technical COFRADIC
replicates

Replicate 1 Replicate 2 Replicate 3

Valid monoisotopic peaks 66209 62040 58516

Total ion count (×109) 8.441 6.103 5.903

An arbitrary ’closeup’ of the heat map is depicted in Fig. 7. In
this figure, the y-axis (ordinate) indicates the time, at which the
material, visualized by the mass spectrum, eluted from the column.
Again, the gray value is an indication of the abundance, with black
for high abundance measurements. From this plot it is clearly seen
that a peptide can elute over multiple fractions. Close observation
of the color profile for the peptide at mass 3165 Da indicates
intensity fluctuation in the LC dimension. The subtle distinction as
to whether these fluctuations are intrinsically present in the data,
or are just an artifact of the ion suppression, or correspond to a
set of overlapping peptides in LC dimension, would require more
advanced methods and is a topic for further research.

We were able to detect approximately 60 000 valid monoiso-
topic peptide peaks in each COFRADIC replicate. The precise
numbers are given in Table 3. It can be observed that the number
of valid monoisotopic peptide peaks per run decreases with the
observed TIC. This might be caused by sample degeneration or
by laser fluctuations between the processing of the COFRADIC
experiments.

Note that the, approximately, 60 000 found monoisotopic
peptide peaks refer to the number of peptide peaks that are found
in one COFRADIC experiment. However, peptides are eluted over
multiple fractions and need to be assembled into one single group
representing the abundance of a peptide in the sample. Further,
in order to compare peptides across the different conditions,
they should be first matched between multiple samples. Recall
that for this purpose the clustering algorithm, described in
the Section on Assembling Peptides, was developed. First, the
clustering algorithm combines the valid monoisotopic peptide
peaks from the same peptide. Second, it performs a clustering
to match identical peptides on the basis of mass location and
retention time. Because of the complexity of the data, it is likely

Figure 8. Venn diagram with the number of peptides found in the three
technical COFRADIC replicates; 5742 peptides were found in all three
COFRADIC runs.

6 8 10 12 14 16 18
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

A

M

Figure 9. MA plot for the 5742 peptides found in for replicate 1 vs
replicate 2.

that a peptide in one condition will match within the threshold
criterion with a nonidentical peptide. After applying the clustering
strategy to the 60 000 monoisotopic peptide peaks for the three
COFRADIC replicates, we found 18 736 matched peptide clusters
representing a peptide in the three replicates. There were 4995
clusters containing only a single valid monoisotopic peptide
peak. Those 4995 isolated peaks were regarded as noise and
were removed from the data. To further eliminate possible noise
peaks we considered only clusters with a peptide present in at
least two consecutive fractions. This assumption is acceptable
given the thorough separation of peptides over multiple fractions.
Components that eluted over more than 25 min were considered
contaminants (solvent, matrix, or internal standards) and were
removed from the data. After this filtering step, we obtained
12 101 matched peptide clusters. The Venn diagram in Fig. 8
summarizes the peptides found in the three replicates. Note that
only 5742 peptides were jointly found in all three COFRADIC runs.
The problem with inconsistent finding of the other peptides can
be related to the low intensity measurements of the peptides.

To study the variability between the three COFRADIC runs, we
focus on the 5742 peptides found in the three experiments. The
agreement between any two replicates is investigated by using
the MA plots (see Bland and Altman[21]). In Fig. 9, the MA plot for
the peptide abundances are shown. The ordinate M and abscissa
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A for peptide j are calculated as

M = log10(Pj) − log10(P′
j ) (6)

A =
log10(Pj) + log10(P′

j )

2
(7)

where Pj is the sum of (TIC-normalized) intensities for peptide j
obtained from Eqn (5) for a particular COFRADIC run. The prime
indicates the abundance of the same peptide P′

j , observed in
another COFRADIC run. The plots show the difference for log
intensity versus the mean log intensity for each peptide in the
paired spectra. Ideally, the plots would show a symmetric scatter
of points around the horizontal line at zero. This would suggest
a simple additive measurement error with a constant variability,
and without a systematic bias. The MA plot for two arbitrary
COFRADIC runs is presented in Fig. 9. The plot is representative
for the other COFRADIC runs (data not shown). Note that the
scattered points are centered at the zero line, indicating that there
is no bias in the different technical replicates. From Fig. 9 one
can observe that the paired abundance measures exhibit a clear
’drop’ shape, which indicates that the variability changes with the
overall intensity level. One consequence of this fact is that it might
be easier to detect differences for very abundant peptides (i.e.,
high-intensity peptides), as the variability for these peptides is
smaller. Unfortunately, it would be difficult to assess whether low-
abundant peptides are differentially expressed between different
conditions, because measures of low intensity are much more
affected by noise.

Furthermore, usually the mean, and sometimes the variance,
is reported when quantifying results for the CV, calculated
from the peptide abundances. However, these are descriptive
statistics valid mainly for symmetric distributions. For skewed
distributions, it is advisable to present a histogram plot or, at
least, present the median and quartiles, in order to reflect the
true distribution of the CVs. The mean value alone would not
provide an adequate description of the distribution. From the
three technical replicates, a CV for the 5742 peptide abundance Pj

is computed with [0.025, 0.25, 0.50, 0.75, 0.975] quantiles equal
to [0.0548, 0.1948, 0.3102, 0.4719, 0.8938] and mean 0.354,
which indicates that the distribution of the CV is skewed. Also
note that 50% of the peptides have a CV larger that 0.3102. This
means that many replicates may be required to detect differentially
expressed proteins.

To quantify the sensitivity of the COFRADIC methodology, i.e.,
the ability to detect low-abundant as well as high-abundant
peptide peaks, we used the dynamic range expressed in decibels
(dB), which was calculated as:

10 log10
Pmax

Pmin
(8)

with Pmax and Pmin denoting the maximum and minimum peptide
abundance measured in an experiment, obtained via Eqn (5). A
dynamic range of 37 dB was found for all COFRADIC replicates.
This means that the order of magnitude of difference in detected
concentrations is approximately equal to 5000.

The internal mass calibration was checked by calculating the
ppm for the internal standards IS2, IS3, IS4, and IS5. All ppm values
were below 100, indicating that the calibration performed by the
acquisition software was accurate.

Conclusions

This paper mainly focuses on the preprocessing of raw ASCII MS1
data files generated from a high-dimensional LC-MS setting, in
this case, N-terminal COFRADIC. To this aim, prior knowledge
about the peptide’s isotopic distribution is used to turn the LC-MS
data into a protein/peptide list, such that the abundances across
different LC-MS runs can be easily compared by using classical
statistical methods. A prerequisite for the proposed method is
that the data are produced by a highly accurate, high-resolution
LC-MS system. The advantage of working with high-resolution
mass spectra is that a peptide will appear as a series of peaks with
peak heights proportional to the probability of occurrence of the
isotopic variants of the peptide. This enables us to discern peaks
generated by error from those due to a peptide. When this is not
the case, careful adjustments should be made to the proposed
strategy. For example, Valkenborg et al.[22] describe a method that
is able to extract features from low-resolution MS data for clinical
diagnosis.

The algorithm proposed in this manuscript has been im-
plemented in MATLAB, and can be flexibly adapted to other
specifications. Processing one mass spectrum takes approximately
2.6 s on a DELL Latitude D505. Currently, adjustments to the al-
gorithm are implemented in order to increase the speed, and to
ultimately obtain a tool for real-time mass spectra preprocessing,
such that the algorithm can be efficiently included in the pipeline
of a laboratory information management system (LIMS). The clus-
tering algorithm assembles the peptides and matches them across
the three technical COFRADIC replicates in 3.96 s.

Two experiments were specially designed purely for the
evaluation of the proposed analysis strategy. After applying the
algorithm to the bovine cytochrome C and COFRADIC data sets,
we could conclude that the removal of the normal error term ε

in (1) by undecimated continuous wavelet transform[11] has only
a minor effect on the intensity of the peptide peaks. The baseline
correction is fast and yields results comparable to, e.g., LOWESS.
A disadvantage of this baseline removal is the need to truncate
the resulting negative values at zero, which hampers the noise
estimation. In some regions an infinite signal-to-noise ratio is
detected because of zero noise. An infinite signal-to-noise ratio is
not an informative measure; therefore, one might consider a more
conservative baseline removal, such as a moving minimum filter.
The proposed mass calibration works well, but does not improve
the accuracy when the machine calibration is within a 100 ppm
error interval. On the other hand, the mass calibration was proven
to work correctly on a separate ill-calibrated data set.

Information about the height of the peptide peaks in a mass
spectrum is sufficient, while information about the shape of the
isotopic peaks can be safely discarded. A disadvantage of working
with a peak height only is that the detection of overlapping peaks is
difficult. Despite the peptide separation obtained by COFRADIC, it
can happen that two peptides with approximately the same mass
elute from the column. Therefore, the detection of overlapping
peaks may still require attention. The issue of how a series of
overlapping peptide peaks can be automatically interpreted and
how this can be implemented in an efficient manner to the
proposed strategy is a topic of further research.

The two-step clustering algorithm operates on the set of
validated monoisotopic peaks and is, in this case, a fast alternative
for, e.g., K-means clustering. An additional advantage is that we do
not need to specify the number of expected clusters in advance,
because it is automatically inferred from the data.
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It should be noted that the proposed strategy was tailored for
the specific case of COFRADIC samples in combination with a
high-resolution MS. Therefore, caution should be applied when
using the proposed strategy to other experimental settings.

Supporting information

Supporting information may be found in the online version of this
article.
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