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Abstract: This paper presents an intelligent control loop add-on to reduce the total amount of hardware operations – and
therefore the resulting execution speed – of a real-time depth scanning algorithm. The analysis module of the
control loop predicts redundant brute-force operations, and dynamically adjusts the input parameters of the
algorithm, to avoid scanning in a space that lacks the presence of objects.Therefore, this approach reduces
the algorithmic complexity in proportion with the amount of void within the scanned volume, while remaining
fully compliant with stream-centric paradigms such as CUDA and Brook+.

1 INTRODUCTION

For many years, depth map estimation has been an
active research topic to progressively drive a vast
amount of applications such as robot navigation, im-
mersive teleconferencing and 3DTV with autostereo-
scopic displays. Although depth information can be
derived in a variety of ways, when real-time perfor-
mance is considered, many researchers still tend to
prefer local algorithms instead of global optimization
schemes. The reason is that local algorithms are data-
parallel and can therefore be highly accelerated by
many-coreplatforms such as the Graphics Process-
ing Unit (GPU). However, these algorithms often re-
sort to brute-force approaches, resulting in a large
amount of redundant operations. Although real-time
performance is still achieved, the redundant brute-
force operations significantly suppress the high-speed
and low-power potential of these local algorithms.

This paper presents an intelligent control loop
add-on to reduce the intrinsic complexity of real-time
depth scanning algorithms, overcoming their ‘unin-
telligent’ brute-force approach. The algorithms their-
selves remain completely unaltered by predicting the
redundant operations in advance, while dynamically
changing the input parameters similar to a regulator
in control systems. The proposed approach is there-
fore compliant with stream-centric paradigms such as

CUDA and Brook+, but also with fixed-functionality
hardware (e.g. ASICs).

The layout of the paper is as follows: Section 2 ex-
plains the principles of depth scanning, and presents
the reader with a complexity analysis of one of the
currently most promising state-of-the-art local algo-
rithms. Consequently, Section 3 describes the control
loop add-on to reduce the total algorithmic complex-
ity, while Section 4 exposes optimization schemes
that can be applied specifically on the GPU. The re-
sults are discussed in Section 5, and the paper is con-
cluded in Section 6.

2 DEPTH SCANNING

In the most general case, local algorithms determine
depth information by sweeping a plane through the
3D volume (Yang et al., 2002), checking each voxel
(i.e. pixel-sized 3D elementary volume) for objects in
a brute-force manner. This general approach can be
applied to multi-camera setups, but a rectified two-
fold camera setup is often used to simplify the 3D
scan, which is known asstereo matching. In a stereo
camera setup, the depth of objects is determined by
estimating the amount of pixels they have shifted
from the left to the right image. As depicted in Fig. 1,
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Figure 1: Basic principles of stereo matching, that can be
seen as a simplified 3D depth scan.

this shift is consistently known as the motion paral-
lax or disparity, and directly correlates to the objects’
depth. Objects close to the camera exhibit a large
parallax and vice versa, with the maximum parallax
determined by the baseline distance between the two
cameras. Looking for matches in the stereo pair –
using a systematically decreasing disparity, starting
from the maximum value – can therefore be seen as
a simplified front-to-back depth scan.

Consistently surveyed by (Scharstein and Szeliski,
2002), stereo matching algorithms can be divided into
a cost computation, cost aggregation, disparity se-
lection and disparity refinementprocessing module.
Local algorithms tend to put their focus on the ag-
gregation, and generally discard the refinement. As
recently indicated by a performance study of (Gong
et al., 2007), one of the most promising local algo-
rithms is theadaptive weightsapproach. Therefore,
this approach is used as a case-study. For the inter-
ested reader, the complete algorithmic description can
be found in the paper of (Yoon and Kweon, 2006).
However, our paper only presents a high-level de-
scription of the adaptive weights algorithm, to obtain
a basic analysis of its current complexity.

The GPU implementation of the adaptive weights
is composed out of three different types of floating
point-based operations. These are thetexture (i.e.
memory read),render(i.e. memory write), andcom-
putationaloperations. The matching costCAD com-
putation inputs an RGB-colored left/right image pair
I∗0(x,y) andI∗1(x,y), disparity hypothesisd, and inte-
grates the absolute differences of each color channel
according to the dot product

CAD(x,y,d) = g · |I∗0 (x,y)− I∗1 (x−d,y)| , (1)

with a grey-scaling vectorg = 〈0.299, 0.587, 0.114〉.
The matching cost is computed for each hypothesisd
from the search rangeS, regardless of the presence of
objects at the examined depth. Consequently, the cost
is truncated to a given maximumτ and normalized

(toward 255 when considering 24-bit color images),
following

CTAD(x,y,d) =
255

τ
·min(CAD (x,y,d) ,τ) , (2)

to reduce the impact of noise inside the source im-
ages. The cost is then aggregated by a 33× 1 hori-
zontal and 1× 33 vertical separated 1D convolution
kernelwH (x,y,u), respectivelywV (x,y,v). The com-
position of these kernels are based on the Gestalt prin-
ciples of similarity and proximity, and are therefore
computed in a preprocessing step according to

wH (x,y,u) = e−
1
γs
|∆cxu| +e

− 1
γp

|u|
, (3)

with |∆cxu| being the Euclidean color distance be-
tweenI∗0(x,y) and I∗0(x+ u,y), and γs = 17.6, γp =
40.0 being a fall-off rate for the similarity, respec-
tively proximity term. The vertical kernelwV is com-
puted in a similar manner. Consequently, the aggre-
gated costAWE is defined as

A′
WE(x,y,d) =

wH (x,y,u) ∗u CTAD(x+u,y,d)

µHxy

, (4)

AWE(x,y,d) =
wV (x,y,v) ∗v A′

WE(x,y+v,d)

µVxy

, (5)

whereµHxy, µVxy are normalization constants, andA′
WE

stores the intermediate result of the horizontal aggre-
gation. Finally, the best matching cost is selected
out of all disparity hypotheses conceived inS, on a
winner-takes-all (WTA) basis. The resulting depth
mapD(x,y) is therefore composed according to

D(x,y) = arg mind∈S AWE(x,y,d) . (6)

Table 1 reflects our analysis of the type and
amount of operations that are involved to compute
a depth map with the adaptive weights approach us-
ing a 33×33 convolution kernel, wherep defines the
amount of pixels in the image, andh the amount of
disparity hypotheses, i.e. the cardinality ofS. Hence
the total amount of operationsO to generate a depth
map can be described as

O = (1027+23·h) · p , (7)

resulting in a little over 17.6 Gops for the 1800×1500
Teddyscene (Middlebury, 2003).

3 COMPLEXITY REDUCTION

The proposed method can reduce the total complex-
ity of the adaptive weights algorithm, or any other
local stereo matching algorithm for that matter. To
achieve this, the algorithm is executed twice, but with



Preprocessing Matching Cost Cost Aggregation Disparity Selection

Texture Ops 198· p 6· p·h 132· p·h 1· p·h

Computational Ops 764· p 13· p·h 256· p·h 1· p·h

Render Ops 64· p 1· p·h 1· p·h 1· p

TOTAL OPS 1026· p 20· p·h 1· p·h (2·h+1) · p

Table 1: Amount of operations needed to generate a depth map with the adaptive weights algorithm using a 33×33 convolu-
tion kernel, in function of the amount of image pixelsp and disparity hypothesesh.
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Figure 2: The principle of our proposed complexity reduction. The full 3D volume is scanned with a low-complexity approach,
and analyzed through a histogram. Consequently, an accurate high-complexity scan is performed on an adaptive range.

different inputs. In the first pass, the complete volume
is scanned over the entire search rangeS, but with
a smaller input image resolution. Consequently, an
analysis on the depth mapD is performed by comput-
ing the histogramH (d). As shown in Fig. 2, the his-
togram indicates the depths where objects are actually
located. In (Gallup et al., 2007), the histogram has
already been used to find the best orientation of the
depth sweep, by performing the sweep for multiple
orientations and selecting the orientation that leads
to the minimum data-entropy of the histogram. Fur-
thermore, (Geys et al., 2004) also used histogram in-
formation, but similar to (Gallup et al., 2007), this
is mainly to lever the resulting quality of the algo-
rithm. In our proposed approach, the histogram infor-
mation acquired from a coarse-grained full range scan
leads to an accurate fine-grained scan over an adaptive
range. As the complexity of the histogram computa-
tion is fairly low itself, the potential to accelerate a
local stereo matching algorithm becomes very high.

In general, the less pronouncedforeground fatten-
ing (Scharstein and Szeliski, 2002) an algorithm ex-
hibits, the more the input image resolution can be re-
duced in the first pass, while still maintaining a rep-
resentative histogram. In case of the adaptive weights
approach, the input image dimensions can be reduced
up to four times, resulting in a 16-fold reduction of
the original complexity.

To determine which subsetSsub⊆ S to take, the
values of the histogram are compared with a given

thresholdδ. Instead of fixing the tresholdδ, it can
be made dynamic by setting the level proportional
to the data-entropy of the histogram. Therefore, the
threshold will be set low for complex scenes with fine-
grained geometry, and high when little geometry is
present. Hence, this efficiently filters out noise due to
mismatches inherent to the local algorithm.

4 OPTIMIZATIONS

The aforementioned algorithmic complexity is only
valid when considering the use of conventional Gen-
eral Purpose GPU (GPGPU) computing (Owens et al.,
2007). However, several optimization schemes can
be applied to further reduce the complexity of lo-
cal stereo algorithms. For the cost aggregation mod-
ule, the amount of texture operations can be reduced
by half, when bilinear sampling is used to aggre-
gate two values with a single memory lookup. Fur-
thermore, in the next-generation GPGPU paradigm
CUDA, 16 memory operations can be coalesced into
a single memory read operation. For the disparity se-
lection, the depth test of the GPU can be exploited to
avoid all explicit operations (Lu et al., 2007). How-
ever, the depth test can only be exploited through
the traditional GPGPU paradigm using Direct3D or
OpenGL. Nevertheless, thanks to the recent intro-
duction of CUDA v2.0 and the complete support of
interoperability between CUDA and Direct3D, both
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Figure 3: (a) TheTeddyscene, (b) low-complexity depth
map, (c) joint histogram, (d) the resulting high-quality depth
map with reduced operations, and (e) the original result.

paradigms can be combined to form a highly opti-
mized implementation.

5 EXPERIMENTAL RESULTS

The proposed method was tested on the 1800×1500
Teddyscene (see Fig. 3a) of the Middlebury dataset
(Middlebury, 2003), with disparity search rangeS=
{0, . . . ,240}. The image resolution was lowered
16 times to 450× 375, which yields the dispar-
ity map depicted in Fig. 3b. After the histogram
(see Fig. 3c) analysis, the detected subsetSsub =
{60, . . . ,96,108, . . . ,180} is only 45% of the orginal
search rangeS. As the first scan is only 1/16th (or
6.25%) of the original complexity, a total complex-
ity reduction of about 48% is harnessed. The dispar-
ity map in Fig. 3d is therefore generated in about 8.5
Gops, instead of the original result in Fig. 3e, which
takes 17.6 Gops. Our control-loop scheme therefore
yields a two-fold complexity reduction, and is able to
double the execution speed of the algorithm.

Considering that the complexity of the first pass is
almost negligible, the proposed control loop add-on
will allow for a speedup, proportional to the amount
of void within the scanned volume. This is particu-
larly useful in eye-gaze corrected video chat (Dumont
et al., 2008), as only the chat participant needs to be
scanned in a rather large office space.

6 CONCLUSION AND
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complexity of local real-time stereo matching algo-
rithms. The histogram of a coarse-grained depth scan
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rithm to avoid scanning in spaces that lack the pres-
ence of objects. Hence, the orignal brute-force al-
gorithmic complexity can be reduced in proportion
with the amount of void within the volume, while
still remaining fully compliant with stream-centric
paradigms such as CUDA or Brook+.
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IP 2̈020 3D mediä). Furthermore, all authors recog-
nize the financial support from the IBBT.

REFERENCES

Dumont, M., Maesen, S., Rogmans, S., and Bekaert, P.
(2008). A prototype for practical eye-gaze corrected
video chat on graphics hardware. InProc. of SIGMAP.

Gallup, D., Frahmand, J., Mordohai, P., Yang, Q., and Polle-
feys, M. (2007). Real-time plane-sweeping stereo
with multiple sweeping directions. InProc. of CVPR.

Geys, I., Koninckx, T. P., and Gool, L. V. (2004). Fast in-
terpolated cameras by combining a GPU based plane
sweep with a max-flow regularisation algorithm. In
Proc. of 3DPVT.

Gong, M., Yang, R., Wang, L., and Gong, M. (2007). A
performance study on different cost aggregation ap-
proaches used in real-time stereo matching.IJCV,
75(2):283–296.

Lu, J., Rogmans, S., Lafruit, G., and Catthoor, F. (2007).
High-speed dense stereo via directional center-biased
support windows on programmable graphics hard-
ware. InProc. of 3DTV-CON.

Middlebury (2003). http://vision.middlebury.edu/stereo.

Owens, J., Luebke, D., Govindaraju, N., Harris, M., Kruger,
J., Lefohn, A., and Purcell, T. (2007). A survey of
general-purpose computation on graphics hardware.
CG Forum, 26(1):80–113.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms.IJCV, 47(1-3):7–42.

Yang, R., Welch, G., and Bishop, G. (2002). Real-time
consensus-based scene reconstruction using commod-
ity graphics hardware. InProc. PG.

Yoon, K.-J. and Kweon, I.-S. (2006). Adaptive support-
weight approach for correspondence search.IEEE
PAMI, 28:650–656.


