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Abstract. We study deterministic regular expressions extended with
the counting operator. There exist two notions of determinism, strong
and weak determinism, which almost coincide for standard regular ex-
pressions. This, however, changes dramatically in the presence of count-
ing. In particular, we show that weakly deterministic expressions with
counting are exponentially more succinct and strictly more expressive
than strongly deterministic ones, even though they still do not capture
all regular languages. In addition, we present a finite automaton model
with counters, study its properties and investigate the natural extension
of the Glushkov construction translating expressions with counting into
such counting automata. This translation yields a deterministic automa-
ton if and only if the expression is strongly deterministic. These results
then also allow to derive upper bounds for decision problems for strongly
deterministic expressions with counting.

1 Introduction

The use of regular expressions (REs) is quite widespread and includes applica-
tions in bioinformatics [17], programming languages [23], model checking [22],
XML schema languages [21], etc. In many cases, the standard operators are ex-
tended with additional ones to facilitate usability. A popular such operator is the
counting operator allowing for expressions of the form “a2,4”, defining strings
containing at least two and at most four a’s, which is used for instance in Egrep
[9] and Perl [23] patterns and in the XML schema language XML Schema [21].

In addition to expanding the vocabulary of REs, subclasses of REs have been
investigated to alleviate, e.g., the matching problem. For instance, in the context
of XML and SGML, the strict subclasses of weakly and strongly deterministic
regular expressions have been introduced. Weak determinism (also called one-
unambiguity [2]) intuitively requires that, when matching a string from left to
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right against an expression, it is always clear against which position in the ex-
pression the next symbol must be matched. For example, the expression (a+b)∗a
is not weakly deterministic, but the equivalent expression b∗a(b∗a)∗ is. Strong
determinism intuitively requires additionally that it is also clear how to go from
one position to the next. For example, (a∗)∗ is weakly deterministic, but not
strongly deterministic since it is not clear over which star one should iterate
when going from one a to the next.

While weak and strong determinism coincide for standard regular expres-
sions [1]3, this situation changes completely when counting is involved. Firstly,
the algorithm for deciding whether an expression is weakly deterministic is non-
trivial [13]. For instance, (b?a2,3)2,2b is weakly deterministic, but the very similar
(b?a2,3)3,3b is not. So, the amount of non-determinism introduced depends on
the concrete values of the counters. Second, as we will show, weakly deterministic
expressions with counting are strictly more expressive than strongly determinis-
tic ones. Therefore, the aim of this paper is an in-depth study of the notions of
weak and strong determinism in the presence of counting w.r.t. expressiveness,
succinctness, and complexity. In particular, our contributions are the following:

– We give a complete overview of the expressive power of the different classes of
deterministic expressions with counting. We show that strongly deterministic
expressions with counting are equally expressive as standard deterministic
expressions. Weakly deterministic expressions with counting, on the other
hand, are more expressive than strongly deterministic ones, except for unary
languages, on which they coincide. However, not all unary regular languages
are definable by weakly deterministic expressions with counting (Section 3).

– We investigate the difference in succinctness between strongly and weakly
deterministic expressions with counting, and show that weakly deterministic
expressions can be exponentially more succinct than strongly deterministic
ones. This result prohibits an efficient algorithm translating a weakly deter-
ministic expression into an equivalent strongly deterministic one, if such an
expression exists. This contrasts with the situation of standard expressions
where such a linear time algorithm exists [1] (Section 4).

– We present an automaton model extended with counters, counter NFAs (CN-
FAs), and investigate the complexity of some related problems. For instance,
it is shown that boolean operations can be applied efficiently to CDFAs, the
deterministic counterpart of CNFAs (Section 5).

– Bruggemann-Klein [1] has shown that the Glushkov construction, translating
regular expressions into NFAs, yields a DFA if and only if the original expres-
sion is deterministic. We investigate the natural extension of the Glushkov
construction to expressions with counters, converting expressions to CNFAs.
We show that the resulting automaton is deterministic if and only if the
original expression is strongly deterministic (Section 6).

3 Brüggemann-Klein [1] did not study strong determinism explicitly, although she did
study strong unambiguity. However, she gives a procedure to transform expressions
into star normal form which rewrites weakly deterministic expressions into equiva-
lent strongly deterministic ones in linear time.



– Combining the results of Section 5, concerning CDFAs, with the latter result
then also allows to infer better upper bounds on the inclusion and equiva-
lence problem of strongly deterministic expressions with counting. Further,
we show that testing whether an expression with counting is strongly deter-
ministic can be done in cubic time, as is the case for weak determinism [13]
(Section 7).

The original motivation for this work comes from the XML schema language
XML Schema, which uses weakly deterministic expressions with counting. How-
ever, it is also noted by Sperberg-McQueen [20], one of its developers, that
“Given the complications which arise from [weakly deterministic expressions], it
might be desirable to also require that they be strongly deterministic as well [in
XML Schema].” The design decision for weak determinism is probably inspired
by the fact that it is the natural extension of the notion of determinism for
standard expressions, and a lack of a detailed analysis of their differences when
counting is allowed. A detailed examination of strong and weak determinism of
regular expressions with counting intends to fill this gap.

Related work: Apart from the work already mentioned, there are several
automata based models for different classes of expressions with counting with
as main application XML Schema validation, by Kilpelainen and Tuhkanen [12],
Zilio and Lugiez [4], and Sperberg-McQueen [20]. Here, Sperberg-McQueen in-
troduces the extension of the Glushkov construction which we study in Section 6.
We introduce a new automata model in Section 5 as none of these models al-
low to derive all results in Sections 5 and 6. Further, Sperberg-McQueen [20]
and Koch and Scherzinger [14] introduce a (slightly different) notion of strongly
deterministic expression with and without counting, respectively. We follow the
semantic meaning of Sperberg-McQueen’s definition, while using the technical
approach of Koch and Scherzinger. Finally, Kilpelainen [10] shows that inclusion
for weakly deterministic expressions with counting is coNP-hard; and Colazzo,
Ghelli, and Sartiani [3] have investigated the inclusion problem involving sub-
classes of deterministic expressions with counting. Seidl et al. also investigate
counting constraints in XML schema languages by adding Presburger constraints
to regular languages [18]. Concerning deterministic languages without counting,
the seminal paper is by Bruggemann-Klein and Wood [2] where, in particular,
it is shown to be decidable whether a language is definable by a deterministic
regular expression. Conversely, general regular expressions with counting have
also received quite some attention [7, 8, 11, 16].

2 Preliminaries

Let N denote the natural numbers {0, 1, 2, . . .}. For the rest of the paper, Σ
always denotes a finite alphabet. The set of regular expressions over Σ, denoted
by RE(Σ), is defined as follows: ε and every Σ-symbol is in RE(Σ); and when-
ever r and s are in RE(Σ), then so are (rs), (r + s), and (s)∗. For readability,
we usually omit parentheses in examples. The language defined by a regular ex-
pression r, denoted by L(r), is defined as usual. By RE(Σ,#) we denote RE(Σ)



extended with numerical occurrence constraints or counting. That is, when r is
an RE(Σ,#)-expression then so is rk," for k ∈ N and # ∈ N0 ∪ {∞} with k ≤ #.
Here, N0 denotes N \ {0}. Furthermore, L(rk,") =

⋃"
i=k L(r)i. We use r? to ab-

breviate (r+ε). Notice that r∗ is simply an abbreviation for r0,∞. Therefore, we
do not consider the ∗-operator in the context of RE(Σ,#). The size of a regular
expression r in RE(Σ,#), denoted by |r|, is the number of Σ-symbols and oper-
ators occurring in r plus the sizes of the binary representations of the integers.
An RE(Σ,#) expression r is nullable if ε ∈ L(r). We say that an RE(Σ,#) r is
in normal form if for every nullable subexpression sk,l of r we have k = 0. Any
RE(Σ,#) can easily be normalized in linear time. Therefore, we assume that all
expressions used in this paper are in normal form. Sometimes we will use the
following observation, which follows directly from the definitions:

Remark 1. A subexpression rk," is nullable if and only if k = 0.

Weak determinism. For an RE(Σ,#) r, let Char(r) be the set of Σ-symbols
occurring in r. A marked regular expression with counting over Σ is a regular
expression over Σ ×N in which every (Σ ×N)-symbol occurs at most once. We
denote the set of all these expressions by MRE(Σ,#). Formally, r ∈ MRE(Σ,#)
if r ∈ RE(Σ × N,#) and, for every subexpression s s′ or s + s′ of r, Char(s) ∩
Char(s′) = ∅. A marked string is a string over Σ×N (in which (Σ×N)-symbols
can occur more than once). When r is a marked regular expression, L(r) is
therefore a set of marked strings.

The demarking of a marked expression is obtained by deleting these integers.
Formally, the demarking of r is dm(r), where dm : MRE(Σ,#) → RE(Σ,#) is
defined as dm(ε) := ε, dm((a, i)) := a, dm(rs) := dm(r)dm(s), dm(r + s) :=
dm(r) + dm(s), and dm(rk,") := dm(r)k,". Any function m : RE(Σ,#) →
MRE(Σ,#) such that for every r ∈ RE(Σ,#) it holds that dm(m(r)) = r is
a valid marking function. For conciseness and readability, we will from now on
write ai instead of (a, i) in marked regular expressions. For instance, a marking
of (a+b)1,2a+bc is (a1+b1)1,2a2+b2c1. The markings and demarkings of strings
are defined analogously. For the rest of the paper, we usually leave the actual
marking function m implicit and denote by r a marking of the expression r.
Likewise w will denote a marking of a string w. We always use overlined letters
to denote marked expressions, symbols, and strings.

Definition 2. An RE(Σ,#) expression r is weakly deterministic (also called
one-unambiguous) if, for all strings u, v, w ∈ Char(r)∗ and all symbols a, b ∈
Char(r), the conditions uav, ubw ∈ L(r) and a *= b imply that a *= b.

A regular language is weakly deterministic with counting if it is defined by some
weakly deterministic RE(Σ,#) expression. The classes of all weakly determin-
istic languages with counting, respectively, without counting, are denoted by
DET#

W (Σ), respectively, DETW (Σ).
Intuitively, an expression is weakly deterministic if, when matching a string

against the expression from left to right, we always know against which symbol
in the expression we must match the next symbol, without looking ahead in the
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Fig. 1. Parse tree of (a0,1)0,3(b0,∞ + c0,∞)d. Counter nodes are numbered from 1 to 4.

string. For instance, (a + b)∗a and (a2,3 + b)3,3b are not weakly deterministic,
while b∗a(b∗a)∗ and (a2,3 + b)2,2b are.

Strong determinism. Intuitively, an expression is weakly deterministic if, when
matching a string from left to right, we always know where we are in the expres-
sion. For a strongly deterministic expression, we will additionally require that
we always know how to go from one position to the next. Thereto, we distin-
guish between going forward in an expression and backward by iterating over a
counter. For instance, in the expression (ab)1,2 going from a to b implies going
forward, whereas going from b to a iterates backward over the counter.

Therefore, an expression such as ((a+ε)(b+ε))0,2 will not be strongly deter-
ministic, although it is weakly deterministic. Indeed, when matching ab, we can
go from a to b by either going forward or by iterating over the counter. By the
same token, also (a1,2)3,4 is not strongly deterministic, as we have a choice of
counters over which to iterate when reading multiple a’s. Conversely, (a2,2)3,4 is
strongly deterministic as it is always clear over which counter we must iterate.

For the definition of strong determinism, we follow the semantic meaning of
the definition by Sperberg-McQueen [20], while using the formal approach of
Koch and Scherzinger [14] (who called the notion strong one-unambiguity)4. We
denote the parse tree of an RE(Σ,#) expression r by pt(r). Figure 1 contains
the parse tree of the expression (a0,1)0,3(b0,∞ + c0,∞)d.

A bracketing of a regular expression r is a labeling of the counter nodes of
pt(r) by distinct indices. Concretely, we simply number the nodes according to
the depth-first left-to-right ordering. The bracketing r̃ of r is then obtained by
replacing each subexpression sk," of r with index i with ([is]i)k,". Therefore, a
bracketed regular expression is a regular expression over alphabet Σ + Γ , where
Γ := {[i, ]i | i ∈ N}. For example, ([1([2a]2)0,1]1)0,3(([3b]3)0,∞ + ([4c]4)0,∞)d is a
bracketing of (a0,1)0,3(b0,∞+c0,∞)d, for which the parse tree is shown in Figure 1.
We say that a string w in Σ + Γ is correctly bracketed if w has no substring of
the form [i]i. That is, we do not allow a derivation of ε in the derivation tree.

Definition 3. A regular expression r is strongly deterministic with counting if
r is weakly deterministic and there do not exist strings u, v, w over Σ∪Γ , strings
4 The difference with Koch and Scherzinger is that we allow different derivations of ε

while they forbid this. For instance, a∗+b∗ is strongly deterministic in our definition,
but not in theirs, as ε can be matched by both a∗ and b∗.



α *= β over Γ , and a symbol a ∈ Σ such that uαav and uβaw are both correctly
bracketed and in L(r̃).

A standard regular expression (without counting) is strongly deterministic if
the expression obtained by replacing each subexpression of the form r∗ with
r0,∞ is strongly deterministic with counting. The class DET#

S (Σ), respectively,
DETS(Σ), denotes all languages definable by a strongly deterministic expres-
sions with, respectively, without, counting.

3 Expressive power

Brüggemann-Klein and Wood [2] proved that for any alphabet Σ DETW (Σ)
forms a strict subclass of the regular languages, denoted REG(Σ). The complete
picture of the relative expressive power depends on the size of Σ, as shown by
the following theorem.

Theorem 4. For every alphabet Σ,

DETS(Σ) = DETW (Σ) = DET#
S (Σ) = DET#

W (Σ) ! REG(Σ) (if |Σ| = 1)

DETS(Σ) = DETW (Σ) = DET#
S (Σ) ! DET#

W (Σ) ! REG(Σ) (if |Σ| ≥ 2)

Proof. The equality DETS(Σ) = DETW (Σ) is already implicit in the work of
Brüggemann-Klein [1]. By this result and by definition, all inclusions from left to
right already hold. It therefore suffices to show that (1) DET#

S (Σ) ⊆ DETS(Σ)
for arbitrary alphabets, (2) DET#

W (Σ) ⊆ DET#
S (Σ) for unary alphabets, (3)

DET#
S (Σ) ! DET#

W (Σ) for binary alphabets, and (4) DET#
W (Σ) ! REG(Σ)

for unary alphabets.
(1): We show that each strongly deterministic expression with counting can be
transformed into a strongly deterministic expression without counting. This is
quite non-trivial, but the crux is to unfold each counting operator in a smart
manner, taking special care of nullable expressions.
(2): The crux of this proof lies in Lemma 5. It is well known and easy to see that
the minimal DFA for a regular language over a unary alphabet is defined either
by a simple chain of states (sometimes also called a tail [19]), or a chain followed
by a cycle.The languages in DET#

W (Σ) can be defined in this manner. The
following lemma adds to that, that for weakly deterministic regular expressions,
only one node in this cycle can be final. The theorem then follows as any such
language can be defined by a strongly deterministic expression.

Lemma 5. Let Σ = {a}, and L ∈ REG(Σ), then L ∈ DET#
W (Σ) if and only if

L is definable by a DFA which is either a chain, or a chain followed by a cycle,
for which at most one of the cycle nodes is final.

(3 and 4): Witnesses for non-inclusion are the languages defined by (a2,3b?)∗
and (aaa)∗(a + aa), respectively. Both languages can be shown not to be in
DETW (Σ) [2]. The theorem then follows from the above results.



4 Succinctness

In Section 3 we learned that DET#
W (Σ) strictly contains DET#

S (Σ), prohibit-
ing a translation from weak to strong deterministic expressions with counting.
However, one could still hope for an efficient algorithm which, given a weakly
deterministic expression known to be equivalent to a strong deterministic one,
constructs this expression. However, this is not the case:

Theorem 6. For every n ∈ N, there exists an r ∈ RE(Σ,#) over alphabet
{a} which is weakly deterministic and of size O(n) such that every strongly
deterministic expression s, with L(r) = L(s), is of size at least 2n.

The above theorem holds for the family of languages defined by (a2n+1,2n+1
)1,2,

each of which is weakly deterministic and defines all strings with a’s of length
from 2n + 1 to 2n+2, except for the string a2n+1+1. These expressions, in fact,
where introduced by Kilpelainen when studying the inclusion problem for weakly
deterministic expressions with counting [10].

5 Counter automata

Let C be a set of counter variables and α : C → N be a function assigning a
value to each counter variable. We inductively define guards over C, denoted
Guard(C), as follows: for every cv ∈ C and k ∈ N, we have that true, false,
cv = k, and cv < k are in Guard(C). Moreover, when φ1, φ2 ∈ Guard(C), then
so are φ1 ∧ φ2, φ1 ∨ φ2, and ¬φ1. For φ ∈ Guard(C), we denote by α |= φ that
α models φ, i.e., that applying the value assignment α to the counter variables
results in satisfaction of φ.

An update is a set of statements of the form cv++ and reset(cv) in which
every cv ∈ C occurs at most once. By Update(C) we denote the set of all updates.

Definition 7. A non-deterministic counter automaton (CNFA) is a 6-tuple A =
(Q, q0, C, δ, F, τ) where Q is the finite set of states; q0 ∈ Q is the initial state;
C is the finite set of counter variables; δ : Q×Σ ×Guard(C)×Update(C)×Q
is the transition relation; F : Q → Guard(C) is the acceptance function; and
τ : C → N assigns a maximum value to every counter variable.

Intuitively, A can make a transition (q, a, φ, π, q′) whenever it is in state q,
reads a, and guard φ is true under the current values of the counter variables.
It then updates the counter variables according to the update π, in a way we
explain next, and moves into state q′. To explain the update mechanism formally,
we introduce the notion of configuration. Thereto, let max(A) = max{τ(c) |
c ∈ C}. A configuration is a pair (q, α) where q ∈ Q is the current state and
α : C → {1, . . . ,max(A)} is the function mapping counter variables to their
current value. Finally, an update π transforms α into π(α) by setting cv := 1,
when reset(cv) ∈ π, and cv := cv + 1 when cv++ ∈ π and α(cv) < τ(cv).
Otherwise, the value of cv remains unaltered.



Let α0 be the function mapping every counter variable to 1. The initial config-
uration γ0 is (q0, α0). A configuration (q, α) is final if α |= F (q). A configuration
γ′ = (q′, α′) immediately follows a configuration γ = (q, α) by reading a ∈ Σ,
denoted γ →a γ′, if there exists (q, a, φ, π, q′) ∈ δ with α |= φ and α′ = π(α).

For a string w = a1 · · · an and two configurations γ and γ′, we denote by
γ ⇒w γ′ that γ →a1 · · · →an γ′. A configuration γ is reachable if there exists a
string w such that γ0 ⇒w γ. A string w is accepted by A if γ0 ⇒w γf where γf

is a final configuration. We denote by L(A) the set of strings accepted by A.
A CNFA A is deterministic (or a CDFA) if, for every reachable configura-

tion γ = (q, α) and for every symbol a ∈ Σ, there is at most one transition
(q, a, φ, π, q′) ∈ δ such that α |= φ.

The size of a transition θ or acceptance condition F (q) is the number of
symbols which occur in it plus the size of the binary representation of each
integer occcurring in it. By the same token, the size of A, denoted by |A|, is
|Q| +

∑
q∈Q log τ(q) + |F (q)| +

∑
θ∈δ |θ|.

Theorem 8. 1. Given CNFAs A1 and A2, a CNFA A accepting the union or
intersection of A1 and A2 can be constructed in polynomial time. Moreover,
when A1 and A2 are deterministic, then so is A.

2. Given a CDFA A, a CDFA which accepts the complement of A can be con-
structed in polynomial time.

3. membership for word w and CDFA A is in time O(|w||A|).
4. membership for non-deterministic CNFA is np-complete.
5. emptiness for CDFAs and CNFAs is pspace-complete.
6. Deciding whether a CNFA A is deterministic is pspace-complete.

6 From RE(Σ,#) to CNFA

In this section, we show how an RE(Σ,#) expression r can be translated in poly-
nomial time into an equivalent CNFA Gr by applying a natural extension of the
well-known Glushkov construction. We emphasize at this point that such an ex-
tended Glushkov construction has already been given by Sperberg-McQueen [20].
Therefore, the contribution of this section lies mostly in the characterization
given below: Gr is deterministic if and only if r is strongly deterministic. More-
over, as seen in the previous section, CDFAs have desirable properties which by
this translation also apply to strongly deterministic RE(Σ,#) expressions. We
refer to Gr as the Glushkov counting automaton of r.

6.1 Notation and terminology

We first provide some notation and terminology needed in the construction be-
low. For an RE(Σ,#) expression r, the set first(r) (respectively, last(r)) consists
of all symbols which are the first (respectively, last) symbols in some word de-
fined by r. These sets are inductively defined as follows:

– first(ε) = last(ε) = ∅ and ∀a ∈ Char(r),first(a) = last(a) = {a};



– first(r1 + r2) = first(r1) ∪ first(r2) and last(r1 + r2) = last(r1) ∪ last(r2);
– If ε ∈ L(r1), first(r1r2) = first(r1) ∪ first(r2), else first(r1r2) = first(r1);
– If ε ∈ L(r2), last(r1r2) = last(r1) ∪ last(r2), else last(r1r2) = last(r2);
– first(rk,") = first(r1) and last(rk,") = last(r1).

For a regular expression r, we say that a subexpression of r of the form sk," is an
iterator or iterated subexpression of r. Let lower(sk,") := k, and upper(sk,") := #.
We say that sk," is bounded when # ∈ N, otherwise it is unbounded. For instance,
an iterator of the form s0,∞ is a nullable, unbounded iterator.

For a marked symbol x and an iterator c we denote by iterators(x, c) the list
of all iterated subexpressions of c which contain x, except c itself. For marked
symbols x, y, we denote by iterators(x, y) all iterated subexpressions which con-
tain x but not y. Finally, let iterators(x) be the list of all iterated subexpressions
which contain x. Note that all such lists [c1, . . . , cn] contain a sequence of nested
subexpressions. Therefore, we will always assume that they are ordered such
that c1 ≺ c2 ≺ · · · ≺ cn. Here c ≺ c′ denotes that c is a subexpression of
c′. For example, if r = ((a1,2

1 b1)3,4)5,6, then iterators(a1, r) = [a1,2
1 , (a1,2

1 b1)3,4],
iterators(a1, b1) = [a1,2

1 ], and iterators[a1] = [a1,2
1 , (a1,2

1 b1)3,4, ((a1,2
1 b1)3,4)5,6].

6.2 Construction

We now define the set follow(r) for a marked regular expression r. As in the
standard Glushkov construction, this set lies at the basis of the transition relation
of Gr. The set follow(r) contains triples (x, y, c), where x and y are marked
symbols and c is either an iterator or null. Intuitively, the states of Gr will be a
designated start state plus a state for each symbol in Char(r). A triple (x, y, c)
then contains the information we need for Gr to make a transition from state x
to y. If c *= null, this transition iterates over c and all iterators in iterators(x, c)
are reset by going to y. Otherwise, if c equals null, the iterators in iterators(x, y)
are reset. Formally, the set follow(r) contains for each subexpression s of r,

– all tuples (x, y, null) for x in last(s1), y in first(s2), and s = s1 s2; and
– all tuples (x, y, s) for x in last(s1), y in first(s1), and s = s1

k,".

We introduce a counter variable cv(c) for every iterator c in r whose value will
always denote which iteration of c we are doing in the current run on the string.
We define a number of tests and update commands on these counter variables:

– value-test([c1, . . . , cn]) :=
∧

ci
(lower(ci) ≤ cv(ci)) ∧ (cv(ci) ≤ upper(ci)).

When we leave the iterators c1, . . . , cn we have to check that we have done
an admissible number of iterations for each iterator.

– upperbound-test(c) := cv(c) < upper(c) when c is a bounded iterator and
upperbound-test(c) := true otherwise. When iterating over a bounded iter-
ator, we have to check that we can still do an extra iteration.

– reset(c1, . . . , cn) := {reset(cv(c1)), . . . , reset(cv(cn))}. When leaving some it-
erators, their values must be reset. The counter variable is reset to 1, because
at the time we reenter this iterator, its first iteration is started.



– update(c) := {cv(c)++}. When iterating over an iterator, we start a new
iteration and increment its number of transitions.

We now define the Glushkov counting automaton Gr = (Q, q0, C, δ, F, τ).
The set of states Q is the set of symbols in r plus an initial state, i.e., Q :=
{q0}+

⋃
x∈Char(r) qx. Let C be the set of iterators occurring in r. We next define

the transition function. For all y ∈ first(r), (q0,dm(y), true, ∅, qy) ∈ δ.5 For every
element (x, y, c) ∈ follow(r), we define a transition (qx,dm(y), φ, π, qy) ∈ δ. If
c = null, then φ := value-test(iterators(x, y)) and π := reset(iterators(x, y)). If
c *= null, then φ := value-test(iterators(x, c)) ∧ upperbound-test(c) and π :=
reset(iterators(x, c)) ∪ update(c). The acceptance criteria of Gr depend on the
set last(r). For any symbol x /∈ last(r), F (qx) := false. For every element x ∈
last(r), F (qx) := value-test(iterators(x)). Here, we test whether we have done
an admissible number of iterations of all iterators in which x is located. Finally,
F (q0) := true if ε ∈ L(r). Lastly, for all bounded iterators c, τ(cv(c)) = upper(c)
since c never becomes larger than upper(c), and for all unbounded iterators c,
τ(cv(c)) = lower(c) as there are no upper bound tests for cv(c).

Theorem 9. For every RE(Σ,#) expression r, L(Gr) = L(r). Moreover, Gr is
deterministic iff r is strongly deterministic.

7 Decidability and Complexity Results

Definition 3, defining strong determinism, is of a semantical nature. Therefore,
we provide Algorithm 1 for testing whether a given expression is strongly deter-
ministic, which runs in cubic time. To decide weak determinism, Kilpeläinen and
Tuhkanen [13] give a cubic algorithm for RE(Σ,#), while Brüggemann-Klein [1]
gives a quadratic algorithm for RE(Σ) by computing its Glushkov automaton
and testing whether it is deterministic6.

Theorem 10. For any r ∈ RE(Σ,#), isStrongDeterministic(r) returns true
if and only if r is strong deterministic. Moreover, it runs in time O(|r|3).

We next consider the following decision problems, for expressions of class R:
inclusion: Given two expressions r, r′ ∈ R, is L(r) ⊆ L(r′)?
equivalence: Given two expressions r, r′ ∈ R, is L(r) = L(r′)?
intersection: Given a number of expressions r1, . . . , rn ∈ R, is

⋂n
i=1 L(ri) *= ∅?

Theorem 11. (1) inclusion and equivalence for RE(Σ,#) are expspace-
complete [16], intersection for RE(Σ,#) is pspace-complete [7]. (2) inclu-
sion and equivalence for DETW (Σ) are in ptime, intersection for DETW (Σ)
is pspace-complete [15]. (3) inclusion for DET#

W (Σ) is conp-hard [11].
5 Recall that dm(y) denotes the demarking of y.
6 There sometimes is some confusion about this result: Computing the Glushkov au-

tomaton is quadratic in the expression, while linear in the output automaton (con-
sider, e.g., (a1 + · · · + an)(a1 + · · · + an)). Only when the alphabet is fixed is the
Glushkov automaton of a deterministic expression of size linear in the expression.



Algorithm 1 isStrongDeterministic. Returns true if r is strong determin-
istic, false otherwise.

r ← marked version of r
2: Initialize Follow ← ∅

Compute first(s), last(s), for all subexpressions s of r
4: if ∃x, y ∈ first(r) with x &= y and dm(x) = dm(y) then return false

for each subexpression s of r, in bottom-up fashion do
6: if s = s1 s2 then

if last(s1) &= ∅ and ∃x, y ∈ first(s1) with x &= y and dm(x) = dm(y) then
return false

8: F ← {(x, dm(y)) | x ∈ last(s1), y ∈ first(s2)}
else if s = s1

[k,"], with " ≥ 2 then
10: if ∃x, y ∈ first(s1) with x &= y and dm(x) = dm(y) then return false

F ← {(x, dm(y)) | x ∈ last(s1), y ∈ first(s1)}
12: if F ∩ Follow &= ∅ then return false

if s = s1 s2 or s = s1
k,", with " ≥ 2 and k < " then

14: Follow ← Follow ) F
return true

By combining (1) and (2) of Theorem 11 we get the complexity of intersection
for DET#

W (Σ) and DET#
S (Σ). This is not the case for the inclusion and equiv-

alence problem, unfortunately. By using the results of the previous sections we
can, for DET#

S (Σ), give a pspace upperbound for both problems, however.

Theorem 12. (1) equivalence and inclusion for DET#
S (Σ) are in pspace.

(2) intersection for DET#
W (Σ) and DET#

S (Σ) is pspace-complete.

8 Conclusion

We investigated and compared the notions of strong and weak determinism in
the presence of counting. Weakly deterministic expressions have the advantage of
being more expressive and more succinct than strongly deterministic ones. How-
ever, strongly deterministic expressions are expressivily equivalent to standard
deterministic expressions, a class of languages much better understood than the
weakly deterministic languages with counting. Moreover, strongly deterministic
expressions are conceptually simpler (as strong determinism does not depend
on intricate interplays of the counter values) and correspond naturally to de-
terministic Glushkov automata. The latter also makes strongly deterministic
expressions easier to handle as witnessed by the pspace upperbound for inclu-
sion and equivalence, whereas for weakly deterministic expressions only a trivial
expspace upperbound is known. For these reasons, one might wonder if the
weak determinism demanded in the current standards for XML Schema should
not be replaced by strong determinism. The answer to some of the following
open questions can shed more light on this issue: (1) Is it decidable if a lan-
guage is definable by a weakly deterministic expression with counting? (2) Can



the Glushkov construction given in Section 6 be extended such that it trans-
lates any weakly deterministic expression with counting into a CDFA? (3) What
are the exact complexity bounds for inclusion and equivalence of strongly and
weakly deterministic expression with counting?
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