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evaluation (Rousseau, 1998). Besides the original form,
variations of the Lorenz curve have been proposed to study
poverty (Jenkins & Lambert, 1997; Zheng, 2000), ecological
diversity (Patil & Taillie, 1979), hierarchies (Egghe, 2002),
own-group preference (Egghe & Rousseau, 2004), and over-
lap (Egghe & Rousseau, 2006). Note that the Lorenz curve is
a real part of classical bibliometrics because as shown by
Burrell (1991, 1993), the Bradford distribution as derived
by Leimkuhler (1967) is actually a theoretical form of the
Lorenz curve. In the context of Lotkaian informetrics, the
further elaboration of this observation occupies the larger
part of chapter 4 in Egghe’s (2005) book on power laws in
the information production process.

If X � (x1, x2, . . . , xN) denotes an ordered array of the
productions of N sources, then its classical Lorenz curve is
denoted as L(X) or LX. Note that we prefer the term
“array” for this type of n-tuple as it is not a vector in the
strict sense; that is, it cannot be multiplied by an arbitrary
real number (including negative numbers) and still be of
the same type. The Lorenz curve of X starts in the origin,
and connects consecutive points of the form

,

where x1 � x2 � . . . � xN � 0, and j � 1, . . . , N. It always
ends in the point with coordinates (1, 1). In this context, arrays
X and Y, with components (xj)j �1, . . . , N and (yj)j�1, . . . , M—
not necessarily of the same length—are said to be equivalent
if they have the same Lorenz curves. This happens if the
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Several characteristics of classical Lorenz curves
make them unsuitable for the study of a group of top-
performers. TOP-curves, defined as a kind of mirror
image of TIP-curves used in poverty studies, are shown
to possess the properties necessary for adequate
empirical ranking of various data arrays, based on the
properties of the highest performers (i.e., the core). TOP-
curves and essential TOP-curves, also introduced in this
article, simultaneously represent the incidence, inten-
sity, and inequality among the top. It is shown that TOP-
dominance partial order, introduced in this article, is
stronger than Lorenz dominance order. In this way, this
article contributes to the study of cores, a central issue
in applied informetrics.

Introduction

Lorenz curves were introduced in 1905 as a graphical de-
vice to show intrinsic inequality among a set of sources
(Lorenz, 1905). These sources can be persons (as in the orig-
inal use of the Lorenz curve), actors (a terminology often
used in social network analysis), performers, authors, arti-
cles, and so on (as a case in point see, Egghe, 2005). Since
its introduction, it has become clear that this is a very pow-
erful device that can be used in many fields and for many
applications. Examples include income distributions
(Kleiber & Kotz, 2003; Lambert, 2001), plant-size inequality
(Weiner, 1985), evenness studies in ecology (Nijssen et al.,
1998), vegetation studies based on satellite images (Bogaert,
Zhou, Tucker, Myneni, & Ceulemans, 2002), and research



components of X and Y are permutations of one another; if
there exists a positive value c such that xj � cyj, j � 1, . . . , N;
if Y � REPEATr(X), for some where REPEATr(X)
denotes the array (Rousseau, 1992, p. 112):

q , , . . . , r
or if X and Y are related through a finite sequence of these
operations. The property that Y and X � cY, c � 0, have the
same Lorenz curve is called scale invariance while the prop-
erty that Y � REPEATr(X) and X have identical Lorenz
curves is referred to as replication invariance (Dalton, 1920).

The Lorenz curve is the basis of a partial order among
arrays of finite length, referred to as Lorenz dominance
order. In this partial order, X Lorenz dominates Y, denoted as
X � Y, if the Lorenz curve of X is situated above or on the
Lorenz curve of Y: LX(t) � LY(t), with strict inequality in
at least one point t ] 0, 1[, and hence in infinitely many. It
is well known (Dalton, 1920) that if xk � xj and xk � h � 0
then LX � LX�, where X � (x1, . . . , xj, . . . , xk, . . . , xN) and
X� � (x1, . . . , xj � h, . . . , xk � h, . . . , xN). Lorenz domi-
nance order is therefore said to satisfy the transfer principle.

Although scale invariance, resulting from the fact that
Lorenz curves are constructed using relative values, is a
basic property of these curves, it is for some studies better to
work with absolute values, such as when studying citations
received by persons or journals, or income distributions
among countries of a totally different nature, such as be-
tween highly developed and extremely poor countries. The
latter observation led Shorrocks (1983) to introduce so-
called generalized Lorenz curves. These generalized Lorenz
curves are constructed by multiplying each ordinate of the
classical Lorenz curve of X by the average production of the

array: . In addition, the generalized Lorenz curve

starts in the origin; it further connects consecutive points of

the form , where x1 � x2 � . . . � xN � 0, and

j � 1, . . . , N. It always ends in the point with coordinates
(1, mX). This curve will be denoted as GLX.

In socioeconomic studies, scientists have often focused
their attention on people with the lowest income. They intro-
duced the notion of poverty line, a threshold line or value
such that if someone’s income falls below this threshold
income, this person is considered to live in poverty. Inequal-
ity among the poor with respect to the whole situation
(e.g., the whole country) is then studied by an adaptation
of Shorrocks’ generalized Lorenz curves: the so-called 
TIP-curves (Jenkins & Lambert, 1997) or absolute rotated
Lorenz curves (Spencer & Fisher, 1992).

In information science and, in particular, in research eval-
uation studies, however, evaluators and decision makers
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are usually more interested in the most productive sources
rather than in the low producers. For this reason, we
introduce the opposite of TIP-curves, called TOP-curves, as
they are designed to study the most productive sources. Sim-
ilarly to the poverty line, we introduce the notion of top line
or top value. This is a threshold, denoted as “t,” separating
the top from the rest.

TOP-Curves

Important notions when studying the most productive
sources are incidence, intensity, and inequality among the
top. These notions will be explained further.

Incidence

Given a top line, the notion of incidence is defined as the
percentage of the population that belongs to the top group.

Preliminary Constructions

TOP-curves can be considered as generalized Lorenz
curves (Shorrocks, 1983), specially designed to study the
most productive sources in an information production
process (IPP). We will show that TOP-curves portray simul-
taneously the incidence, intensity, and inequality among the
top (see Figure 1).

Let X � (x1, x2, . . . , xN) denote an array of productions of
N sources, where xj � 0, for j � 1, . . . , N, denotes the (gen-
eralized) production of the j-th source. We assume that
sources are ranked in decreasing order. Let t � 0 be the top
line. The TOP array of X, given t, is then defined as

(1)

This definition implies that if, for all j, xj � t, then TX � T �
(t, . . . , t) and if, for all j, xj � t, then TX � X. These two cases
will be referred to as trivial cases. Otherwise, as X is ordered
in decreasing order, there exists an index j0 {1, . . . , N � 1}�

TX � (max(xj, t))j�1
N
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FIG. 1. General TOP-curve: in this example incidence � j0�N � 0.6.



such that (TX)j � xj � t for 1 � j � j0 and (TX)j � t for j0 � j � N.
From now on, we will always assume that we do not have a
trivial case and, hence, that such an index j0 exists.

Next, we construct the surplus array, denoted as SX, by
taking the difference TX � T. Observe that this array is auto-
matically ranked in decreasing order:

SX(j) � xj � t � 0 for 1 � j � j0 and
SX(j) � 0 for j0 � 1 � j � N (2)

The last N � j0 components of this array are zeros. The
array SX will sometimes be denoted as SX[j0], particularly
when it is necessary to stress the fact that for 1 � j � j0,
components of SX[j0] are non-zero.

Surplus arrays are essentially “partial vectors” as studied
by Egghe (2002) and Egghe and Rousseau (2005). More
precisely, they are “partial vectors” on Level j0. In socioeco-
nomics and statistics, such arrays are often referred to as
censored arrays (Zheng, 2000).

We are now able to define the notion of intensity.

Intensity

The intensity of the top sources of Array X is equal to the
total surplus sum divided by N:

(3)

The intensity, being the average surplus, is clearly a measure
characterizing the “power” of the top sources.

TOP-Curve

The TOP-curve of X � (x1, x2, . . . , xN), defined after
Jenkins and Lambert’s (1997) TIP-curve, plots against p �
k�N, 1 � k � N, the sum of the first k�N SX values, divided
by N. This TOP-curve is denoted as TOPX(p), 0 � p � 1.
More precisely: 

TOPX(0) � 0; TOPX(k�N) � , for k � 1, . . . , N;

at intermediate points TOPX(p) is determined by linear inter-
polation. Figure 1 illustrates this concept. Clearly, TOPX(p)
is, by definition, a concavely increasing curve. The part
before the horizontal one is similar to a (generalized) Lorenz
curve and reflects the inequality among the most productive
sources.

Essential TOP-Curve

In many practical examples, the group of top sources
constitutes a small minority. This would lead to a TOP-curve
consisting for a large part of a horizontal line. For this
reason, we propose the essential TOP-curve, which is iden-
tical to the TOP-curve, but shows only the part before this
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horizontal line. All essential characteristics can still be seen
on this essential TOP-curve, as shown in Figure 2.

TOP-Equivalence

Arrays, not necessarily with the same number of sources
but with the same TOP-curve, are said to be TOP-equivalent.
If the context is clear, we will simply say “equivalent.” If
two N-arrays differ only in the components with values
lower than or equal to the threshold line, then they are equiv-
alent. Two N-arrays which consist of the same components
(i.e., they are permutations of one another) also are equiva-
lent, as TOP-curves are based on components ranked in
decreasing order. By its definition, it immediately follows
that the TOP-curves of X and Y � REPEATr(X) are identical,
or stated otherwise, that X and Y � REPEATr(X) are TOP-
equivalent. Hence, TOP-curves are replication invariant.

Based on the notions of Lorenz dominance and TIP-
dominance, we introduce the notion of TOP-dominance.

TOP-Dominance

Array X TOP-dominates Array Y if TOPX(p) � TOPY(p)
for all p [0, 1].

Strict TOP-Dominance

Array X strict TOP-dominates Array Y if TOPX(p) �
TOPY(p) for all p [0, 1], where this inequality is strict for
at least one p, and hence for infinitely many.

TOP-dominance determines a partial order in the space of
finite arrays, given a Threshold Line t. The smallest element
in this partially ordered set corresponds to the equivalence
class of arrays where all components are smaller than or
equal to the Threshold t.

TOP-curves can be interpreted as reflecting the general
sense of dominance—the higher the TOP-curve, the higher
the sense of dominance among the highest producers.

�

�
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FIG. 2. Essential TOP-curve derived from Figure 1.



Indeed, if intensity and incidence are given, the higher situ-
ated TOP-curve has more inequality among the top sources.
Hence, intuitively, there is a higher sense of dominance.
Further, a curve with a smaller intensity (and fixed inci-
dence) or higher incidence value (and fixed intensity) can
never TOP-dominate one with a higher intensity or smaller
incidence value. So, intuitively, when there is only a small
group of top sources (small incidence), they tend to domi-
nate more. In addition, when the incidence is the same, the
group with a larger intensity tends to dominate more.

TOP-Curves and Standard Lorenz Curves

The standard Lorenz curve of SX[j0], denoted as or
for short , is obtained from TOPX by dividing each
ordinate value by the intensity; that is, the total surplus sum
divided by N. In particular: 

.

Lemma

If X and Y are N-arrays, if � for the classical
Lorenz dominance relation, and if the total surplus of X is
larger than the total surplus of Y, then X TOP-dominates Y.
This is a trivial consequence of the definitions.

Before continuing with a theoretical study of TOP-curves
showing, among other aspects, their relation with corre-
sponding Lorenz curves, we first present a concrete example
of a TOP-curve.

TOP-curve example. In this section, an example of a TOP-
curve is presented. We consider all articles published in Vol-
ume 51 (Year 2000) of the Journal of the American Society
for Information Science (JASIS). We do not take editorials
(i.e., “In this issue”), letters to the editor, book reviews, “In
memoriam,” and introductions to special issues into account.
In this way, we retained 105 articles. According to the
Journal Citation Reports (JCR), JASIS published 106 articles
in 2000, so the numbers correspond within expected margins.
We ranked these articles according to the number of citations
received in the ISI Web of Knowledge on October 16, 2005.
This is the dataset we will describe using a TOP-curve.

The choice of a threshold is always arbitrary. We choose
the number of citations corresponding to the h-index as
threshold line. The h-index was recently introduced as a
number characterizing the scientific output of a researcher
(Hirsch, 2005) and can easily be applied to other situations
(here, one volume of a scientific journal). When a ranked list
is given, the corresponding h-index is m if the first m items
have a value larger than or equal to m while the item at rank
m � 1 has a value strictly smaller than m � 1. For JASIS
Volume 51, its citation h-index is equal to 15 because the
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article at rank 15 is cited 15 times while the article at rank 16
is cited less (i.e., 14 times). So we use 14.5 as the threshold.
Recall that this number is completely arbitrary and used only
as an illustration.

As 15 of 105 articles belong to the top, the incidence is
15�105 � 0.143. Table 1 shows these top articles. Based on
Table 1 and the threshold value t � 14.5, we obtain an inten-
sity value of 214.5�105 � 2.043. This and other essential
features are illustrated in Figure 3.

A referee asked if using another—acceptable—threshold
(top line) would give a totally different result. Only more ex-
perience with TOP-curves based on other top lines can lead
to a complete answer to this question. Just as an experiment,
we consider a group of top sources based on another, histor-
ical threshold: the core group in the sense of Bradford
(1934). Bradford divided a bibliography (IPP) into three
groups with equal total production. The Bradford core con-
sists of those most-productive sources producing one third
of all items. In the case of JASIS Volume 51, this is the group
of most-cited articles receiving one third of all citations. As
the total number of citations on October 16, 2005 was 919,
one third is 306.3, corresponding to the nine most-cited
articles. These articles received at least 26 citations. So
taking t � 25.5, the incidence is 9�105 � 0.086 and the in-
tensity is 76.5�109 � 0.702. Clearly, using this threshold
yields a totally different result. This is, of course, no sur-
prise. Even after many years of using poverty lines, their
exact definition (depending on family size and adapted to the
cost of living) still leads to heated political debates in many
countries (e.g., Ravallion, 1996; Sen, 1983).

Properties of TOP-Curves and Related 
TOP-Dominance Measures

First, we study a property of TOP-curves, based on the
“dropping-out” transformation (defined later). This behavior
will be contrasted with the behavior of the Lorenz curves of
the surplus array under this same transformation. In this arti-
cle, we always keep the top line fixed.
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where the first j0 � 1 components are strictly larger than
zero. The new array SX�[j0 � 1] given by (5) is the surplus
array of the DO-transformed situation. Clearly, the total
surplus of X� is smaller than that of X. Array SX�[j0 � 1] is a
partial vector at Level j0 � 1.

Proposition

Let and denote the Lorenz curves of the 
arrays SX[j0] and SX�[j0 � 1] as defined earlier. Then

(6)

For TOP-dominance, however, we obtain the opposite
result. If X� is the DO-transformed array of X, then X
TOP-dominates X�:

TOPX� � TOPX (7)

LS[j0]
� LS[j0�1]

LS[j0�1]LS[j0]
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5 3

j0 �1 components N� j0�1 times

TABLE 1. Top articles in JASIS, Volume 51.

Rank Authors/Title Citations received

1 Kling, R.; McKim, G. 57
Not just a matter of time: Field differences and the shaping of electronic 
media in supporting scientific communication

2 Bilal, D. 41
Children’s use of the Yahooligans! Web search engine: I. Cognitive, 
physical, and affective behaviors on fact-based search tasks

3 Palmquist, R.A.; Kim, K.S. 35
Cognitive style and on-line database search experience as predictors of 
Web search performance

4 Lazonder, A.W.; Biemans, H.J.A.; Wopereis, I.G.J.H. 34
Differences between novice and experienced users in searching 
information on the World Wide Web

5 Harter, S.P.; Ford, C.E. 32
Web-based analyses of e-journal impact: Approaches, problems, and issues

6 Xie, H. 28
Shifts of interactive intentions and information-seeking strategies in 
interactive information retrieval

7 Zhang, Y. 27
Using the Internet for survey research: A case study

8 Large, A.; Beheshti, J. 26
The Web as a classroom resource: Reactions from the users

Kim, H.J. 26
Motivations for hyperlinking in scholarly electronic articles:Aqualitative study

10 Tolle, K.M.; Chen, H.C. 25
Comparing noun phrasing techniques for use with medical digital library tools

11 Sutcliffe, A.G.; Ennis, M.; Watkinson, S.J. 23
Empirical studies of end-user information searching

Case, D.O.; Higgins, G.M. 23
How can we investigate citation behavior? A study of reasons for citing 
literature in communication

Haas, S.W.; Grams, E.S. 23
Readers, authors, and page structure: A discussion of four questions 
arising from a content analysis of Web pages

14 Dillon, A.; Gushrowski, B.A. 17
Genres and the web: Is the personal home page the first uniquely digital genre?

15 Ross, N.C.M.; Wolfram, D. 15
End user searching on the Internet: An analysis of term pair 
topics submitted to the Excite search engine

The “Dropping-Out” Transformation

Replace in X the component by , such that
. Observe that this is always possible as j0 � 1 is

the first index j for which . The new array obtained
through this transformation is denoted as X�:

(4)

This transformation will be referred to as a “dropping-out”
transformation (DO-transformation), as source j0 drops out
of the group of top sources.

By the previous definitions,

SX� � SX�[j0 � 1] � q r
(5)

0, p , 0x1 � t, p , xj0�1 � t,

X� � (x1, . . . , xj0�1,  x�j0
� t,  xj0�1, . . . , xN)

xj � t
x�j0

� t � xj0�1

x�j0
� txj0

� t



Proof. If 1 � k � j0 � 1, then

This shows that in this segment, the transformed Lorenz
curve is situated above the original one. From k � j0 on,
both curves always take the value 1. This proves inequality
(6). This result also can be found in Egghe (2002) and in
Egghe and Rousseau (2005).

For the corresponding TOP-curves we have for 1 � k �
j0 � 1:

From k � j0 on, 

This shows that TOPX� is situated below TOPX. This

proves the proposition.
These results are interpreted as follows: If the weakest of

the TOP-group is removed from this group (all other things
being the same), the inequality of the surplus array in-
creases. This seems to be an acceptable conclusion. Yet, the
general feeling of dominance decreases. The reason for this
is that the total surplus has decreased. Lorenz curves use rel-
ative values on the ordinate axis while TOP-curves use ab-
solute values. Hence, the two constructions shine a different
light on the same operation.

Remarks

1. Because the total surplus of X is always larger than that
of X�, we could not deduce inequality (7) directly form
inequality (6), using the previous lemma.

2. Note that the earlier result also is correct if the compo-
nent in X is replaced by (not
necessarily equal to t) such that .

Corollary

If a given N-array X (not equivalent to the null TOP-curve)
is transformed step by step through a series of DO-transfor-
mations to the null TOP-curve, then at each step we obtain a
Lorenz curve for the corresponding surplus array which is
strictly more concentrated than the previous one. Hence, ap-
plying DO-transformations is a stepwise procedure increasing
at each step the inequality in the corresponding surplus arrays.

Xj0�1 � X�j0
� t

X�j0�1 � tXj0
� t
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Similarly, the general feeling of dominance decreases in this
stepwise procedure.1

Definition

An (acceptable) strict TOP-dominance measure is a
function f respecting the TOP-dominance order of finite
arrays, given the top line t. In other words, if X and Y
are arrays and if TOPX � TOPY then f(X ) � f(Y ) (strict
inequality).

Examples. The area under the TOP-curve is an acceptable
strict TOP-dominance measure. Similarly, the length of the
TOP-curve is an acceptable strict TOP-dominance measure.

This area can be calculated as: 

,

while the length of the TOP-curve is:

Calculations can be found in Appendix A.

Thon (1979, p. 433) formulated a series of desirable
properties for poverty measures. Based on his ideas, we will
study the corresponding properties of TOP-curves and,
hence, of dominance measures respecting TOP-dominance.
The complete set of desirable properties (according to Thon)
is covered, explicitly or implicitly.

Proposition A: Restricted Form of the Transfer Principle

If two top sources (i.e., sources with a production
above the top line) are ranked one after the other but have
a different production, then replacing each source’s pro-
duction by their average production yields a TOP-curve
which is situated strictly below the original one. This
means that such an operation decreases the feeling of
dominance.

Proof. By the general transfer principle, this property is
true for Lorenz curves (Dalton, 1920). As the total surplus
and the incidence are not changed by this transformation, the
property also holds for TOP-curves.

Proposition B: Monotonicity (Sen, 1976)

If the production of one top source decreases, the new
TOP-curve is situated strictly under the old one. This loss of
production may be caused by external reasons or by a trans-
fer to a source or sources under the top line, as long as the
production of the source(s) stays under the top line.

a
j0

k�1

a21 � SX(k)2b � (N � j0)

N

a
j0

k�1

(2N � 2k � 1)SX(k)

2N2

782 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—April 2007
DOI: 10.1002/asi

1One can show that the Lorenz curves of TX and TX� [as defined by (1)]
always intersect in a point in ]0, 1[ (A proof can be obtained from the
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Proof. Let X � (x1, x2, . . . , xN) be a given N-array, and let
SX[j0] be its surplus array:

SX � q 0, . . . , 0r.

The transformation described in this proposition leads to a
new array, denoted as X�. It implies that there exists a
(unique) index j1 such that is replaced
by a, with 0 � a � . Here, a � 0 if this loss brings
this source’s production under or on the top line, otherwise
a � 0. If a � 0, then

If a � 0 then there exists an index j2 such

that 

The first components of SX and SX� (from x1 � t to 
are the same. From that point on until the component with
value a, the TOP-curve of X� certainly stays under the TOP-
curve of X as, at each component, the surplus values
for X� are smaller than or equal to those for X. If a � 0, this
already proves this proposition. Otherwise, at the compo-
nent with value a, the ordinate value for TOPX is

while the ordinate value of TOPX� is .

As .this shows that also here the TOP-curve of X�
is strictly under the TOP-curve of X. From this point on, the
components of SX and SX� are again the same. This ends the
proof of this proposition.

From a “domination” point of view, this result is as one
might expect. Yet, this result is not true for concentration
curves (see examples). This clearly illustrates why classical
Lorenz curves are not suited for the study of top sources.

Examples. Let X � (8, 6, 4, 2), let t � 4 and let X�1 � (8, 5,
4, 2) and X�2 � (8, 5, 4, 3). In the second case, there has been
a transfer from a top source to a less-performing source; in
the first case, there is simply a decrease in performance for
the second source. In any case, we have: SX � (4, 2, 0, 0) and
SX� � (4, 1, 0, 0), and hence, the Lorenz curve of SX is situ-
ated under the Lorenz curve of SX�. Yet, considering another
transformation of the same type, namely X to X�= (7, 6, 4, 2)
leads to SX� � (3, 2, 0, 0). Now, the Lorenz curve of SX is
situated above the one for SX�.

By the way TOP-curves are constructed, it immediately
follows that TOP-dominance values are not affected by
changes in the performance of non-top sources. This property

a � xj1
� t

a
j2�1

k�1
k
 j1

(x
k
� t) � a

N

a
j2�1

k�1

(xk � t)

N

xj1�1 � t)

a, xj2
� t, p , xj0

� t, 0, p , 0
N� j0 times

¢

SX� � ° x1 � t, x2 � t, p , xj1�1 � t, xj1�1 � t, p , xj2�1 � t,

� 5j0 � 1, p , N6
SX� � ° x1 � t, x2 � t, p , xj1�1 � t, xj1�1 � t, p , xj0

� t, 0, p ,0
N� j0 � 1 times

¢

xj1
� t

xj1
� t�  51, p ,  j06

x1 � t, x2 � t, . . . , xj0
� t,

is sometimes referred to as “focus” (Zheng, 2000). TOP-
dominance values also are “anonymous;” that is, they depend
only on the actual data, not on the source that has contributed
a particular component of the studied array.

Relation Between Generalized Lorenz Curves 
of Finite Arrays and TOP-Curves

Proposition C

Let X � (x1, x2, . . . , xN) and Y � (y1, y2, . . . , yM) be finite
arrays, and let t be a given top line, then

GLX � GLY implies TOPX � TOPY.

The rather technical proof can be found in Appendix B.

Corollary. Let X � (x1, x2, . . . , xN) and Y � (y1, y2, . . . , yN)

be N-arrays such that and let t be a given top 

line, then 

LX � LY implies TOPX � TOPY

This follows from the fact that implies that

LX � LY is equivalent to GLX � GLY.

Remark. If LX � LY and , then clearly
L(SX) � L(SY).

Note that the opposite implication of the corollary [i.e., 

if , then TOPX � TOPY implies LX � LY

(⇔ GLX � GLY)], is in general not true (see counterexample
described next). This proves that the TOP-dominance partial
order (given t) is stronger than the Lorenz dominance order.
Recall that given a set U and two partial orders � and V on
U, then � is said to be stronger than V (and therefore V is
weaker than �) if for every x and y in U: x V y implies
x � y. This relation between these two partial orders is
another reason why TOP-curves are better suited to study the
top sources than are classical Lorenz curves. This conclusion
is, of course, also true for the corresponding measures of
inequality or TOP-dominance.

A Counterexample

Let X � (6, 6, 4, 2), Y � (7, 5, 3, 3), and t � 4. Clearly, X
and Y are incomparable according to the Lorenz order, as the
corresponding Lorenz curves intersect. SX � (2, 2, 0, 0) and
SY � (3, 1, 0, 0), and hence TOPY � TOPX.

Summary and Conclusion

In this contribution, we have introduced TOP-curves be-
cause several characteristics of classical Lorenz curves make
them unsuitable for the study of a group of top sources. For

a
N

j�1

xj � a
N

j�1

yj

a
N

j�1

xj � a
N

j�1

yj

a
N

j�1

xj � a
N

j�1

yj

a
N
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N
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example, Lorenz curves do not reflect intensity or inci-
dence of the top. They are, moreover, invariant under scale
transformations.

TOP-curves, defined as a kind of mirror image of TIP-
curves as used in poverty studies, are shown to possess prop-
erties necessary for an adequate empirical ranking of various
data arrays and this based on the properties of the highest
performers. They simultaneously represent the incidence,
intensity, and inequality among the top. Moreover, the TOP-
dominance partial order (given a top line t) is proven to be
stronger than the Lorenz dominance order. We therefore ad-
vocate the use of TOP-curves when focusing on the top
sources in information-production processes. In this way,
this article contributes to the study of cores, a central issue in
applied informetrics.

Besides rankings of TOP-curves with a fixed top line, one
also may study the influence of varying top lines. This is
similar to the difference between poverty-measure ordering
and poverty-line ordering (Zheng, 2000). This type of study
is, however, left to future research.
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Appendix A

Area Under a TOP-Curve and Length of a TOP-Curve

We consider the graph (see Figure 1) and calculate the
area of each horizontal zone starting from below. Each zone
consists of a triangle followed by a rectangle. This leads to
the following sum:

This is the area under a TOP-curve.
To calculate the length of a TOP-curve, we simply add

lengths of hypotenuses of triangles and add the length of the
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horizontal line segment on the end. This yields:

.

Appendix B: Proof of Proposition C

Proposition C
Let X � (x1, x2, . . . , xN) and Y � (y1, y2, . . . , yM) be finite

arrays, ranked in decreasing order, and let t be a given top-
line, then

GLX � GLY implies TOPX � TOPY

Proof. We first transform X and Y such that they become
arrays of the same length (NM) without changing their aver-
age, by using the REPEAT-operation. The transformed X is
denoted as RX � REPEATM(X) and is defined as:

Similarly, Y is transformed into RY � REPEATN(Y) and
is defined as:

The components of RX and RY will be denoted as
. Clearly, this transformation

leaves averages of arrays invariant. This implies that
the generalized Lorenz curves of GLX and GLRX coincide,
as do GLY and GLRY. Consequently GLX � GLY implies
GLRX � GLRY. From this inequality, we deduce that for all j,
1 � j � NM:

, (8)

with at least one strict inequality. Then we also have:

(9)

where some of the terms in these sums can be negative.
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Let j0 be defined as in the previous sections, then, 

and let k0 play the

same role for the array RY. Hence, 

Note that the corresponding indices for

X and Y are j0�M and k0�N. As TOP-curves are replication

invariant, it follows that proving that TOPX � TOPY is

equivalent to proving TOPRX � TOPRY.
The proof considers two main cases: j0 � k0 and j0 � k0.

Case A: j0 � k0

This first case is subdivided into three parts: j � j0, 
j0 � j � k0 (if j0 
 k0), and k0 � j � NM.

If j � j0 then, by inequality (9)

If j0 � j � k0 (if j0 
 k0), then

Finally, if k0 � j � MN, then

.

Case B: j0 � k0

This case also is subdivided into three parts: j � k0, 
k0 � j � j0 (if j0 
 k0), and j0 � j � NM.

If j � k0, then the first part of CaseAis still valid. If k0 � j �

j0 (if j0 
 k0), then 

, and finally, the third case is

again the same as for Case A. This proves Proposition C.
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