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Abstract

Correlated motif mining (CMM) is the problem to find
overrepresented pairs of patterns, called motif pairs, in
interacting protein sequences. Algorithmic solutions for
CMM thereby provide a computational method for predict-
ing binding sites for protein interaction. In this paper, we
adopt a motif-driven approach where the support of can-
didate motif pairs is evaluated in the network. We experi-
mentally establish the superiority of the χ2-based support
measure over other support measures. Furthermore, we ob-
tain that CMM is an NP-hard problem for a large class of
support measures (including χ2) and reformulate the search
for correlated motifs as a combinatorial optimization prob-
lem. We then present the method SLIDER which uses local
search with a neigborhood function based on sliding motifs
and employs the χ2-based support measure. We show that
SLIDER outperforms existing motif-driven CMM methods
and scales to large protein-protein interaction networks.

1. Introduction
Large-scale biological networks describing interactions

between proteins are available now for several organ-
isms [12]. Such data demonstrates how proteins function
as part of an interaction network, but provide no insight
into how interactions are encoded in protein sequences.
In particular, it is unknown which part of the sequences
correspond with physical interaction sites. Unfortunately,
the discovery of these sites requires laborious and expen-
sive biological experiments. In fact, it is estimated that
it would take 20 years to determine all interactions types
using current experimental techniques [2]. Therefore, sev-
eral computational approaches have been proposed to lo-
cate binding sites by mining overrepresented pairs of pat-
terns (called motifs) in the sequences of interacting pro-
teins [7, 8, 9, 10, 13]. Correlated motif mining (CMM) is
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Figure 1. Compatible binding sites 1, A and
2, B as correlated motifs in sequences

an approach to identify binding sites by looking for a con-
sensus pattern in one set of proteins which interact with
(almost) all proteins which contain another consensus pat-
tern. If so, both patterns are likely to represent a part of
the surface of the molecules which makes interactions pos-
sible through a physical binding. For instance, in Figure 1
the patterns {1, A} and {2, B} represent two such correlated
motifs. In particular, there is an undirected edge between
two protein sequences when the first one contains motif 1
(resp., 2) and the second one motif A (resp., B).

These methods can be subdivided into two classes:
(1) interaction-driven [8, 9, 10], and (2) motif-driven ap-
proaches [13, 7]. Interaction-driven methods mine for
(quasi) bicliques, that is, disjoint subsets of vertices for
which every vertex from one set is connected to (almost)
all vertices of the other set. Such subgraphs exhibit a type
of all-versus-all (or most-versus-most) interaction. A mo-
tif pair representing the corresponding interaction sites is
then derived from the sequence carried by the vertices. The
motif-driven approach, in contrast, starts from candidate
motif pairs whose support is then evaluated in the network.
Although both approaches have shown to produce biologi-
cally meaningful results, the second approach has several
conceptual advantages over the first: (i) motif pairs are
mined directly, not derived; (ii) all proteins containing one
of the motifs, and not a subset, are taken into account; (iii) if
the the interactions between two sets of proteins is a conse-
quence of multiple compatible binding sites, such as {1, A}
and {2, B} in Figure 1, the interaction-driven method neces-



sarily merges them into one motif pair; and, (iv) all interac-
tions of proteins having both binding sites described by the
motif pair are taken into account, i.e., the subsets containing
each motif do not have to be disjoint.

In this article, we study different aspects of the motif-
driven approach towards CMM for which currently only two
techniques have been introduced and implemented. Unfor-
tunately, both methods differ not only in the mining method
but also in the used notion of support for correlated motifs.
The first method by Tan et. al [13], called D-STAR, uses
a χ2-based scoring function to determine the support but
the underlying mining method does not scale to networks
containing more than 250 proteins. As contemporary bi-
ological networks contain upto thousands proteins (for in-
stance the protein-protein interaction networks of yeast and
human [4]), scalability is an increasingly important issue.
The second method called MotifHeuristics employs a dif-
ferent, probabilistically motivated notion of support called
p-score, is developed by Leung et al. [7] and does scale to
larger networks. Although the authors argue in their paper
that MotifHeuristics is superior to D-STAR, it remains un-
clear if the latter is due to the different support measure or
the underlying mining method. Moreover, an in depth study
of support measures as such has never been undertaken.

A first contribution of this paper is a thorough empirical
study of the effectiveness of various notions of support for
correlated motifs. We evaluate them in terms of precision
and recall on artificial networks with implanted motifs at
different noise levels. These experiments clearly show that
the χ2-based support measure is vastly superior in discov-
ering highly interaction descriptive motif pairs.

As a second contribution, we formally prove that, under
reasonable assumptions concerning the used notion of sup-
port, the complexity of the correlated motif mining prob-
lem is NP-hard and its associated decision problem is in NP.
We therefore approach the problem as a combinatorial opti-
mization problem.

More specifically, as the third and main contribution
of this work, we present SLIDER, a local seach method
in which the key component is its neighborhood function
which views a motif as a window which slides over the
amino acid sequences of the proteins. In contrast with more
common neighborhood functions, it has a clear biological
interpretation: it is based on the philosophy that if a motif
overlaps with part of a binding site in a sequence it should
be able to slide towards the binding site in a few steps. Al-
though SLIDER can be used with an arbitrary support mea-
sure, we use the χ2-based support measure, as the empirical
study in the first contribution of this paper clearly indicates
this is the best support measure known so far.

We validate SLIDER by showing that it outperforms all
existing motif-driven approaches on retrieving implanted
motif pairs from artificial networks. Furthermore our ex-

periments show that SLIDER is able to tackle CMM on large
protein-protein interaction networks.

Outline. In Section 2, we formally define CMM and in Sec-
tion 3 we discuss support measures. In Section 4, we prove
CMM to be NP-hard for a large class of support measures. In
Section 5, we introduce the novel method SLIDER. In Sec-
tion 6, we introduce our artificial and biological datasets on
which our novel method SLIDER is assessed in Section 7.
We discuss related work in Section 8 and conclude in Sec-
tion 9.

2 Correlated motif mining problem

We model a protein-protein interaction (PPI) network
by an undirected labeled graph G = (V,E, λ) in which
the vertices V correspond to the proteins, the edges E to
the interactions and the labels of the vertices to the amino
acid sequence of the proteins. Hence, the label function
λ maps each vertex v ∈ V to a string λ(v) over the al-
phabet Σ = {A, . . . , Z} \ {B, J, O, U, X, Z}. We ignore self-
interactions. Although biologically relevant, it is sometimes
undesirable to take self-interactions into account as in some
cases they are not easily or not at all detectable. For ex-
ample, when yeast two-hybrid is used, a homodimeric in-
teraction can obviously only be recovered if the protein that
forms it is present both as bait and as prey in the screen.
In addition, it has been reported that in some cases yeast
two-hybrid has an inherent lower efficiency to detect ho-
modimeric interactions [11].

An (`, d)-motif is a string of length ` over the alphabet
Σ ∪ {x} containing exactly d x-characters. The character
x is interpreted as a wildcard-symbol, i.e., it matches with
any character of Σ. For instance, GAQPRNMY matches the
(8, 4)-motif GxxPxNxY.

A protein contains an (`, d)-motif X if its amino acid
sequence contains a substring of length ` that matches X .
Note that motifs starting and ending with a wildcard char-
acter are redundant because, in practice, the amino acid se-
quences are much longer than the motifs.

Given an (`, d)-motif X and a PPI-network G =
(V,E, λ), let VX = {v ∈ V | λ(v) contains X}, be the
set of proteins in the network containing the motif X , and

EX,Y = {{u, v} ∈ E | u ∈ VX ∧ v ∈ VY }

be the set of interactions between proteins containingX and
proteins containing Y . Hence, the subgraph GX,Y selected
by a motif pair {X,Y } is then

GX,Y = (VX ∪ VY , EX,Y , λ|VX∪VY
)

with λ|VX∪VY
the restriction of λ to VX ∪VY . Note that VX

and VY can share proteins.



A support measure f is simply a function mapping a
motif pair {X,Y } and a graph G to a postive real number
f({X,Y }, G). We refer to f({X,Y }, G) as the support of
{X,Y } in G. In Section 3 and 7.2 we discuss and compare
several instantiations of support measures.

We next formulate the correlated motif pair mining prob-
lem in a PPI-network (Correlated Motif Mining, CMM):

• Input: a PPI-network G = (V,E, λ), three natural
numbers `, d, k and a support measure f mapping a
motif pair {X,Y } and a graph G to a real positive
number f({X,Y }, G).

• Output: the k (`, d)-motif pairs {X1, Y1}, . . . ,
{Xk, Yk} with highest support in G with respect to f .

3 Support measures
Support measures should reflect the power of a motif

pair to describe interactions. Several considerations should
be taken into account in deciding how to measure the de-
scriptive power of a motif pair for a given PPI-network
G = (V,E, λ): (i) EX,Y should be significantly larger than
expected given G, VX and VY ; and, (ii) VX and VY should
be large enough in order to minimize the likelihood that the
appearance of the motif X respectively Y in the sequences
of the proteins in VX respectively VY is just by chance.

In other words, we want the motifs X and Y to truly
represent an overrepresented consensus pattern in the se-
quences of the proteins in VX respectively VY in order to
increase the likelihood that they correspond to, or at least
overlap with, a so called binding site – a part of the molecule
on the surface that makes interactions between proteins
from VX and VY possible through a molecular lock-and-
key mechanism.

Before we discuss support measures in detail, we need
some more concepts from graph theory. A graph is called
complete if any two vertices are connected by an edge. A
complete subgraph on k vertices is a k-clique. A bipartite
graph is a graph for which the vertex set can be partitioned
into two disjoint setsB andW such that each edge connects
a vertex of B with a vertex of W . It is called balanced if
|B| = |W | and complete if each vertex of B is connected to
each vertex of W . A complete bipartite subgraph is called
a biclique.

We call {X,Y } a (kX , kY , kX,Y )-motif pair for a PPI-
network G = (V,E, λ) if |VX | = kX , |VY | = kY and
|VX ∩ VY | = kX,Y . We call it complete if all vertices
from VX are connected with all vertices from VY . Clearly,
a complete (kX , kY , kX,Y )-motif pair is an ideal candidate
provided that kX and kY are sufficiently large. In that case,
GX,Y is a subgraph of G that is a combination of a biclique
with parts VX \VY and VY (or VX and VY \VX ) and a kX,Y -
clique (VX ∩ VY ). If kX,Y = 0, it is a pure biclique and if
kX,Y = kX = kY it is a pure clique. Figure 2 shows an ex-
ample. We point out that the methods in [8, 9, 10] search for

VX

VX ∩ VY︸ ︷︷ ︸
VY

Figure 2. An example of a network selected
by a complete (5,6,3)-motif pair.

(quasi-)bicliques where VX ∩ VY is always the empty set.
As such, the maximal number of edges any (kX , kY , kX,Y )-
motif pair can have in any PPI-network is

M(kX , kY , kX,Y ) =
(
kXkY −

(
kX,Y

2

)
− kX,Y

)
.

3.1 A χ2-based support measure

Tan et al. [13] introduced the χ2-score for statistical sig-
nificance as a support measure for CMM:

fχ2({X,Y }, G) =

{
(|EX,Y |−EX,Y )2

EX,Y
if |EX,Y | > EX,Y

0 if |EX,Y | ≤ EX,Y

withEX,Y the expected number of interactions between VX
and VY . The value EX,Y is calculated by assuming a uni-
form density of edges. To that end, let ed(G) be the edge
density of G, i.e., the proportion of edges it has of all its
potential edges. Then,

EX,Y = ed(G)M(|VX |, |VY |, |VX ∩ VY |) ,

with ed(G) = |E|/(|V |2 ).
If we also use the edge density of the selected subnet-

work ed(GX,Y ) = |EX,Y |/M(|VX |, |VY |, |VX ∩ VY |) we
can rewrite the χ2-support of {X,Y } for which |EX,Y | >
EX,Y as

fχ2({X,Y }, G) =

M(|VX |, |VY |, |VX ∩ VY |) (ed(GX,Y )− ed(G))2

ed(G)
.

As ed(G) is a constant for a fixed PPI-network, we clearly
see in this form that fχ2 uses two criteria to determine the
support of a motif pair {X,Y }:

1. the difference in edge density of GX,Y and G, which
rewards a larger EX,Y than expected; and

2. the (potential) size of GX,Y in terms of the number of
edges, which rewards larger VX and VY .



3.2 p-score: a probabilistic support mea-
sure

The p-score is a measure introduced by Leung et al. [7] to
evaluate the statistical significance of a motif pair {X,Y }
in a PPI-network G = (V,E, λ) by estimating the condi-
tional probability that there are |EX,Y | or more interactions
between VX and VY given the number of interactions in-
volving VX and assuming a uniform distribution of interac-
tions over all interaction partners. Motif pairs for which this
probability is small are considered to be statistically signif-
icant.

More formally, given a motif pair {X,Y } and a PPI-
network G = (V,E, λ), let N(VX) = {v | ∃x ∈ VX :
{v, x} ∈ E} , i.e., the set of all vertices connected with a
vertex from VX , and EX = {{u, v} ∈ E | u ∈ VX} , the
set of interactions involving vertices from VX .

The probability pX that there are |EX,Y | interactions be-
tween VX and VY given VX , VY , N(VX) and EX is esti-
mated by (see [7] for details)

pX =
Emax

X,Y∑
i=|EX,Y |

(
i−1

|N(VX)∩VY |−1

)( |EX |−i−1
|N(VX)\VY |−1

)( |EX |−1
|N(VX)|−1

)
where

Emax
X,Y = min(|EX | − |N(VX) \ VY |, |VX ||N(VX) ∩ VY |)

represents the maximal possible size of EX,Y . The idea is
that pX is a good estimator for the conditional probability
of |EX,Y | or more interactions between VX and VY given
VX , N(VX), EX , VY , N(VY ) and EY if |EX,Y |/EY→X is
small, with

EY→X = (|EY |/|N(VY )|)|N(VY ) ∩ VX |
the expected number of interactions between VY and
N(VY ) ∩ VX given VY , N(VY ), EY and VX . Of course,
similar formulas can be obtained for pY and EX→Y and
the p-score based support measure fp uses the best of both
estimators:

fp({X,Y }, G) =
{

1− pX if EY→X ≥ EX→Y
1− pY if EY→X < EX→Y

3.3 Comparison of fχ2 and fp

Comparing fp with fχ2 , a major difference is that fχ2

bases its support on the whole network G, while fp-
support is based on the statistical significance of a motif
pair {X,Y } in two subnetworks of the whole PPI-network:
GX = (VX∪N(VX)∪VY ), EX) andGY = (VY ∪N(VY )∪
VX), EY ). Moreover, besides the typical edge distribution
assumption, fp makes implicitly the following additional
assumptions:

1. VX and VY are disjoint;

2. every interaction from EX (EY ) can be described us-
ing X (Y ), thus to calculate the support of {X,Y }
each protein is assumed to have only one binding site.

Finally, we stress a design flaw in the definition of
fp: the approximation pX becomes less precise when
|EX,Y |/EX→Y becomes larger. But the latter happens pre-
cisely when the selected subgraph contains more edges than
expected, that is, becomes more interesting. In addition to
the just mentioned weaknesses, our experiments in Section
7.2 confirm that fp is inferior to fχ2 in recovering implanted
correlated motifs at different noise levels.

4 Complexity of CMM

We will prove that CMM is NP-hard when fχ2 is used
as support measure. However, in order to make the result
as broadly applicable as possible, we will prove the NP-
hardness of CMM for a whole class of support measures and
show at the end of the section that fχ2 is a member of that
class.

We restrict ourselves to support measures which abide
to three reasonable conditions. Informally, the first condi-
tion says that the support can be computed efficiently, the
second that if the topology of the selected subnetworks of
two motif pairs differ only in the number of edges, the one
which covers more interactions has higher support. Finally,
the last condition states that the support of a complete motif
pair increases with the size of the selected subnetwork.

To that end, let G = (V,E, λ) be any PPI-network and
let MkX ,kY ,kX,Y

be a complete (kX , kY , kX,Y )-motif pair
for G, kX,Y ≤ min(kX , kY ). We call a support measure f
compliant if the following conditions hold for f :

1. f is polynomial time computable in the size of G,

2. for any two (kX , kY , kX,Y )-motif pairs {X,Y },
{X ′, Y ′} in G:

f({X,Y }, G) = 0

∨
(
f({X,Y }, G) > f({X ′, Y ′}, G)

⇐⇒ |EX,Y | > |EX′,Y ′ |
)
.

3. for 0 < i ≤ kX − kX,Y and 0 < j ≤ kX,Y :

f(MkX ,kY ,kX,Y
, G) > f(MkX−i,kY ,kX,Y

, G)
∧ f(MkX ,kY ,kX,Y

, G) > f(MkX−j,kY ,kX,Y −j , G) .

Remark that, because the fp-support of a motif pair
{X,Y } in a PPI-network G depends also on the neigbor-
hood of the selected subnetwork GX,Y in G (GX and GY ),
it will not always abide to the last two conditions.



We call a support measure f biclique-maximal if:

f(Mk,k,0, G) > f(Mk,k,k′ , G), 0 < k′ ≤ k

and clique-maximal if:

f(Mk,k,k, G) > f(Mk,k,k′ , G), 0 ≤ k′ < k .

We will now show that CMM is NP-hard by proving
that even a simplified version of the associated decision
(D) problem is already NP-complete. Let D-CMM be the
problem to decide whether for a given PPI-network G =
(V,E, λ), natural numbers `, d, a real number t and a sup-
port measure f , there exists an (`, d)-motif pair {X,Y } for
which f({X,Y }, G) ≥ t.

Theorem 1 D-CMM is NP-complete for any clique- or
biclique-maximal compliant support measure f .

Proof: D-CMM is obviously in NP: a motif pair M for
which f(M,G) ≥ t can serve as polynomial time verifiable
certificate.

Given a graph G = (V,E) and a natural number k, de-
ciding whether G contains a k-clique is called the clique
problem. Similarily, deciding whetherG contains a biclique
such that both parts are of size k, is called the balanced
complete bipartite subgraph problem (BCBS). Both prob-
lems are known to be NP-complete and BCBS even when
restricted to bipartite graphs [5].

We will show that D-CMM is NP-complete for biclique-
respectively clique-maximal support measures by reducing
BCBS respectively CLIQUE to D-CMM.

So, given a graph G = (V,E), with V = {v1, . . . , vn},
the reduction transforms G into a labeled graph G′ =
(V,E, λ). For convenience, we will use the alphabet Σ =
{0, 1} and label the vertices of G′ as follows: λ(vi) =
wi1 . . . w

i
n, with wii = 1 and wij = 0, for j 6= i.

The labels of the vertices are chosen in such a way that
for any (n, k)-motif X , |VX | ∈ {0, 1, k}. Indeed, we can
discriminate the following cases:

1. if X contains at least two 1’s then VX = ∅;
2. if X contains a 1 at position i and all other non-

wildcard symbols are 0 then VX = {vi}; and,

3. if X contains only wildcard symbols and 0’s then vi ∈
VX if the symbol at position i is a wildcard symbol.

As such, every motif pair in G′ is necessarily a (1, k, k′)-,
k′ ∈ {0, 1}, or a (k, k, k′)-motif pair, 0 ≤ k′ ≤ k. More-
over, for an (n, k)-motifX containing only 0’s and wildcard
symbols, vi will be in VX if and only if position i of X is
a wildcard symbol. In other words, for any subset W ⊆ V
of size k, we can choose an X such that VX = W . Conse-
quently, if {X,Y } is a motif pair for which |VX | = |VY |,

VX ∩ VY = ∅ and |EX,Y | = M(|VX |, |VY |, 0), then
(VX ∪ VY , EX,Y ) is a balanced complete bipartite graph.
Similarily, if VX = VY and |EX,Y | = M(|VX |, |VX |, |VX |)
then (VX , EX,Y ) is a k-clique.

Let MkX ,kY ,kX,Y
be a complete (kX , kY , kX,Y )-motif

pair for G′, kX,Y ≤ min(kX , kY ) and k ≥ 2.. We know
that f is compliant. If f is biclique-maximal it holds that:

f(Mk,k,0, G
′) > f(M1,k,0, G

′)
∧ f(Mk,k,0, G

′) > f(Mk,k,k, G
′) > f(M1,k,1, G

′)

and if f is clique-maximal we have:

f(Mk,k,k, G
′) > f(M1,k,1, G

′)
∧ f(Mk,k,k, G

′) > f(Mk,k,0, G
′) > f(M1,k,0, G

′) .

Thus,G contains a balanced complete bipartite subgraph
with both parts of size k, if and only if there exists an (n, k)-
motif pair {X,Y } for which

f({X,Y }, G′) ≥ t = f(Mk,k,0, G
′)

with f a biclique-maximal support measure. By the same
reasoning, G contains a k-clique if there exists an (n, k)-
motif pair {X,Y } for which

f({X,Y }, G′) ≥ t = f(Mk,k,k, G
′)

with f a clique-maximal support measure.
The proof is complete by noting that the transformation

of G into G′ and the calculation of t can be done in polyno-
mial time. �

It is easy to see that fχ2 is compliant and biclique-
maximal. Indeed, for fixed k, the support for a complete
(k, k, kX,Y ) motif pair {X,Y } in PPI-network G is

M(k, k, kX,Y )
(1− ed(G))2

ed(G)
,

which is maximal for kX,Y = 0.

5 SLIDER

Since the decision problem associated with CMMis in NP,
CMM can be tackled efficiently as a search problem in the
space of all possible (`, d)-motif pairs. If we add the as-
sumption that similar motifs can be expected to get similar
support, it has the typical form of a combinatorial optimiza-
tion problem. In combinatorial optimization, the objective
is to find a point in a discrete search space which maxi-
mizes a user-provided function f . A number of heuristic
algorithms called meta-heuristics are known to yield good
solutions to a wide variety of combinatorial optimization
problems.



One such meta-heuristic is local search [1]. Local search
algorithms move from the current point to a neighboring
point in the space of candidate solutions until a local opti-
mal solution is found, i.e., a solution that maximizes f in
its neighborhood. Hence, to apply local search one needs to
define a neighborhood function which returns the neighbor
points of each point in the search space. The neigborhood
function is a key component of the local search method and
has to be chosen carefully and fine-tuned for the problem at
hand. The initial points from where local search is started
are typically a combination of randomly and heuristically
chosen points. In the related works section, we discuss other
meta-heuristics and explain the choice for local search.

The main idea behind local search for CMM is illustrated
by the pseudo-code in Algorithm 1. For reasons of clarity,
we use an abstract neigborhood functionN , an abstract sup-
port measure f and focus on the case in which only the best
pair is returned (k = 1). In practice, we accumulate the best
results found over several runs with 1 000 ≤ k ≤ 10 000 in
a single execution.

Algorithm 1 Local Search Algorithm (LSA) for CMM, with
neighborhood function N and support measure f
Require: PPI-network G = (V,E, λ), `, d ∈ N, d < `
Ensure: {X∗, Y ∗} best correlated motif pair found in G

1: {X∗, Y ∗} ← randomOrHeuristicMotifPair()
2: maxsup← f({X∗, Y ∗}, G)
3: sup← 0
4: while maxsup > sup do
5: {X,Y } ← {X∗, Y ∗}
6: sup← maxsup
7: for all {X ′, Y ′} ∈ N({X,Y }) do {scan neighbor-

hood}
8: if f({X ′, Y ′}, G) > maxsup then
9: {X∗, Y ∗} ← {X ′, Y ′}

10: maxsup← f({X ′, Y ′}, G)

Thus, in order to apply local search to CMM, we need to
define a neighborhood function N which maps a motif pair
{X,Y } to its neighborsN({X,Y }) in the space of all motif
pairs. Consider a motif pair {X,Y } and the selected sub-
network GX,Y . Ideally, the subnetwork GX′,Y ′ selected by
a neighbor {X ′, Y ′} ∈ N({X,Y }) should also be “close”
to GX,Y in the sense that at least some proteins and interac-
tions should be shared between GX,Y and GX′,Y ′ .

To that end, we first define a neighbor function N slide on
motifs, which will the basis for a neighbor function on motif
pairs. Looking for a match of an (`, d)-motif X in a protein
can be seen as sliding a window of length ` with `−d holes
over the sequence until the characters in the holes match the
non-wildcard caracters of X . Hence, a motif X ′ obtained
by closing a hole on a matching substring and creating a
new one while respecting the window size `, guarantees that

KxxTxT

RTxTxx

xxxTxT
xxxTxTxx

RTxTxx

KxxTxT

xTxTxx
AKKGTLKYRTITCFGKI

AKKGTLKYRTITCFGKI

Figure 3. Two neighboring (6, 3)-motifs as
sliding windows on a sequence. Moving from
RTxTxx to KxxTxT, shifts the window to the left.

the same protein will contain X ′. In this way, we can slide
the motif window to the left or right by punching the new
hole before the first or after the last original character, as
illustrated in Figure 3 and formally defined next.

For a motif X , denote by trim(X), the motif obtained
from X by removing leading and trailing wildcards. That
is, trim(xTxTxx) = TxT. A motif X ′ ∈ N slide(X) if X and
X ′ have the same length and trim(Y ) = trim(Y ′) where
Y (resp., Y ′) is obtained from X (resp., X ′) by chang-
ing one non-wildcard character into a wildcard. In Fig-
ure 3, X equals RTxTxx while X ′ equals KxxTxT. Now,
X ′ ∈ N slide(X) as X (resp., X ′) can be transformed into
Y = xTxTxx (resp., Y ′ = xxxTxT) by changing one non-
wildcard character into a wildcard and Y equals Y ′ after
stripping leading and trailing wildcards. Next, we define
N slide for motif pairs. That is, {X ′, Y ′} ∈ N slide({X,Y })
if X ′ ∈ N slide(X)∧ Y ′ = Y or Y ′ ∈ N slide(Y )∧X ′ = X .
Note that when applyingN slide to pairs of motifs, one of the
motifs remains fixed. Our experiments reported in Section
7.3, show that fixing one motif at each step greatly improves
the effectiveness.

We are now ready to define our novel CMM-method
SLIDER:
Definition 1 We define the method SLIDER as LSA with
(i) neighbor function N slide;
(ii) support measure fχ2 ; and,
(iii) random starting seeds.

6 Datasets
Artificial data. To evaluate the biological relevance of the
different notions of support and the power of heuristic meth-
ods to retrieve the best motif pairs in terms of describing in-
teractions, we created a number of artificial networks as fol-
lows. Each network is composed of 100 proteins which are
randomly chosen out of the well-known yeast network [4].
We then generate 50 random (8, 3)-motifs1 and implant 3
to 10 instances of each motif in the sequences of randomly
chosen proteins. Then, we implant motif pairs by randomly
selecting two implanted motifs X and Y and connecting
each protein containing X with each protein containing Y

1Using entropy analysis, research has shown that the highest amount of
structural information per sequence length can be found in subsequences
of length 7 to 9 (see Figure 1 in [16]).



until a chosen minimal edge density is obtained – we used
0.1, 0.2 and 0.3. Consequently, the network obtained is per-
fect in the sense that each interaction is a direct consequence
of an implanted motif pair. Because noise and missing data
is an important factor in biological networks, we also evalu-
ate the resistance to noise of both the support measures and
heuristic methods. To that end, we also create “diluted” ver-
sions of each network, by choosing a certain dilution level a
(from 0.05 to 0.3 in steps of 0.05) and flip the edge relation
of each pair of vertices with probability a.

We restrict ourselves to networks of 100 proteins be-
cause this is more or less the maximum size for which we
are still able to mine the motif pairs with highest support for
each support measure by a brute force computation within
a reasonable time frame.
Biological data. To assess the effectiveness of SLIDER on
larger networks, we ran our method on the high-confidence
protein-protein interaction network of yeast [4] consisting
of 1620 nodes and 9060 interactions. It is very difficult
to measure the biological significance of the found cor-
related motifs, because only very few of them are actu-
ally known. Therefore, we executed a brute force CMM-
algorithm over the yeast network on a computer cluster,
finding the best 1 000 correlated motifs according to fχ2

and compared these to the results returned by SLIDER. The
brute force computation occupied about 100 nodes in the
cluster spanning a period of 2 weeks. Its purpose was to
create a baseline for motif-drive CMM-algorithms as well
as collecting the best correlated yeast motifs for biological
analysis (which is still ongoing at this point).

7 Experiments
With the exception of the brute force run on yeast, all

experiments were run on a 3GHz Mac Pro with 4GB of
RAM and 8 cores. In the sequel, whenever a timing is
mentioned and unless explicitly mentioned otherwise, the
experiment was run using only 1 core. Nevertheless, we
stress that our SLIDER-prototype, implemented in Java, can
use as many processors as are available. In this section, we
experimentally assess the effectiveness of (1) support mea-
sures to assign a support to a motif pair reflecting its power
to describe interactions; and, (2) neighbor functions to find
the motif pairs with highest support by exploring the space
of all motif pairs. Furthermore, we compare SLIDER with
other motif-driven CMM-methods. To this end, we need a
notion of precision that compares an ordered set of motif
pairs versus a set of motif pairs which is considered to be
the “ground truth”. Finally, we assess the effectiveness of
SLIDER on the yeast network.

7.1 Precision for motif pairs
Before we define our notion of precision, we need a sim-

ilarity measure on motif pairs. We define the similarity be-
tween an (`, d)-motif pair {X,Y } and {X ′, Y ′} in a PPI-

network G = (V,E, λ) as

s({X,Y }, {X ′, Y ′}, G) =
|EX,Y ∩pos EX′,Y ′ |
|EX,Y ∪ EX′,Y ′ |

where {v, w} ∈ EX,Y ∩posX′,Y ′ if there exists substrings
sv and s′v in λ(v) and substrings sw and s′w in λ(w) such
that sv (resp., sw) matches with X (resp., Y ), s′v (resp. s′w)
matches with X ′ (resp., Y ′), and, sv and s′v as well as sw
and s′w overlap in at least d`/3e positions in λ(v) respec-
tively λ(w).

Let S = {M1, . . . ,Mn} be a list of motif pairs, then we
reduce S by deleting for every j from 1 to n, every Mi for
i > j such that s(Mi,Mj) ≥ 0.9. We denote the reduced
version of S by S∗.

Let T be a set of “ground truth” (`, d)-motif pairs and
let S = {M1, . . . ,Mn} be a list of (`, d)-motif pairs to be
compared against T . We define the precision of S against T
at rank k as the fraction of motif pairs Mi in S∗, 1 ≤ i ≤ k
for which there exists a motif pair MT in T ∗ such that
s(Mi,MT ) ≥ 0.9. We note that, when k = |T ∗|, the pre-
cision as defined above also corresponds to the usual notion
of recall.

7.2 Evaluation of support measures
We start by assessing the effectiveness of support mea-

sures in assigning a support to a motif pair reflecting its
power to describe interactions. Since the most describing
motif pairs in real PPI-networks are unknown, we measure
the ability of a support measure to assign the highest support
to motif pairs on artificial networks with implanted motifs,
as described in Section 6. We used a collection of networks
Gae with edge density e% and dilution level a%. We com-
pare the support measures by looking at the precision of
implanted motif pairs on Gae at rank m, where m equals
the number of implanted motif pairs. Remark that, in this
setting, recall and precision are the same.

In order to make sure that the fχ2 and fp assign a
meaningful support, we also implemented two naive sup-
port measures fc and fv . The fc-support in a PPI-network
G = (V,E) is simply the number of interactions covered:
fc({X,Y }, G) = |EX,Y | and

fv({X,Y }, G) =
|EX,Y |

M(|VX |, |VY |, |VX ∩ VY |) + |VX ∪ VY | .

Both measures are naive in the sense that they are indepen-
dent of the interaction distribution inG. It is straightforward
to show that both measures are compliant, thus meeting the
basic requirements of a support measure. Moreover, they
are biclique-maximal.

A visual inspection of the graphs in Figure 4 already in-
dicates that fχ2 globally outperforms the other support mea-
sures in selecting motif pairs describing actual interactions.
Indeed, at every data point, the precision of fχ2 is the best



value or very close to the best value of the four support mea-
sures considered. Moreover, comparing precision on di-
luted networks shows that fχ2 is vastly more robust to noise
— a crucial aspect since contemporary PPI-networks still
contain large amounts of both noise and missing data [15].

Thus, we can conlude this experimental section that fχ2

is superior to all other support measures considered on all
merits.

7.3 Evaluation of neighborhood functions
We will now confirm that our neighborhood function

which is based on a sliding window interpretation on the
sequences is superior to the standard neighbor functions
which simply define small perturbations to explore the
search space.

In particular, we define the following perturbations: let-
ter change (LC, replace one non-wildcard character by an-
other); swap adjacent (SA, swap an adjacent wildcard and
non-wildcard character); and, swap (S, swap an arbitrary
wildcard and non-wildcard character). We denote neighbor-
hood functions combining these perturbations by concate-
nating their abbreviations with boolean operators. For in-
stance, LCandSA denotes the neighborhood function which
requires a letter change and a swap adjacent perturbation.
Finally, we consider a simple version of N slide, denoted
SimpleSlide, which only allows to change non-wildcard
characters into wildcard ones at opposing ends of the motif.
The corresponding neighborhood functions on pairs of mo-
tifs are defined similarly to N slide: one motif is kept fixed,
while the other is replaced by a neighbor.

Figure 6 displays the precision of LSA with each of these
neighborhood functions on the implanted network of den-
sity 10%. The displayed precision is averaged over 5 LSA
runs. As the speed of LSA is highly dependent on the
chosen neighbor function, we provided each run the same
amount of time (10 minutes). In this way, faster neighbor-
hood functions like LCorSA can process more seeds than
slower functions like N slide (cf. Figure 5). As can be seen
from Figure 6, Slide, and thereby SLIDER, outperforms the
other neighbor functions.

For the sake of completeness, we also experimented with
neighborhood functions on motif pairs where both motifs
can be replaced with a neighboring one (in contrast to the
previous neighborhood functions where one is kept fixed).
Unfortunately, the precision was never larger than 10%, in-
dependent of the level of dilution.

7.4 Comparison with existing methods
D-STAR. Tan et al. introduced the first motif-driven method
for CMM: D-STAR [13]. In contrast with our approach, D-
STAR uses (`, d)-motifs in the mismatch model. In the mis-
match model, an (`, d)-motif is simply a string s of length
` and an amino acid sequence is said to contain the (`, d)-
motif s if it contains a substring of length ` that differs in

at most d characters from s. D-STAR is based on the ob-
servation that two strings s1 and s2 which both differ at
most d characters from s, differ at most in 2d characters
from each other. Strictly spoken, D-STAR does not deliver
(`, d)-motifs. Instead it returns two strings sX and sY , and
two sets of proteins VX and VY together with the indices of
the substring of the amino acid sequence of each protein in
VX (respectively VY ) that differs at most 2d characters from
sX (respectively sY ). To construct the {VX , VY }-pairs, D-
STAR considers for each interaction {v, w}, each substring
of length ` in λ(v) and λ(w) as the initial strings sX and
sY , determines VX and VY , and evaluates {VX , VY } using
fχ2 . As the similarity in Section 7.1 is defined in terms
of positions of substrings, we can directly use the returned
subsets VX and VY to compare with implanted motifs. Ev-
ery run of D-STAR on the same network produced the same
result, consequently the running time of D-STAR cannot be
parameterized. We used the D-STAR implementation freely
available on the web.

MotifHeuristics. Another method, called MotifHeuristics,
proposed by [7], derives (`, d)-motifs directly within the
wildcard model and introduced the probabilistically moti-
vated fp-support. Although the authors do not describe it as
such, MotifHeuristics can be seen as a local search method
in which the neighbors of a motif-pair {X,Y } are all motif
pairs {X,Y ′} at odd steps and all motif pairs {X ′, Y } at
even steps. Because we could not obtain an implementation
of MotifHeuristics, we implemented our own version based
on the algorithmic description in [7].

Comparison. The graph in Figure 7 depicts the precision
of the various methods on the artificial network of density
10%. As a naive baseline, we ran the method Random, eval-
uating random motif pairs using fχ2 . D-STAR took 5 min-
utes to finish. We gave Random and SLIDER 10 minutes of
computation time. In order to give our unoptimized imple-
mentation of MotifHeuristics a fair chance, we allowed it
to run 30 times longer than SLIDER (that is 5 hours). The
underlying reason why MotifHeuristics takes such a long
time is that for every search step a number of supports has
to be calculated which approaches the total number of mo-
tifs. The graph makes it quite apparent that the succes rates
of both D-STAR and MotifHeuristics are smaller than or
equal to that of SLIDER. Moreover, while the succes rate of
SLIDER is consistent with the level of dilution, this is not
the case for D-STAR and MotifHeuristics. Overall, SLIDER
is more effective and more robust than its competitors. All
algorithms perform significantly better than random search.

When we double the execution time of SLIDER to 20
minutes, the precision increases significantly. The latter
execution time is still minor in comparison with the brute
force computation which takes about 40 hours.
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Figure 4. Precision of support measures on artificial networks with implanted motif pairs and differ-
ent edge densities (10%, 20%, 30%).

Neighbor func. seeds
Slide 355K
LCandS 1107K
SimpleSlide 3143K
LCandSA 3867K
LCorSA 4222K

Figure 5. Total
amount of start-
ing seeds for
each neighbor
functions.

! ! ! ! ! ! !

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dilution

p
re
c
is
io
n

!

Slide
LCandS
SimpleSlide
LCandSA
LCorSA

Figure 6. Precision of LSA with
different neighborhood functions
on artificial networks with im-
planted motifs.

!

!

!

!

!

!

!

0 5 10 15 20 25 30
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dilution

p
re
c
is
io
n

!

Slider!20min
Slider!10min
MotifHeuristics
DStar
Random
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tifHeuristics and Random.

7.5 Biological validation
Next, we assess the effectiveness of SLIDER on the yeast

network. We did not try MotifHeuristics as it already takes
a long time on networks of modest size (cf. Section 7.4).
Furthermore, although D-STAR terminated on our artificial
networks within 5 minutes, the method does not scale to
larger networks. In particular, Leung et al. [7] mention
an experiment where they executed D-STAR on the yeast
network and it did not finish in 5 days, we ourselves have
run D-STAR on this network for 48 hours without result.

We ran SLIDER for 20 minutes exploiting all 8 cores of
the Mac Pro. The average precision of the 1 000 best results
returned by SLIDER over 5 runs, while taking the 1 000 best
motifs returned by the brute force computation as a base-
line, is 16%. We point out that the name precision is mis-
leading in this context as we do not compare with implanted
motifs. The number implies that SLIDER succeeds in recov-
ering no less than 160 of the 1000 best correlated motifs
out of a search space of 6 × 1015 (8,3)-motif pairs after
only a run of 20 minutes which is quite satisfactory. As

SLIDER returns a ranked list, these 160 motif pairs occur at
the top. Moreover, these found correlated motifs occurred
uniformly within the baseline set. The latter is confirmed
by the histograms in Figures 8 and 9. They show that the
frequency of the sizes of the subnetworks selected by the
returned motif pairs are similar to those of the overall best
1 000 motif pairs. We mention that after 10 minutes, already
a precision of 11% was obtained.

8 Related Work
Local search is not only the oldest but also the simplest

among the known meta-heuristics for combinatorial opti-
mization [3]. As the success of all meta-heuristics depends
largely on the effectiveness of the neigborhood function, we
choose in this paper to stick to the simplest meta-heuristic,
put the main focus on fine-tuning the neighborhood func-
tion and leave the exploration of more powerful heuristics
to future work.

At first sight the present work seems highly related to the
mining of frequent patterns in sequences (as for instance in
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[6]). It is therefore tempting to think about a method which
first mines frequent motifs from protein sequences which
are then paired together in a second step serving as candi-
dates for high scoring correlated motifs. An examination
of the 1 000 top correlated motifs in yeast, however, reveals
that each of the participating motifs occur only in 3 to 10
motifs, whereas highly frequent motifs in yeast occur in up
to 60 proteins as can be seen from the histogram in Fig-
ure 10. Therefore, mining correlated motifs is very different
from mining frequent motifs.

9 Conclusion
This work lays the foundation of motif-driven CMM in

establishing an adequate support-measure and determining
the complexity of the general problem. The novel method
SLIDER based on the sliding window neighbor function out-
performs existing motif-driven CMM algorithms and shows
a very promising behavior on real-world PPI-networks. Of
course, there is still room for improvement. There are
several directions for future work: address more advanced
metaheuristics and investigate candidate generation for mo-
tif pairs. A detailed comparison with interaction-driven ap-
proaches should be done [8, 9, 10], although this would re-
quire a new type of artificial networks. Maybe ideas from
both paradigms can be successfully combined into a hybrid
method. Furthermore, we only considered the very simple
model of (`, d)-motifs. Although more expressive models
exist (e.g., position weight matrix or Hidden Markov Mod-
els), (`, d)-motifs are very common in the field of bioin-
formatics. Moreover, Van Dijk et al [14], already showed
how motifs generated by D-STAR can be used to predict
transcription factor interaction on small networks. Using
SLIDER rather than D-STAR, the same methodology can be
applied to larger networks. Nevertheless, it would be worth-
while to investigate more expressive motifs.

Finally, we mention that we could not confirm the
claimed superiority in [7] of MotifHeuristics over D-STAR.
In fact, our results clearly show that fp is inferior to fχ2 in
recovering implanted motifs. These tests should be repeated
on real world data, but as long as only few biological corre-
lated motifs are known this is not possible.
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