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SUMMARY

Frailty models are often used to study the individual heterogeneity in multivariate survival analysis.
Whereas the shared frailty model is widely applied, the correlated frailty model has gained attention
because it elevates the restriction of unobserved factors to act similar within clusters. Estimating frailty
models is not straightforward due to various types of censoring. In this paper, we study the behavior of
the bivariate-correlated gamma frailty model for type I interval-censored data, better known as current
status data. We show that applying a shared rather than a correlated frailty model to cross-sectionally
collected serological data on hepatitis A and B leads to biased estimates for the baseline hazard and
variance parameters. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Analyzing time-to-event (TTE) data is not straightforward due to censoring. A particular type of
censoring is interval censoring where event times are only known to lie in a specific interval.
This situation especially happens when study subjects are not under continuous observation, for
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example, patients visiting their doctor at predetermined times (or times that are convenient to
them), where the occurrence of the event can be diagnosed knowing that the event has not occurred
at the time of the last visit. Another situation is inspection times of technical equipment, where
events can happen in between two inspection times. Consequently, it is only known that the event
occurred between two visits or inspections, but not the exact time point. This kind of censoring
is called interval censoring and was considered in detail by Sun [1] without special emphasis on
frailty models. In general, right censoring (RC) is a special case of interval censoring and some
of the methods for right-censored data can be directly, or with minor changes, applied to interval-
censored data. However, most of the approaches for right-censored data are not appropriate for
interval-censored data because the censoring mechanism behind interval censoring is much more
complicated than in the case of right-censored data.

In this paper, we focus on case I interval-censored data better known as current status (CS)
data, a term originating from demographical applications. That means that the observation for each
individual survival time interval includes either zero or infinity. Such kind of data occur when each
study subject is observed only once and the only available information for the event under study
is whether the event has occurred before the observation was taken or not. Consequently, CS data
are given in the form (T,�), where T denotes the inspection time and � is the indicator whether
the event already occurred before the inspection or not.

There are many open research questions for the analysis of multivariate TTE data, which are
much more challenging than their univariate counterparts. Available multivariate survival models
fall into two broad classes—marginal and frailty models [2]. Marginal methods of analysis specify
models for the effect of covariates on the hazards of the individual events (the margins), taking
into account the fact that the observed event times are correlated but without the need for explicitly
modeling this correlation [3]. The marginal approach is ideal for making inferences about the
population average effect of risk factors on failure time. However, it provides limited insight into
the multivariate relationship among failure times. These type of questions are answered by frailty
models, explicitly considering the association between various events. In general, frailty models
have an intuitive appeal and provide insight into the relationship between failures, and in this
paper, we will zoom in on this approach.

A commonly used and very general approach to the problem of modeling multivariate data is
to specify independence among observed data items conditional on a set of unobserved or latent
variables (random effects). A multivariate model for the observed data is then induced by averaging
over an assumed distribution for the latent variables. The dependence structure in the multivariate
model arises when common or dependent latent variables enter into the conditional models for
multiple observed data items. Frailty models for multivariate survival data are derived under a
conditional independence assumption by specifying latent variables that act multiplicatively on the
baseline hazard. This concept provides an extension of the traditional univariate frailty model [4, 5],
and it allows to take the mutual dependence of life times of related individuals into account in the
analysis of survival data.

There are two important approaches in this field, the shared frailty model and the correlated
frailty model. In a shared frailty model, the frailty is common to the individuals in the group, and
is thus responsible for creating dependence. The shared frailty model abounds in the literature
on frailty models and was extensively studied in the monographs by Hougaard [6], Therneau and
Grambsch [7] and Duchateau and Janssen [8].

The correlated frailty model is a natural extension of the shared frailty model. In the correlated
frailty model, the frailties of individuals in a cluster are correlated, but not shared. It enables the
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explicit inclusion of additional correlation parameters, whereas in the shared frailty approach all
correlations between group members are equal.

In the following we will restrict our considerations to the bivariate case, because our motivating
example is of bivariate nature. Extensions to higher-dimensional models are straightforward only
in the shared frailty approach.

Various important research questions emerge when considering bivariate CS data. The first one
deals with the question as to how much information is lost when CS data are observed instead
of (right censored) life times. If the correlated frailty model is the underlying correct model, the
obvious question becomes what is measured using the shared frailty approach on the CS data.
Whereas the shared gamma frailty model was already applied to the CS data [9], very little is
known about the correlated gamma frailty model in case of CS data [10, 11].

To answer these questions, simulations are performed based on the bivariate shared and correlated
gamma frailty model under different censoring assumptions. We relate these results to the situation
of infectious disease epidemiology where estimating the frailty variance based on cross-sectional
serological data for multiple, similarly transmitted, pathogens is important to control the spread
of infectious diseases [9].

We start by introducing a motivating example of multisera data on hepatitis A and B in Section 2.
In Section 3, we introduce the correlated gamma frailty and its CS version. Furthermore, we
describe how these CS frailty models are casted in the generalized linear mixed model framework.
We fit these models to the hepatitis A and B data in Section 4. In Section 5, we examine the
performance of the correlated gamma frailty for different types of censoring and the effect of
ignoring the underlying correlation structure by using a shared rather than a correlated gamma
frailty distribution. We end the paper with a discussion on the implications of modeling multivariate
CS data using correlated frailty models and introduce topics for further research.

2. MOTIVATING EXAMPLE

Modeling infectious diseases is mostly done using compartmental models that describe the flow
of individuals through different disease stages. One of the most important parameters in such
a compartmental model describes the per capita rate at which a susceptible person acquires the
infection and thus moves from the compartment of susceptible to the compartment of infected
individuals. This per capita rate is the infection hazard and can be estimated from data on time to
infection or incidence data. Collecting time to infection data or incidence data is hard and often
unfeasible, because underreporting is likely to occur and follow-up studies are expensive and time
consuming. Under the steady-state assumption and assuming lifelong immunity once infected, one
can estimate the hazard of infection from cross-sectionally collected serological data. Serological
data provide information on past infection and together with the individual’s age (mostly registered
in years) constitute CS data. The role of the TTE is assumed by the individual’s age, given that a
blood sample is taken at a specific point in time, and the time to infection, i.e. the time between
birth and infection time, is actually the individual’s age at the time of infection. These data are
thus Type I censored.

The hazard of infection is often called the force of infection and can be considered as a reflection
of the degree of contacts with transmission potential for the infection at hand. Often, data are from
serological samples that are tested for more than one antigen. Such bivariate data make it possible
to study the association between the acquisition of both infections [9, 12].
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In the epidemic theory, Coutinho et al. [13] were the first to systematically treat heterogeneity
in the acquisition of infections. Individuals are dissimilar in the way they acquire infections. Some
individuals are more susceptible than others and will experience infection earlier. These frailties
can be partly explained, but in most cases constitute an ‘unexplained residual’ component. Gaining
insight in the frailty to acquire an infection has a potentially large impact on the design and
implementation of control strategies.

Viral hepatitis is a serious health problem throughout the world. To obtain a clear picture of the
prevalence of hepatitis A, B and C, a sero-epidemiological study was undertaken in 1993–1994
in Flanders. From the 4058 blood samples drawn in Flanders from a study group representative
for the Flemish population, we focus on the complete cases and more specifically hepatitis A
and B, resulting in 3787 blood samples. These blood samples were then tested for the presence
of antibodies for the different infections and, using a pre-specified cut-off value, samples were
classified as either positive or negative. Together with the patient’s age and under the assumption
of lifelong immunity, these data constitute CS data on whether or not past infection took place.
Hepatitis C was not considered here because of its low prevalence (less than 1 per cent). More
detailed information on these data can be found in Beutels et al. [14].

Next to age-dependent seroprofiles, it is of interest to look at the heterogeneity in acquisi-
tion of either infection and the correlation between the acquisition of both infections. While
age-dependent seroprofiles reflect the age-specific risk of infection, the proper assessment of
heterogeneity has direct implications with respect to the estimation of the basic reproduction
number and the associated critical vaccination coverage [9]. Estimating the correlation in its own
right could indicate transmission through similar routes (perfect correlation) or could reflect to
what extent a latent process, such as the social or hygienic behavior of people, drives the more
general infection process. Note that the main transmission route for hepatitis A is foodborne or
faeco-oral and for hepatitis B is sexual or bloodborne, reflecting hygienic behavioral conduct of
individuals. Moreover, co-infections, i.e. joint infections caused by more than one pathogen, are
an aggravating factor in disease progression for virtually all infections and thus of interest to be
quantified.

3. METHODS

In this section, we first introduce the shared frailty model as used by Farrington et al. [9] to model
the heterogeneity in the acquisition of rubella and mumps in the U.K. We then propose the use of
the correlated frailty model as an extension of the shared frailty model for the analysis of bivariate
CS data.

Denote by �i (t, Zi ) the hazard function at time t conditional on the frailty Zi (i=1,2). The
corresponding conditional survival function Si (t |Zi ) (i=1,2) is then given by

Si (t |Zi )=e−∫ t
0 �i (s,Zi )ds (1)

which we combine with the proportional hazards assumption �i (t, Zi )= Zi�i0(t) to obtain

Si (t |Zi )=e−Zi
∫ t
0 �i0(s)ds (2)
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The unconditional survival function can be obtained by integrating out the random frailty Zi by
using the Laplace transform Li of Zi (i=1,2):

Si (t)=ESi (t |Zi )=Li

(∫ t

0
�i0(s)ds

)
(3)

Assuming conditional independence, we can formulate the conditional bivariate survival func-
tion. Depending on the choice for the bivariate frailty distribution, either an explicit expression
can be given or numerical integration is required. In general, numerical integration with respect to
the frailty, or random-effects, distribution is not straightforward but has become more accessible
through the development of appropriate statistical software and reformulating non-normal random
effects, as done by Nelson et al. [15] and Liu and Yu [16]. In the following sections, we will
focus on the gamma frailty distribution as the most often used frailty distribution because of its
explicit solution for the unconditional survival function (see e.g. [6, 8]), which owes to conjugacy
properties.

3.1. The shared gamma frailty model

In the shared gamma frailty model, the bivariate frailty distribution (Z1, Z2) is characterized by
Z = Z1= Z2. The unconditional bivariate survival function is given by

S(t1, t2)=[S−�2
1 (t1)+S−�2

2 (t2)−1]−1/�2 (4)

Here �2 represents the variance of Z .

3.2. The correlated gamma frailty model

Although the shared gamma frailty model assumes perfect correlation and a common variance,
the correlated gamma frailty model as introduced in Yashin et al. [17] is more flexible. These
authors used an additive decomposition of the frailty variables into the sum of independent gamma
distributed variables to construct a bivariate frailty distribution.

The bivariate frailty distribution may be constructed using independent additive components
Yi , i=0,1,2 with one component common to both frailties (i.e. Zi =�2i (Y0+Yi ), i=1,2),
introducing an additional parameter characterizing the correlation between the frailties [17],
hence the name ‘correlated frailty models’, and by multiplying with �2i , (i=1,2) restricting
the mean to one while allowing for different variances. More specifically, assuming that k0,k1
and k2 are some real-positive parameters, Yi ∼�(ki ,1)(i=0,1,2) and �2i =(k0+ki )−1 (i=1,2)
and �=k0[(k0+k1)(k0+k2)]−1/2. Note that ki�0(i=0,1,2) implies �2i >0 (i=1,2) and
0���min(�1�

−1
2 ,�2�

−1
1 ). The identifiability of the correlated frailty model for bivariate event

times without covariates has been established before [18].
The explicit expression for the survival function in terms of �1,�2 and � is given by Yashin

et al. [17]:

S(t1, t2)=[S1(t1)]1−(�1/�2)�[S2(t2)]1−(�2/�1)�[S−�21
1 (t1)+S

−�22
2 (t2)−1]−�/�1�2 (5)

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2785–2800
DOI: 10.1002/sim



2790 N. HENS ET AL.

Note that if Z1= Z2, and thus �1=�2=�,�=1, we end up with the shared gamma frailty
model (4).

3.3. Current status data

Before turning to the CS likelihood function, let us write down the likelihood function for both the
uncensored and right-censored TTE situation. The likelihood function for uncensored TTE data is
given by

L(t1, t2)= �2

�t1�t2
S(t1, t2) (6)

where S(t1, t2) is given by (5). Although this likelihood function is relatively easy to derive, we
are omitting the somewhat awkward expression here.

There exist different types of censoring of which the most common is RC. Let us define the
censoring indicator �i j , which takes value 1 if the individual j has experienced the event i , and 0
otherwise. The corresponding likelihood function can then be derived by:

L(t1, t2,�1,�2) = �1�2

[
�2

�t1�t2
S(t1, t2)

]
+�1(1−�2)

[
− �

�t1
S(t1, t2)

]

+(1−�1)�2

[
− �

�t2
S(t1, t2)

]
+(1−�1)(1−�2)S(t1, t2) (7)

In the case of bivariate CS data, the likelihood function can easily be expressed in terms of the
unconditional bivariate and univariate survival functions [1]:

L(t1, t2,�1,�2) = �1�2[1−S1(t1)−S2(t2)+S(t1, t2)]+�1(1−�2)[S2(t2)−S(t1, t2)]

+(1−�1)�2[S1(t1)−S(t1, t2)]+(1−�1)(1−�2)S(t1, t2) (8)

with S1(t1)= S(t1,0) and S2(t2)= S(0, t2) as marginal survival functions. We will use function (5)
as bivariate survival function in the following. Note that in case of CS data without any covariates,
the model is not identifiable using a nonparametric baseline hazard [11], motivating the use of
a parametric baseline hazard function such as, for example, the Gompertz baseline hazard where
�i0(t)=ai exp(bi t), i=1,2. Although we do not investigate the sufficient conditions required for
the model to be identifiability in this paper, we rely on the more general methodology of detecting
parameter redundancy [19, 20].

Note that, when assuming univariate monitoring times t= t1= t2, the link to generalized linear
mixed models is readily established. Indeed, looking at (2), the corresponding generalized linear
mixed model is given by (i=1,2) : log[Si (t)]=−Zi�i (t), where (Z1, Z2) is the bivariate random
effect of which each component acts multiplicatively on the (cumulative) hazard function �i (t)=∫ t
0 �i0(s)ds for i=1,2. As in case of the correlated frailty model, different choices of the correlated
random effects distribution can be made such as the mathematically convenient gamma distribution,
which leads to an explicit expression of the unconditional multinomial likelihood.

The link between frailty models and generalized linear mixed models has been established
before in various settings such as in the proportional hazards model for clustered survival data
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(see e.g. [21–23]). For an extended overview of the generalized linear mixed model and its
applications we refer to the literature [24–27].

3.4. An overall association measure

Measures of association are essential tools for the analysis of bivariate data. Among the most
familiar is Kendall’s tau. Betensky and Finkelstein [28] proposed an imputation-based estimator
for Kendall’s tau in the case of bivariate interval-censored data. This estimator imputes TTEs
based on the estimated survivor function while assigning a zero score to overlapping rectangles,
i.e. bivariate interval-censored data are often conceived as rectangular in the plane, because no
ordering is possible whenever rectangles overlap. Note that for Type I interval-censored data the
number of overlapping rectangles is abundant because of the inclusion of either zero or infinity
in both dimensions. Because of sparse information this method is no longer applicable for the
specific case of Type I interval-censored data with univariate monitoring times, i.e. the current
status data that are the focus of this paper. Therefore, following the philosophy of generating data
from an estimated survivor function, we define a simulation-based estimate of Kendall’s tau for
the various censoring schemes.

It is a straightforward idea to, based on the estimated model for any censoring scheme,
generate new simulated data that can then be used to derive a simulation-based empirical esti-
mate of Kendall’s tau by looking at the concordance score of each pair (i, j), i �= j =1, . . . ,n
of bivariate observations {(T1i ,T1 j ), (T2i ,T2 j )}. Whenever T1i>T2i and T1 j>T2 j or T1i<T2i
and T1 j<T2 j , (T1i ,T1 j ) and (T2i ,T2 j ) are called concordant, whereas T1i>T2i and T1 j<T2 j or
T1i<T2i and T1 j>T2 j , (T1i ,T1 j ) and (T2i ,T2 j ) are called disconcordant. Based on these defini-
tions, Kendall’s tau can be calculated as the difference of the probability of concordance and
discordance:

�= P{(T1i −T1 j )(T2i −T2 j )>0}−P{(T1i −T1 j )(T2i −T2 j )<0} (9)

As a result, the estimate of � will be made over several simulations, thence the simulation-based
standard error can be calculated as well. Note that calculating (9) can be done explicitly, but was
found practically prohibitive given that no closed-form solution exists and numerical integration
proved to be tedious.

4. APPLICATION TO MULTISERA DATA ON HEPATITIS A AND B

Table I summarizes the results of applying the correlated gamma frailty model, the correlated
gamma frailty model with equal variances, the shared gamma frailty model and a model without
frailty, assuming independence and no heterogeneity, to the multisera data on hepatitis A and
B introduced in Section 2. The corresponding SAS-code can be found in the Appendix. While
the loglikelihood function favors the unrestricted correlated frailty model, the observed differ-
ence with the correlated frailty model assuming equal variances is non-significant based on the
corresponding likelihood ratio test (p=0.655). When comparing the correlated frailty model
with equal variances to the shared frailty model, we are interested in testing the null hypoth-
esis H0 : �=1 vs H1 : �<1, which lies on the boundary of the parameter space. Therefore, the
limiting distribution follows a 50:50 mixture of a �20 and �21 distribution [29, 30]. The corre-
sponding p<0.001 clearly favors the alternative hypothesis. A comparison of the correlated
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Table I. Parameter estimates and standard errors for the Hepatitis A and B analyses result using a Gompertz
baseline hazard (�i0(t)=ai exp(bi t), i =1,2) and various versions of the correlated gamma frailty model.

Equal variances Shared frailty Univariate frailty Independence
Restrictions Unrestricted �1=�2 �1=�2, �=1 �=0 �1=�2=0

a1 0.007 (0.001) 0.007 (0.001) 0.012 (0.001) 0.008 (0.001) 0.015 (0.001)
b1 0.105 (0.017) 0.104 (0.017) 0.037 (0.005) 0.086 (0.016) 0.019 (0.019)
a2 0.002 (4E−4) 0.002 (4E−4) 0.002 (3E−4) 0.002 (3E−4) 0.002 (3E−4)
b2 0.000 (0.008) 0.002 (0.008) −0.000 (0.007) 0.000 (0.007) −0.002 (0.007)
�1 1.632 (0.501) 1.628 (0.174) 0.723 (0.084) 1.422 (0.180) 0.000 (–)
�2 1.167 (0.174) 1.628 (0.174) 0.723 (0.084) 1.016 (2.557) 0.000 (–)
� 0.677 (0.283) 0.487 (0.079) 1.000 (–) 0.000 (–) 0.000 (–)
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Figure 1. Plot of the joint probabilities of hepatitis A and B and the correlated frailty fit with
equal variances. p00 refers to the joint probability of no past infection for either virus (left
upper panel); p10 refers to past and no past infection for hepatitis A and B, respectively (right
upper panel); p01 refers to no past and past infection for hepatitis A and B, respectively; and

p11 refers to past infection for both viruses.
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frailty with common variance with the result of a univariate analysis assuming �=0 results in
a similar conclusion (p<0.001). Figure 1 shows the estimated and observed joint probabilities
based on the correlated frailty model with equal variances, visually indicating a good fit to the
data.

5. SIMULATIONS

To gain more insight in how much information is lost when turning from TTE data to RC and finally
to CS data, we first performed a simulation study. Second, we used a simulation study to investigate
the impact of misspecifying the frailty distribution. We started by generating bivariate TTE data
based on the bivariate gamma frailty model and Gompertz baseline hazards. Generating the corre-
lated gamma frailty (Z1, Z2) is done via its additive components Yi , i=0,1,2. Given Zi , the TTE
Ti is generated by calculating log[1−bi log(ui )/(ai zi )]/bi where ui is generated from the uniform
distribution U(0,1) and ai ,bi are the parameters from the Gompertz baseline hazard �i0(t)=
ai exp(bi t) (i=1,2). The censoring indicator �i (i=1,2) was then generated by comparing the
censoring time T�

i ∼U(0,75) (i=1,2) to the generated TTE Ti (i=1,2). Whenever T�
i >Ti ,�i=1

and 0 otherwise (i=1,2). Right-censored data were obtained by {min(Ti ,T�
i ),�i } (i=1,2),

whereas {T�
i ,�i } (i=1,2) constituted Type I interval-censored data.

The choice of the Gompertz baseline with parameters ai ,bi (i=1,2) and the sample size of
3787 was inspired by the hepatitis A and B example, multisera data that typically have rather
a large sample size and for which the baseline hazard can plausibly be assumed to be of the
Gompertz type. Five hundred data sets were generated and analyzed for all settings. Note that
other simulations with smaller heterogeneity parameters showed similar results and are available
in the Appendix.

5.1. Censoring

In a first part, the simulation study aims at identifying the information loss when transferring
TTE to RC and CS. Table II shows the true values, the parameter estimates and the empirical
standard errors (e.s.e.) for the different censoring schemes. It is observed that empirical standard
errors increase with increasing information loss (TTE→RC→CS), whereas the estimates show
consistency when increasing the sample size toward 10 000 observations and more (see Appendix
Tables AI and AII). Parameters are chosen so that around 21 per cent of the observations are
censored (censored data) or state that the infection not occurred yet (CS data).

Estimating Kendall’s � using the simulation procedure as outlined in Section 3.4 resulted in
�̂tte=0.169 (e.s.e. 0.016) for the uncensored TTE setting; �̂rc=0.173 (e.s.e. 0.034) for the RC
situation and �̂cs=0.181 (e.s.e. 0.052) for the CS data. Again, the estimated values �̂tte, �̂rc and �̂cs
do not differ substantially, while the corresponding standard error not surprisingly increases when
information is lost.

5.2. Misspecification

We investigate the effect when misspecifying the assumed frailty distribution using the CS data as
generated above while analyzing the data assuming a correlated frailty distribution with common
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Table II. Averaged parameter estimates and empirical standard errors for the simulation study of the
correlated gamma frailty model with uncensored time to event; right-censored and current status data

using a Gompertz baseline hazard (�i0(t)=ai exp(bi t), i =1,2).

Uncensored time to event Right-censored data Current status data
Parameter True value mean (e.s.e.) mean (e.s.e.) mean (e.s.e.)

a1 0.006 0.006 (0.001) 0.006 (0.001) 0.006 (0.001)
b1 0.020 0.020 (0.002) 0.022 (0.010) 0.045 (0.420)
a2 0.008 0.008 (0.001) 0.008 (0.001) 0.008 (0.001)
b2 0.030 0.030 (0.003) 0.032 (0.007) 0.048 (0.228)
�1 1.600 1.604 (0.113) 1.621 (0.466) 1.694 (1.854)
�2 1.000 0.999 (0.068) 1.056 (0.214) 1.179 (0.920)
� 0.500 0.501 (0.035) 0.540 (0.169) 0.636 (0.257)

Table III. Averaged parameter estimates and empirical standard errors for the simulation study
on the misspecification of the frailty distribution for current status data using a Gompertz

baseline hazard (�i0(t)=ai exp(bi t), i =1,2).

Correlated frailty Common variance CF Shared frailty Univariate frailty
Parameter True value mean (e.s.e.) mean (e.s.e.) mean (e.s.e.) mean (e.s.e.)

a1 0.006 0.006 (0.001) 0.006 (0.001) 0.006 (0.001) 0.006 (0.005)
b1 0.020 0.045 (0.420) 0.013 (0.009) 0.007 (0.004) 0.062 (0.135)
a2 0.008 0.008 (0.001) 0.008 (0.001) 0.008 (0.001) 0.008 (0.001)
b2 0.030 0.048 (0.228) 0.039 (0.019) 0.024 (0.003) 0.047 (0.047)
�1 1.600 1.694 (1.854) 1.185 (0.429) 0.769 (0.051) 1.962 (2.219)
�2 1.000 1.179 (0.920) 1.185 (0.429) 0.769 (0.051) 1.107 (0.941)
� 0.500 0.636 (0.257) 0.679 (0.219) 1.000 (–) 0.000 (–)

variances, a shared frailty distribution and two univariate frailty distributions. For completeness,
we also repeat the results of the correlated frailty distribution analysis while summarizing the
parameter estimates and empirical standard errors in Table III.

Although the estimates of the Gompertz baseline parameters can be considered stable over
the different models, there is quite some difference between the estimated variance parameters.
This is not surprising, given what Wienke et al. [31] observed before, i.e. the negative correlation
between � and �i (i=1,2). Indeed, the correlated frailty with common variance estimates the
variance parameters to be smaller at the cost of a larger correlation when compared with the
correlated frailty model. The shared frailty, assuming perfect correlation and common variance,
results in a lower variance estimate when compared with the common variance correlated frailty
model. Finally, the univariate frailties, assuming independence and thus zero correlation, result in
a substantially higher and comparable variance estimate.

Again, using simulations and the procedure outlined in Section 3.4, Kendall’s � was estimated
as 0.225 (e.s.e. 0.036) for the model with shared frailty; and 0.205 (e.s.e. 0.034) for the model with
common variance correlated frailty, both of which exceed the correlated frailty-based estimate.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2785–2800
DOI: 10.1002/sim



THE CORRELATED FRAILTY MODEL 2795

Table IV. Averaged parameter estimates and empirical standard errors for the simulation study of the
correlated gamma frailty model with uncensored time to event; right-censored and current status data

using a Gompertz baseline hazard (�i0(t)=ai exp(bi t), i =1,2).

Uncensored time to event Right-censored data
Parameter True value mean (e.s.e.) mean (e.s.e.) Current status data

a1 0.006 0.006 (2E−4) 0.006 (3E−4) 0.006 (0.001)
b1 0.020 0.020 (0.001) 0.022 (0.007) 0.025 (0.018)
a2 0.008 0.008 (3E−4) 0.008 (4E−4) 0.008 (0.001)
b2 0.030 0.030 (0.002) 0.032 (0.004) 0.034 (0.009)
�1 0.800 0.799 (0.048) 0.852 (0.339) 0.897 (0.575)
�2 0.600 0.599 (0.040) 0.642 (0.164) 0.701 (0.280)
� 0.500 0.502 (0.052) 0.546 (0.241) 0.595 (0.292)

Table V. Averaged parameter estimates and empirical standard errors for the simulation
study on the misspecification of the frailty distribution for current status data using a

Gompertz baseline hazard (�i0(t)=ai exp(bi t), i =1,2).

Correlated frailty Common variance CF Shared frailty Univariate frailty
Parameter True value mean (e.s.e.) mean (e.s.e.) mean (e.s.e.) mean (e.s.e.)

a1 0.006 0.006 (0.001) 0.006 (0.001) 0.006 (0.001) 0.006 (0.001)
b1 0.020 0.025 (0.018) 0.022 (0.015) 0.016 (0.003) 0.054 (0.428)
a2 0.008 0.008 (0.001) 0.008 (0.001) 0.008 (0.001) 0.008 (0.001)
b2 0.030 0.034 (0.009) 0.034 (0.009) 0.027 (0.002) 0.034 (0.012)
�1 0.800 0.897 (0.575) 0.770 (0.484) 0.453 (0.056) 1.049 (1.745)
�2 0.600 0.701 (0.280) 0.770 (0.484) 0.453 (0.056) 0.578 (0.458)
� 0.500 0.595 (0.292) 0.667 (0.310) 1.000 (–) 0.000 (–)

5.3. Simulation setting 2

In a second simulation setting, data were generated using similar Gompertz baseline parameters
but with smaller heterogeneity parameters and a correlation of 0.50. Again, we investigate how
much information is lost when turning from TTE to RC and finally to CS, and what the impact of
misspecifying the frailty distribution is. Five hundred data sets of size 5000 were generated and
analyzed. Tables IV and V show similar results when compared with those of the first simulation
setting.

6. DISCUSSION

Analysis of multivariate survival time data provides an exciting example for challenging modeling
strategies. Available statistical models fall into two broad classes—marginal and frailty models.
Marginal methods consider the association between the events as a nuisance parameter. The other

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2785–2800
DOI: 10.1002/sim



2796 N. HENS ET AL.

commonly used and very general approach to multivariate survival data is to specify independence
among observed data items conditional on a set of unobserved or latent variables (random effects)
which act multiplicatively on the baseline hazard. Especially shared frailty models have a long
tradition in modeling clustered survival times. However, shared frailty models have some limita-
tions.

First, the concept of shared frailty forces the unobserved factors to be the same within the cluster,
which is generally inappropriate when interested in disentangling association and heterogeneity.
Indeed, in general, it may be inappropriate to assume that both infections considered in the example
above share all of their unobserved risk factors. However, in practice we note that it is possible to
combine the unobserved factors into one frailty, which is sufficiently rich in distribution.

Second, the dependence parameter and the population heterogeneity are confounded. Elbers and
Ridder [32] showed that this problem exists for any univariate frailty distribution with a finite mean.
However, ‘shared frailty’ in bivariate and multivariate models differs from ‘individual frailty’ used
in the case of univariate data. Initially this difference in the notions of frailty was not clearly
understood. It is worth noting that the value of �2 estimated from the univariate data may, in fact,
have nothing to do with association.

To circumvent these problems, correlated frailty models were established to have different
parameters for the association and heterogeneity. The present paper applies this approach to the
problem of CS data with special focus on hepatitis A and B. Using the correlated gamma frailty
model instead of the shared gamma frailty model leads to significant improvement of the likelihood,
which speaks in favor for the former model. An additional advantage is the nice interpretation of
the parameters. Here �1 and �2 are the measures of population heterogeneity in the susceptibility to
hepatitis A and B, respectively. Furthermore, the parameter �—even if not the correlation between
the original event times—can be interpreted as a correlation measure. These parameters yield
implications for further programs to prevent the infections as the critical vaccination coverage is
higher for more heterogenous populations [33].

There exists a strong link between copula models and frailty models. Besides the fact that
frailty models and copulas look very similar, it is important to note that there are also differences
between both approaches, which are often overlooked. In the application presented in this paper,
we used a gamma frailty that directly relates to a Clayton copula and brings together frailty and
copula models. However, copula models, often used to assess the association between event times,
in general, cannot capture the heterogeneity as frailty models can. For more details regarding this
aspect we refer to the paper by Goethals et al. [34]. Bivariate copula models for CS data including
limiting distributions are discussed in Wang and Ding [35].

Further research is needed to investigate the impact of various misspecifications on the correlated
frailty model. White’s theory about inferences in miss-specified models can be employed to
investigate such sources of miss-specification, using his likelihood-type or Lagrange-multiplier
tests [36]. Note that this theory can also be regarded as the underpinning of such commonly
used methods as generalized estimating equations. This methodology has been applied by Litiére
et al. [37, 38] in the context of miss-specification arising from the random-effects distribution
in generalized linear mixed models. Moreover, we did not address the effect of ignoring the
correlated frailty structure by using a shared frailty distribution on the estimation of covariate
effects. Similarly, further research is needed to investigate how copulas can be used to model
bivariate CS data and on the extension toward multivariate CS data.
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APPENDIX A

A.1. SAS-code to fit the correlated gamma frailty to current status data

SAS-code to fit the correlated gamma frailty to the bivariate data on past infection of hepatitis
A and B. The code uses a reparametrization of the variance parameters in terms of the additive
decomposition of the correlated gamma frailty. Data are organized in rectangular format with
on each line the age of the individual and response 1: no previous infection for either disease,
2: previous infection for hepatitis A only, 3: previous infection for hepatitis B only and 4: previous
infection for hepatitis A and B.

proc nlmixed data=hepdata tech=congra maxiter=5000 gconv=1e-22;
parms a1eta=-5 b1=0.1045 a2eta=-6 b2=-0.0022 k0eta=-2 k1eta=-2 k2eta=-2;
title ’Correlated frailty model to hepdata’;
a1=exp(a1eta);
a2=exp(a2eta);
k0=exp(k0eta);
k1=exp(k1eta);
k2=exp(k2eta);
sigma1=1/sqrt(k0+k1);
sigma2=1/sqrt(k0+k2);
rho=k0/sqrt((k0+k1)*(k0+k2));
clambdaHAV=a1/b1*(exp(b1*age)-1);
clambdaHBV=a2/b2*(exp(b2*age)-1);
S1a=(1+sigma1**2*clambdaHAV)**(-1/sigma1**2);
S2a=(1+sigma2**2*clambdaHBV)**(-1/sigma2**2);
S12a=((S1a**(-sigma1**2)+S2a**(-sigma2**2)-1)**(-rho/(sigma1*sigma2)));
p00=S1a**(1-sigma1/sigma2*rho)*S2a**(1-sigma2/sigma1*rho)*S12a;
p10=S2a-p00;
p01=S1a-p00;
p11=1-p00-p10-p01;
ll=(response=1)*log(p00)+(response=2)*log(p10)+(response=3)*log(p01)+
(response=4)*log(p11);
model response general(ll);
estimate ’a1’ exp(a1eta);
estimate ’b1’ b1;
estimate ’a2’ exp(a2eta);
estimate ’b2’ b2;
estimate ’sigma1’ 1/sqrt(k0+k1);
estimate ’sigma2’ 1/sqrt(k0+k2);
estimate ’rho’ k0/sqrt((k0+k1)*(k0+k2));
estimate ’k0’ exp(k0eta);
estimate ’k1’ exp(k1eta);
estimate ’k2’ exp(k2eta);
run;

A.2. Extra simulations

In this section we document the results of the simulation study for sample size 10 000 (Tables AI
and AII).
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Table AI. Averaged parameter estimates and empirical standard errors for the simulation study of the
correlated gamma frailty model with uncensored time to event; right-censored and current status data

using a Gompertz baseline hazard (�i0(t)=ai exp(bi t), i =1,2) with sample size 10 000.

Uncensored time to event Right-censored data Current status data
Parameter True value mean (e.s.e.) mean (e.s.e.) mean (e.s.e.)

a1 0.006 0.006 (2E−4) 0.006 (2E−4) 0.006 (0.001)
b1 0.020 0.020 (0.001) 0.021 (0.006) 0.022 (0.014)
a2 0.008 0.008 (2E−4) 0.008 (3E−4) 0.008 (0.001)
b2 0.030 0.030 (0.001) 0.031 (0.004) 0.032 (0.009)
�1 1.600 1.604 (0.054) 1.610 (0.290) 1.583 (0.589)
�2 1.000 1.002 (0.033) 1.020 (0.130) 1.047 (0.240)
� 0.500 0.501 (0.016) 0.516 (0.099) 0.581 (0.211)

Table AII. Averaged parameter estimates and empirical standard errors for the simulation study on the
misspecification of the frailty distribution for current status data using a Gompertz baseline hazard

(�i0(t)=ai exp(bi t), i =1,2) with sample size 10 000.

Correlated frailty Common variance CF Shared frailty Univariate frailty
Parameter True value mean (e.s.e.) mean (e.s.e.) mean (e.s.e.) mean (e.s.e.)

a1 0.006 0.006 (0.001) 0.006 (3E−4) 0.006 (3E−4) 0.006 (0.001)
b1 0.020 0.022 (0.014) 0.014 (0.005) 0.007 (0.002) 0.008 (0.001)
a2 0.008 0.008 (0.001) 0.008 (4E−4) 0.008 (3E−4) 0.032 (0.428)
b2 0.030 0.032 (0.009) 0.033 (0.007) 0.024 (0.001) 0.029 (0.012)
�1 1.600 1.583 (0.589) 1.267 (0.263) 0.769 (0.022) 0.960 (1.829)
�2 1.000 1.047 (0.240) 1.267 (0.263) 0.769 (0.022) 0.840 (0.426)
� 0.500 0.581 (0.211) 0.705 (0.170) 1.000 (–) 0.000 (–)
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