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Abstract

In dynamic models of infectious disease transmission, typically various mixing
patterns are imposed on the so-called Who-Acquires-Infection-From-Whom matrix
(WAIFW). These imposed mixing patterns are based on prior knowledge of age-
related social mixing behavior rather than observations. Alternatively, one can
assume that transmission rates for infections transmitted predominantly through
non-sexual social contacts, are proportional to rates of conversational contact which
can be estimated from a contact survey. In general, however, contacts reported in
social contact surveys are proxies of those events by which transmission may occur
and there may exist age-specific characteristics related to susceptibility and infec-
tiousness which are not captured by the contact rates. Therefore, in this paper,
transmission is modeled as the product of two age-specific variables: the age-specific
contact rate and an age-specific proportionality factor, which entails an improve-
ment of fit for the seroprevalence of the varicella-zoster virus (VZV) in Belgium.
Furthermore, we address the impact on the estimation of the basic reproduction
number, using non-parametric bootstrapping to account for different sources of
variability and using multi-model inference to deal with model selection uncer-
tainty. The proposed method makes it possible to obtain important information
on transmission dynamics that cannot be inferred from approaches traditionally
applied hitherto.

Keywords : basic reproduction number, bootstrap procedure, model selection
and averaging, social contact data, transmission parameters, WAIFW.

1 Introduction

A first approach in modeling transmission dynamics of infectious diseases, and more par-
ticularly in estimating age-dependent transmission rates, was described by Anderson and May
(1991). The idea is to impose different mixing patterns on the so-called WAIFW-matrix
βij , hereby constraining the number of distinct elements for identifiability reasons,
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and to estimate the parameters from serological data. Many authors have elaborated
on this approach of Anderson and May (1991), among which Greenhalgh and Dietz
(1994), Farrington et al. (2001) and Van Effelterre et al. (2009). However, estimates
of important epidemiological parameters such as the basic reproduction number R0

turn out to be sensitive with respect to the choice of the imposed mixing pattern
(Greenhalgh and Dietz, 1994).

An alternative method was proposed by Farrington and Whitaker (2005), where
contact rates are modeled as a continuous contact surface and estimated from serologi-
cal data. Clearly, both methods involve a somewhat ad hoc choice, namely the structure
for the WAIFW-matrix and the parametric model for the contact surface. Alternatively,
to estimate age-dependent transmission parameters, Wallinga et al. (2006) augmented
seroprevalence data with auxiliary data on self-reported numbers of conversational con-
tacts per person, whilst assuming that transmission rates are proportional to rates of
conversational contact. The social contact surveys conducted as part of the POLY-
MOD project (Mossong et al., 2008b; Hens et al., 2009a), allow us to elaborate on this
methodology presented by Wallinga et al. (2006).

The paper is organized as follows. In the next section, we outline the buildup of the
Belgian social contact survey and the information available for each contact. Further, we
briefly explain the epidemiological characteristics of VZV and the serological data from
Belgium we use. In Section 3, we illustrate the traditional approach of imposing mixing
patterns to estimate the WAIFW-matrix from this serological data set. In Section 4,
a transition is made to the novel approach of using social contact data to estimate
R0. We show that a bivariate smoothing approach allows for a more flexible and
better estimate of the contact surface compared to the maximum likelihood estimation
method of Wallinga et al. (2006). Further, some refinements are proposed, among
which an elicitation of contacts with high transmission potential and a non-parametric
bootstrap approach, assessing sampling variability and accounting for age uncertainty,
as suggested by Halloran (2006).

Our main result is the novel method of disentangling the WAIFW-matrix into two
components: the contact surface and an age-dependent proportionality factor. The
proposed method, as described in Section 5, tackles two dimensions of uncertainty.
First, by estimating the contact surface from data on social contacts, we overcome the
problem of choosing a completely parametric model for the WAIFW-matrix. Second, to
overcome the problem of model selection for the age-dependent proportionality factor,
concepts of multi-model inference are applied and a model averaged estimate for R0 is
calculated. Some concluding remarks are provided in the last section.

2 Data

2.1 Belgian contact survey

Several small scale surveys were made in order to gain more insight in social mix-
ing behavior relevant to the spread of close contact infections (Edmunds et al., 1997;
Beutels et al., 2006; Edmunds et al., 2006; Wallinga et al., 2006; Mikolajczyk and Kretzschmar,

2



2008). In order to refine on contact information, a large multi-country population-based
survey was conducted in Europe as part of the POLYMOD project (Mossong et al.,
2008b).

In Belgium, this survey was conducted in a period from March until May 2006.
A total of 750 participants, selected through random digit dialing, completed a diary-
based questionnaire about their social contacts during one randomly assigned weekday
and one randomly assigned day in the weekend (not always in that order). In this
paper, we follow the sampling scheme of the POLYMOD project and only consider one
day for each participant (Mossong et al., 2008b). The data set consists of participant-
related information such as age and gender, and details about each contact: age and
gender of the contacted person, and location, duration and frequency of the contact. In
case the exact age of the contacted person was unknown, participants had to provide
an estimated age range and the mean value is used as a surrogate. Further, a distinc-
tion between two types of contacts was made: non-close contacts, defined as two-way
conversations of at least three words in each others proximity, and close contacts that
involve any sort of physical skin-to-skin touching.

Teenagers (9-17y) filled in a simplified version of the diary and were closely followed
up to anticipate interpretation problems. For children (< 9y), a parent or exceptionally
another adult caregiver filled in the diary. One adult respondent made over 1000 con-
tacts and was considered an outlier to the data set. This person is likely very influential
and therefore excluded from the analyses presented here. Analyses are based on the
remaining 749 participants. Using census data on population sizes of different age by
household size combinations, weights are given to the participants in order to make the
data representative of the Belgian population. In total, the 749 participants recorded
12775 contacts of which 3 are omitted from analysis due to missing age values for the
contacted person. For a more in depth perspective on the Belgian contact survey and
the importance of contact rates on modeling infectious diseases, we refer to Hens et al.
(2009a).

2.2 Serological data

Primary infection with VZV, also known as human herpes virus 3 (HHV-3), results
in varicella, commonly known as chickenpox, and mainly occurs in childhood. After-
wards, the virus becomes dormant in the body and may reactivate in a later stage,
resulting in herpes zoster, commonly known as shingles. Infection with VZV occurs
through direct or aerosol contact with infected persons. A person infected with chick-
enpox is able to transmit the virus for about 7 days. Following Garnett and Grenfell
(1992) and Whitaker and Farrington (2004), we ignore chickenpox cases resulting from
contact with persons suffering from shingles. Zoster indeed has a limited impact on
transmission dynamics when considering large populations with no immunization pro-
gram (Ferguson et al., 1996).

In a period from November 2001 until March 2003, 2655 serum samples in Belgium
were collected and tested for VZV. Together with the test results, gender and age of
the individuals were recorded. In the data set, age ranges from 0 to 40 years and 6
individuals are younger than 6 months. Belgium has no mass vaccination program for
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VZV. Further details on the data set can be found in Hens et al. (2008) and Hens et al.
(2009b).

3 Estimation of R0 by imposing mixing patterns

3.1 Estimating transmission rates

To describe transmission dynamics, a compartmental MSIR-model for a closed popula-
tion of size N is considered. By doing so, we explicitly take into account the fact that,
in a first phase, newborns are protected by maternal antibodies and do not take part
in the transmission process. We assume that mortality due to infection can be ignored,
which is plausible for VZV in developed countries, and that infected individuals main-
tain lifelong immunity after recovery. Further, demographic and endemic equilibrium
are assumed, which means that the age-specific population sizes remain constant over
time and that the disease is in an endemic steady state at the population level. For
simplicity, we assume type I mortality defined as

exp

(
−

∫ a

0
µ(s)ds

)
=

{
1, if a < L
0, if a ≥ L,

where µ(a) denotes the age-specific mortality rate. This implies that everyone survives
up to age L and then promptly dies, which is a reasonable assumption when describing
transmission dynamics for VZV in Belgium (see also Whitaker and Farrington, 2004).
We make a similar assumption for the age-specific rate γ(a) of losing maternal anti-
bodies, which we will denote as ‘type I maternal antibodies’:

exp

(
−

∫ a

0
γ(s)ds

)
=

{
1, if a ≤ A
0, if a > A,

(1)

meaning that all newborns are protected by maternal antibodies until a certain age A
and then move to the susceptible class instantaneously. Under these assumptions, the
proportion of susceptibles is given by

x(a) = exp

(
−

∫ a

A

λ(s)ds

)
, if a > A, (2)

where λ(a) denotes the age-specific force of infection, and x(a) = 0 if a ≤ A.
If the mean duration of infectiousness D is short compared to the timescale on

which transmission and mortality rate vary, the force of infection can be approximated
by (Anderson and May, 1991):

λ(a) =
ND

L

∫
∞

A

β(a, a′)λ(a′)x(a′)da′, (3)

where β(a, a′) denotes the transmission rate i.e. the per capita rate at which an indi-
vidual of age a′ makes an effective contact with a person of age a, per year. Formula (3)
reflects the so-called ‘mass action principle’, which implicitly assumes that infectious
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and susceptible individuals mix completely with each other and move randomly within
the population.

Estimating transmission rates using seroprevalence data can not be done analytically
since the integral equation (3) in general has no closed form solution. However, it is
possible to solve this numerically by turning to a discrete age framework, assuming a
constant force of infection in each age-class. Denote the first age interval (a[1], a[2]) and
the jth age interval [a[j], a[j+1]), j = 2, . . . , J , where a[1] = A and a[J+1] = L. Making
use of (2), the prevalence of immune individuals of age a is now well approximated by
(Anderson and May, 1991):

π(a) = 1 − exp

(
−

j−1∑

k=1

λk(a[k+1] − a[k]) − λj(a − a[j])

)
, (4)

if a belongs to the jth age interval. Note that we allow the prevalence of immune
individuals to vary continuously with age and that we do not summarize the binary
seroprevalence outcomes into a proportion per age class. Further, the force of infection
for age class i equals (i = 1, . . . , J):

λi =
ND

L

J∑

j=1

βij

[
exp

(
−

j−1∑

k=1

λk(a[k+1] − a[k])

)
− exp

(
−

j∑

k=1

λk(a[k+1] − a[k])

)]
,

(5)
where βij denotes the per capita rate at which an individual of age class j makes an
effective contact with a person of age class i, per year. The transmission rates βij make
up a J × J matrix, the so-called WAIFW-matrix.

Once the WAIFW-matrix is estimated, following Diekmann et al. (1990) and Farrington et al.
(2001), the basic reproduction number R0 can be calculated as the dominant eigenvalue
of the J × J next generation matrix with elements (i, j = 1, . . . , J):

ND

L

(
a[i+1] − a[i]

)
βij . (6)

R0 represents the number of secondary cases produced by a typical infected person
during his or her entire period of infectiousness, when introduced into an entirely sus-
ceptible population with the exception of newborns who are passively immune through
maternal antibodies. In the next section, we illustrate the traditional approach of
imposing mixing patterns to estimate the WAIFW-matrix from seroprevalence data.

3.2 Imposing mixing patterns

The traditional approach of Anderson and May (1991) imposes different, somewhat ad
hoc, mixing patterns on the WAIFW-matrix. Note that, in the previous section, we
ended up with a system of J equations with J × J unknown parameters (5) and thus
restrictions on these patterns are necessary. Among the proposals in the literature,
one distinguishes between several mixing assumptions such as homogeneous mixing
(β(a, a′) = β), proportional mixing (∃ u : β(a, a′) = u(a)u(a′)), separable mixing
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(∃ u, v : β(a, a′) = u(a)v(a′)) and symmetry (β(a, a′) = β(a′, a)). Note that the latter
two mixing assumptions require additional restrictions to be made. As illustrated by
Greenhalgh and Dietz (1994) and Van Effelterre et al. (2009), the structure imposed
on the WAIFW-matrix has a high impact on the estimate of R0. In this section, we
assume the transmission rates to be constant within six discrete age classes (J = 6). We
follow Anderson and May (1991); Van Effelterre et al. (2009); Ogunjimi et al. (2009)
and consider the following mixing patterns, based on prior knowledge of social mixing
behavior, to model the WAIFW-matrix for VZV:

W1 =




β1 β6 β6 β6 β6 β6

β6 β2 β6 β6 β6 β6

β6 β6 β3 β6 β6 β6

β6 β6 β6 β4 β6 β6

β6 β6 β6 β6 β5 β6

β6 β6 β6 β6 β6 β6




, W2 =




β1 β1 β3 β4 β5 β6

β1 β2 β3 β4 β5 β6

β3 β3 β3 β4 β5 β6

β4 β4 β4 β4 β5 β6

β5 β5 β5 β5 β5 β6

β6 β6 β6 β6 β6 β6




W3 =




β1 β1 β1 β4 β5 β6

β1 β2 β3 β4 β5 β6

β1 β3 β3 β4 β5 β6

β4 β4 β4 β4 β5 β6

β5 β5 β5 β5 β5 β6

β6 β6 β6 β6 β6 β6




, W4 =




β1 β1 β1 β1 β1 β1

β2 β2 β2 β2 β2 β2

β3 β3 β3 β3 β3 β3

β4 β4 β4 β4 β4 β4

β5 β5 β5 β5 β5 β5

β6 β6 β6 β6 β6 β6




(7)

W5 =




β1 β6 β6 β6 β6 β6

β6 β2 β6 β6 β6 β6

β6 β6 β3 β6 β6 β6

β6 β6 β6 β4 β6 β6

β6 β6 β6 β6 β5 β6

β6 β6 β6 β6 β6 β5




, W6 =




β1 0 0 0 0 0
0 β2 0 0 0 0
0 0 β3 0 0 0
0 0 0 β4 0 0
0 0 0 0 β5 0
0 0 0 0 0 β6




.

In order to estimate the transmission parameters β = (β1, . . . , β6)
T from sero-

prevalence data, we follow an iterative procedure from Farrington et al. (2001) and
Kanaan and Farrington (2005). First, one assumes plausible starting values for β and
solves (5) iteratively for the piecewise constant force of infection λ = (λ1, . . . , λ6)

T ,
which in its turn can be contrasted to the serology. Second, this procedure is repeated
under the constraint β ≥ 0, until the Bernoulli loglikelihood

n∑

i=1

{
yi log[π(ai)] + (1 − yi) log[1 − π(ai)]

}
,

has been maximized. Here, n denotes the size of the serological data set, yi denotes
a binary variable indicating whether subject i had experienced infection before age ai

and the prevalence π(ai) is obtained from (4).

3.3 Application to the data

For the remainder of the paper, the following parameters, specific for Belgium anno 2003
(Eurostat, 2007; FOD Economie Afdeling Statistiek, 2006), are kept constant when
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estimating the WAIFW-matrix and R0: size of the population aged 0 to 80 years,
N = 9943749, and life expectancy at birth, L = 80. The mean duration of infectious-
ness for VZV is taken D = 7/365. Type I mortality and type I maternal antibodies
with age A = 0.5, are assumed. Removing individuals younger than 6 months, the size
of the serological data set becomes n = 2649.

In this application, the population is divided into six age classes taking into ac-
count the schooling system in Belgium, following Van Effelterre et al. (2009): (0.5, 2),
[2, 6), [6, 12), [12, 19), [19, 31), [31, 80). The last age class has a wide range because
the serological data set only contains information for individuals up till 40 years.
The following ML-estimate for λ is obtained assuming a piecewise constant force
of infection and using constrained optimization to ensure monotonicity (π′(a) ≥ 0):

λ̂
ML

= (0.313, 0.304, 0.246, 0, 0.082, 0)T . A graphical display of the fit is presented in
Figure 1 and a dashed line is used to indicate the estimated prevalence and force of
infection for the age interval [40, 80) which lacks serological information.
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Figure 1: Estimated prevalence (upper curve) and force of infection (lower curve) for VZV assuming a
piecewise constant force of infection. The dots represent the observed serological data with
size proportional to the corresponding sample size. The dashed lines are used to indicate
the estimated prevalence and force of infection for the age interval [40, 80), which lacks
serological information.

During the estimation process, non-identifiability problems occur for mixing pat-
terns W1, W5 and W6, which is related to the fact that λ̂ML

4 = λ̂ML
6 = 0. Therefore,

these mixing patterns are left from further consideration. For the remaining three,
ML-estimates for β and R0 are presented in Table 1. Note that mixing pattern W4

has a regular configuration for the data, whereas W2 and W3 are non-regular since un-
constrained ML-estimation induces negative estimates for β4 (Farrington et al., 2001).
The estimate of R0 ranges from 3.37 to 4.21. A 95% bootstrap-based percentile con-
fidence interval for R0 is presented as well, applying a non-parametric bootstrap by
taking B = 1000 samples with replacement from the serological data. The fit of the
three mixing patterns can be compared using model selection criteria, such as AIC and
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Table 1: Estimates for the transmission parameters (multiplied by 104) and for R0, obtained by
imposing mixing patterns W2, W3 and W4 on the WAIFW-matrix.

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 R̂0 95% CI for R0 AIC

W2 1.413 1.335 1.064 0.000 0.343 0.000 3.51 [3.07, 13.42] 1372.819
W3 1.362 1.441 0.873 0.000 0.343 0.000 3.37 [2.81, 13.38] 1372.819
W4 1.334 1.298 1.049 0.000 0.349 0.000 4.21 [3.69, 13.13] 1372.756

BIC (Schwarz, 1978). As can be seen from Table 1, the AIC-values (equivalent to BIC
here) are virtually equal and do not provide any basis to guide the choice of a mixing
pattern.

Note that these results differ somewhat from those obtained by Van Effelterre et al.
(2009), where a different data set for VZV serology was used, collected from a large
laboratory in the city of Antwerp between October 1999 and April 2000.

4 Estimation of R0 using data on social contacts

4.1 Constant proportionality of the transmission rates

In the previous section, we have illustrated some caveats involved in the traditional
approach of imposing mixing patterns on the WAIFW-matrix. In general, the choice
of the structures as well as the choice of the age classes are somewhat ad hoc. Since
evidence for mixing patterns is thought to be found in social contact data, i.e. gov-
erning contacts with high transmission potential, an alternative approach to estimate
transmission parameters has emerged: augmenting seroprevalence data with data on
social contacts. In Wallinga et al. (2006), it was argued that β(a, a′) is proportional
to c(a, a′), the per capita rate at which an individual of age a′ makes contact with a
person of age a, per year:

β(a, a′) = q · c(a, a′). (8)

We will refer to this assumption as the ‘constant proportionality’ assumption, since
q represents a constant disease-specific factor. Translating this assumption into the
discrete framework with age classes (a[1], a[2]), [a[2], a[3]), . . . , [a[J ], a[J+1]), is straightfor-
ward (i, j = 1, . . . , J): βij = q · cij , where cij denotes the per capita rate at which an
individual of age class j makes contact with a person of age class i, per year.

The proportionality factor and the contact rates are not identifiable from serological
data only. Therefore, in order to estimate the WAIFW-matrix, one first needs to
estimate the contact rates cij using social contact data. Following the Belgian contact
survey, ‘making contact with’ is then defined as a two-way conversation of at least
three words in each others proximity and/or any sort of physical skin-to-skin touching
(Section 2.1). In Section 4.3.1, we will refine on this definition and consider specific types
of contact with high transmission potential. In a second step, keeping the estimated
contact rates fixed, we estimate the proportionality factor from serological data using
the estimation method described in Section 3.2.
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4.2 Estimating contact and transmission rates

Consider the random variable Yij, i.e. the number of contacts in age class j during
one day as reported by a respondent in age class i (i, j = 1, . . . , J), which has observed
values yij,t, t = 1, . . . , Ti, where Ti denotes the number of participants in the contact
survey belonging to age class i. Now define mij = E(Yij), i.e. the mean number of
contacts in age class j during one day as reported by a respondent in age class i. The
elements mij make up a J ×J matrix, which is called the ‘social contact matrix’. Now,
the contact rates cij are related to the social contact matrix as follows:

cij = 365 ·
mji

wi
,

where wi denotes the population size in age class i, obtained from demographical data.
When estimating the social contact matrix, the reciprocal nature of contacts needs to
be taken into account (Wallinga et al., 2006):

mijwi = mjiwj , (9)

which means that the total number of contacts from age class i to age class j must
equal the total number of contacts from age class j to age class i.

4.2.1 Bivariate smoothing

The elements mij of the social contact matrix are estimated from the contact data
using a bivariate smoothing approach as described by Wood (2006). In contrast with
the maximum likelihood approach as presented by Wallinga et al. (2006), the average
number of contacts is modeled as a two-dimensional continuous function over age of
respondent and contact, giving rise to a ‘contact surface’. The basis is a tensor-product
spline derived from two smooth functions of the respondent’s and contact’s age, ensuring
flexibility:

Yij ∼ NegBin(mij , k), where g(mij) =

K∑

ℓ=1

K∑

p=1

δℓpbℓ(a[i])dp(a[j]), (10)

where g is some link function, δℓp are unknown parameters, and bℓ and dp are known
basis functions for the marginal smoothers. To allow for overdispersion, we assume that
the contact counts Yij are independently negative binomial distributed with mean mij,
dispersion parameter k and variance mij + m2

ij/k.
The basis dimension, K, should be chosen large enough in order to fit the data

well, but small enough to maintain reasonable computational efficiency (Wood, 2006).
For tensor-product smoothers, the upper limit of the degrees of freedom is given by
the product of the K values provided for each marginal smooth, minus one, for the
identifiability constraint. However, the actual effective degrees of freedom are also
controlled by the degree of penalization selected during fitting.

Thin plate regression splines are used to avoid the selection of knots and a log link
is used in model (10). Diary weights, as discussed in Section 2.1, are taken into account
in the smoothing process. By applying a smooth-then-constrain-approach as proposed
by Mammen et al. (2001), the reciprocal nature of contacts (9) is taken into account.
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4.2.2 Estimating the contact rates

The smoothing is performed in R with the gam function from the mgcv package (Wood,
2006), considering one year age intervals, [0, 1), [1, 2), . . . , [100, 101). An informal check
(by comparing the estimated degrees of freedom and the basis dimension) shows that
K = 11 is a satisfactory basis dimension choice for the Belgian contact data. In Fig-
ure 2, the estimated contact surface obtained with the bivariate smoothing approach,
is displayed. The smoothing approach seems well able to capture important features of
human contacting behavior. Three components clearly arise in the smoothed contact
surface. First of all, one can see a pronounced assortative structure on the diago-
nal, representing high contact rates between individuals of the same age. Second, an
off-diagonal parent-child component comes forward, reflecting a very natural form of
contact between parents and children, which might be important in modeling certain
childhood infections such as parvovirus B19 (Mossong et al., 2008a). Finally, there even
seems to be evidence for a grandparent-grandchild component.
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Figure 2: Perspective (left) and image (right) plot of the estimated contact rates cij obtained with
bivariate smoothing. The X- and Y -axis represent age of the respondent and age of the
contact, respectively.

Except for the assortativeness, these features are not reflected by the contact rates,
estimated by maximizing the likelihood of the ‘saturated model’ proposed by Wallinga et al.
(2006), considering the same six age classes used in Section 3.3 (results omitted here).
Furthermore, AIC and BIC criteria indicate the smoothing method to outperform
Wallinga et al. (2006)’s saturated model, showing improved estimation of the contact
surface using nonparametric techniques.

4.2.3 Estimating R0

Under the constant proportionality assumption (8), we are now able to estimate the
WAIFW-matrix for VZV using serological data. Keeping the estimated contact rates ĉij

fixed, we estimate the proportionality factor q using the estimation method described
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Table 2: ML-estimates for the proportionality factor and R0, obtained from contact rates estimated
by bivariate smoothing and Wallinga et al. (2006)’s saturated model, assuming constant
proportionality.

Model for cij q̂ 95% CI for q R̂0 95% CI for R0 AIC

Smoothing 0.132 [0.124, 0.140] 15.69 [14.74, 16.69] 1386.618
Saturated 0.124 [0.117, 0.132] 14.08 [13.26, 14.94] 1377.146

in Section 3.2. In Table 2, estimates for q and R0 together with their correspond-
ing 95% profile likelihood confidence intervals, and AIC-values, are presented for the
bivariate smoothing approach and the ‘saturated model’ proposed by Wallinga et al.
(2006). The results are fairly similar, though the saturated model induces a smaller
AIC-value compared to the smoothing approach. As can be seen from both model fits
in Figure 3, contact rate estimates between children will mainly determine the fit to
the serological data, limiting the advantage of a better contact surface estimate. Note
that the 95% confidence intervals in Table 2 are implausibly narrow, resulting from the
fact that the estimated contact rates are held constant.
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Figure 3: Estimated prevalence (upper curve) and force of infection (lower curve) obtained from con-
tact rates estimated using maximum likelihood for Wallinga et al. (2006)’s saturated model
(left) and using bivariate smoothing (right).

4.3 Refinements to the social contact data approach

The aim is to clearly disentangle the WAIFW-matrix into the contact process and
the transmission potential. Therefore, in the following, contact rates are estimated
using a bivariate smoothing approach, since this method outperforms the saturated
model estimated using maximum likelihood as proposed by Wallinga et al. (2006) (Sec-
tion 4.2.2). Following Ogunjimi et al. (2009) and Melegaro et al. (2009), contacts with
high transmission potential are filtered from the social contact data. Further, to im-
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prove statistical inference, we present a non-parametric bootstrap approach, explicitly
accounting for all sources of variability.

4.3.1 Contacts with high transmission potential

The aim is to trace the type of contact which is most likely to be responsible for VZV
transmission, hereby exploiting the following details provided on each contact: duration
and type of contact, which is either close or non-close (Section 2.1). Five types of contact
are considered and we will explore which one induces the best fit to the serological data.
First, the contact rates c(a, a′) are estimated using the complete contact data set as we
did in Section 4.2.3 and further, four specific types of contact with high transmission
potential for VZV are selected according to Ogunjimi et al. (2009) and Melegaro et al.
(2009):

Model Parameter Type of contact

C1 q1 all contacts
C2 q2 close contacts
C3 q3 close contacts > 15 minutes
C4 q4 close contacts and non-close contacts > 1 hour
C5 q5 close contacts > 15 minutes and non-close contacts > 1 hour

Assuming constant proportionality, maximum likelihood estimates for the trans-
mission parameters qk (k = 1, . . . , 5) and for the basic reproduction number R0 to-
gether with their corresponding 95% profile likelihood confidence intervals (first en-
try), are presented in Table 3. For each model Ck, the AIC-value, AIC difference
∆k = AICk − AICmin, Akaike weight

wk =
exp(−1

2∆k)∑
ℓ

exp(−1
2∆ℓ)

,

and evidence ratio (ER) wmin/wk, are calculated following Burnham and Anderson
(2002), where AICmin and wmin correspond to the model with the smallest AIC value.
Recall that the AIC is an estimate of the expected, relative Kullback-Leibler (K-L) dis-
tance, whereas the K-L distance embodies the information lost when an approximating
model is used instead of the unknown, true model. A given Akaike weight wk is consid-
ered as the weight of evidence in favor of a model k being the actual K-L best model
for the situation at hand, given the data and the set of candidate models considered.

According to the AIC-criterion, although AIC differences are minor, the contact
matrix consisting of close contacts longer than 15 minutes (model C3) implies the best
fit to the seroprevalence data. A graphical representation of the estimated prevalence
and force of infection is omitted here, since the result is very close to the one obtained
for model C1 in Figure 3. Further, there is evidence for model C5 as well, having
an Akaike weight of 0.329 and an evidence ratio of 1.7. The latter model adds non-
close contacts longer than one hour to model C3 and therefore these models are closely
related.
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Table 3: ML-estimates for the proportionality factor and R0, 95% profile likelihood confidence in-
tervals (first entry), 95% bootstrap-based percentile confidence intervals (second entry) and
several measures related to model selection, obtained from contact rates estimated using
bivariate smoothing, considering different types of contact C1-C5, assuming constant pro-
portionality.

Model q̂k 95% CI for qk R̂0 95% CI for R0 AIC ∆k wk ER

C1 0.132 [0.124, 0.140] 15.69 [14.74, 16.69] 1386.618 11.660 0.002 340.4
[0.103, 0.175] [12.34, 21.41]

C2 0.160 [0.150, 0.169] 10.24 [9.65, 10.85] 1379.581 4.623 0.057 10.1
[0.126, 0.208] [8.21, 13.68]

C3 0.173 [0.163, 0.184] 8.68 [8.18, 9.20] 1374.958 0.000 0.574 1.0
[0.133, 0.221] [6.89, 11.34]

C4 0.145 [0.136, 0.154] 11.73 [11.05, 12.47] 1380.354 5.396 0.039 14.9
[0.113, 0.188] [9.41, 15.95]

C5 0.156 [0.147, 0.166] 10.40 [9.79, 11.04] 1376.068 1.110 0.329 1.7
[0.119, 0.204] [8.05, 14.10]

4.3.2 Non-parametric bootstrap

We explicitly acknowledge that up till now, by keeping the estimated contact rates
fixed, we have ignored the variability originating from the contact data. In order to
assess sampling variability for the social contact data and the serological data alto-
gether, we will use a non-parametric bootstrap approach. Furthermore, building in a
randomization process, uncertainty concerning age is accounted for. After all, in the
social contact data, ages of respondents are rounded up, which is also the case for some
individuals in the serological data set. Concerning the age of contacts, a lower and up-
per age limit is given by the respondents. Instead of using the mean value of these age
limits, a random draw is now taken from the uniform distribution on the corresponding
age interval. In summary, each bootstrap cycle consists of the following six steps:

1. randomize ages in the social contact data and the serological data set;

2. take a sample with replacement from the respondents in the social contact data;

3. recalculate diary weights based on age and household size of the selected respon-
dents;

4. estimate the social contact matrix (smooth-then-constrain approach);

5. take a sample with replacement from the serological data;

6. estimate the transmission parameters and R0.

This bootstrap approach allows one to calculate bootstrap confidence intervals for the
transmission parameters and for the basic reproduction number, which take into ac-
count all sources of variability.

The impact on statistical inference is now illustrated for the models considered in
the previous section. Nine hundred bootstrap samples are taken from the contact data
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and from the serological data simultaneously, while ages are being randomized. Merely
B = 587 bootstrap samples lead to convergence in all five smoothing procedures, which
might be induced by the sparse structure of the contact data. However, by individual
monitoring of non-converging gam functions, convergence was reached after all and a
comparison of the bootstrap results showed little difference whether or not these samples
were included. 95% percentile confidence intervals for q and R0 are calculated based
on the B = 587 bootstrap samples (see Table 3, second entry). Taking into account
sampling variability for the social contact data has a noticeable impact, as can be seen
from the wider 95% confidence intervals.

5 Age-dependent proportionality of the transmission rates

The proportionality factor q might depend on several characteristics related to suscep-
tibility and infectiousness, which could be ethnic-, climate-, disease- or age-specific.
Examples of age-specific characteristics related to susceptibility and infectiousness in-
clude the mean infectious period, mucus secretion and hygiene. In the situation of
seasonal and pandemic influenza this has been established and used in realistic simula-
tion models (see e.g. Cauchemez et al. (2004) and Longini et al. (2005)). Furthermore,
the conversational and physical contacts reported in the diaries serve as proxies of those
events by which an infection can be transmitted. For example, sitting close to someone
in a bus without actually touching each other, may also lead to transmission of infec-
tion. In light of these discrepancies, q can be considered as an age-specific adjustment
factor which relates the true contact rates underlying infectious disease transmission to
the social contact proxies.

In view of this, we will explore whether q varies with age, an assumption we will
refer to as ‘age-dependent proportionality’:

β(a, a′) = q(a, a′) · c(a, a′), (11)

which in the discrete framework turns into: βij = qij · cij (i, j = 1, . . . , J). In the
previous section, it was observed that, under the constant proportionality assumption,
close contacts longer than 15 minutes imply the best fit to the serological data for VZV.
Therefore in the following, the contact rate is modeled using close contacts longer than
15 minutes and we will elaborate on this particular model by assuming age dependence.
First, discrete structures are applied in order to model q as an age-dependent proportio-
nality factor and second, ‘continuous’ loglinear regression models are considered for the
same purpose. Finally, we assess the level of model selection uncertainty and calculate
a model averaged estimate for the basic reproduction number.

5.1 Discrete structures

The proportionality factor qij is now allowed to differ between age classes. Discrete
matrix structures, involving two transmission parameters γ1 and γ2, are explored in
modeling qij . Five models are considered, which fit the following structures for qij to
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the seroprevalence data:

M1 =

(
γ1 γ2

γ2 γ2

)
, M2 =

(
γ1 γ1

γ2 γ2

)
, M3 =

(
γ1 γ2

γ2 γ1

)
,

M4 =

(
γ1 0
0 γ2

)
, M5 =

(
γ1 γ2

γ1 γ2

)
.

The population is divided into two age classes, namely [0.5, 12) and [12, 80), a choice
based on the dichotomy of the population according to the schooling system in Bel-
gium (Section 3.3), yielding the smallest AIC-value. Note that higher order extensions,
considering more parameters and/or number of age classes, were fitted to the serolog-
ical data as well. The improvement in loglikelihood, however, does not outweigh the
increase in the number of transmission parameters.

Notice that the structures of M1-M5 resemble the mixing patterns imposed on the
WAIFW-matrix in the traditional Anderson and May (1991) approach. We would like
to emphasize that the method proposed here differs greatly from the latter, since the
WAIFW-matrix is now estimated using the estimated contact rates: βij = qij · ĉij .
Hence, in contrast with the approach of Anderson and May (1991) who estimate βij

by fixing the structure of the mixing pattern, in our approach we estimate the contact
pattern from the survey data and use several proportionality structures to select the
best model from which the βij are estimated.

Table 4 displays ML-estimates for γ1, γ2 and the basic reproduction number R0,
together with their corresponding 95% percentile confidence intervals (B = 603 boot-
strap samples converged out of 700). For model M4, γ2 is non-identifiable, and uncon-
strained optimization of model M5 would not lead to convergence. According to the
AIC-criterion, the remaining models fit equally well and are informative with respect to
VZV transmission dynamics. Most likely, this is due to the fact that the main transmis-
sion routes for VZV are between children and from infectious children to susceptible
adults, embodied by the first column (γ1, γ2)

T . The three models result in approxi-
mately the same estimates for γ1 and γ2 and consequently the differences in AIC are
only minor.

It is clear from Table 4 that we estimate a difference in transmissibility between those
younger and older than 12 years (about 0.18 and 0.07, respectively). This difference
cannot be solely explained by the estimated contact rates. A possible explanation is that
when infectious children make close contact with susceptible children during a sufficient
amount of time, the probability of effective VZV transmission is higher compared to
the same situation with susceptible adults. Another potential cause is underreporting
of contacts between children. After all, up to the age of eight, the contact diaries
were filled in by the parents, which may have induced some reporting bias (Hens et al.,
2009a).

5.2 Continuous modeling

As opposed to the previous, the proportionality factor q(a, a′) is now allowed to vary
continuously over age. Loglinear regression models are considered for q(a, a′), since we
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Table 4: Candidate models for the proportionality factor together with ML-estimates for the trans-
mission parameters and R0, 95% bootstrap-based percentile confidence intervals, and several
measures related to model selection.

Model Parameter 95% CI R̂0 95% CI for R0 K AIC ∆k wk ER

C3 q̂ 0.173 [0.133, 0.221] 8.68 [6.89, 11.34] 1 1374.958 8.884 0.003 84.9
M1 γ̂1 0.185 [0.136, 0.244] 4.79 [4.15, 9.98] 2 1366.306 0.232 0.261 1.1

γ̂2 0.079 [0.006, 0.196]
M2 γ̂1 0.183 [0.138, 0.240] 5.37 [4.47, 9.68] 2 1366.285 0.211 0.264 1.1

γ̂2 0.078 [0.006, 0.187]
M3 γ̂1 0.185 [0.136, 0.244] 8.26 [6.82, 11.25] 2 1366.074 0.000 0.293 1.0

γ̂2 0.069 [0.006, 0.199]
M6 γ̂0 -1.622 [-2.028, -1.212] 5.79 [4.63, 12.60] 2 1368.709 2.635 0.079 3.7

γ̂1 -0.023 [-0.067, 0.016]
M7 γ̂0 -1.720 [-2.441, -1.182] 5.03 [4.20, 1318.68] 3 1368.325 2.251 0.095 3.1

γ̂1 0.014 [-0.086, 0.305]
γ̂2 -0.002 [-0.024, 0.001]

M8 γ̂0 -1.517 [-2.224, -0.446] 3.55 [1.76, 159.96] 2 1374.324 8.250 0.005 61.9
γ̂1 -0.065 [-0.403, 0.064]

expect an exponential decline of q over a due to hygienic habits as well as an exponential
decline of q over a′ due to decreasing mucus secretion. The following loglinear models
are fitted to the data:

M6 : log{q(a)} = γ0 + γ1a,

M7 : log{q(a)} = γ0 + γ1a + γ2a
2,

M8 : log{q(a′)} = γ0 + γ1a
′,

M9 : log{q(a′)} = γ0 + γ1a
′ + γ2(a

′)2,

M10 : log{q(a, a′)} = γ0 + γ1a + γ2a
′.

Model M6 models q as a first degree function of age of the susceptible and model
M7 allows for an additional quadratic effect of age, a2. Models M8 and M9 are the
analogue of M6 and M7 for age of the infectious person, a′. Finally, M10 models q
as an exponential function of a and a′ simultaneously. For model M9, no convergence
was obtained and model M10 gives rise to an estimated proportionality factor which is
exponentially increasing over a′, inducing unrealistically large estimates for q at older
ages.

Maximum likelihood estimates for the model parameters and the basic reproduction
number R0 are presented in Table 4, together with the corresponding 95% percentile
confidence intervals (B = 603 bootstrap samples converged out of 700). According to
the AIC-criterion, M6 and M7 fit equally well. Allowing the proportionality factor to
vary by age of infectious persons, does not seem to substantially improve model fit, as
can be seen by comparing the AIC-values of C3 and M8.

Clearly for models M7 and M8, the upper limits of the confidence intervals for
R0 are very large, as a consequence of estimated proportionality factors which are
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exponentially increasing over a and a′, respectively. This result originates from two
things: first, there is lack of serological information for individuals aged 40 and older,
and second, VZV is highly prevalent in the population and most individuals become
infected with VZV before the age of ten. Mathematically the latter means that from a
certain age on, π(a) ≈ 1 and π′(a) ≈ 0, leading to an indeterminate force of infection
λ(a) = π′(a)/{1 − π(a)}. In Section 5.4, we assess the sensitivity of the results to the
former issue, repeating all analyses using simulated serological data for the age range
[40, 80).

Figure 4 displays the estimated prevalence function and force of infection for the
discrete model M3 (left) and the continuous model M7 (right). The results are re-
markably similar. The effect of making q age-dependent is visualized by comparing
Figure 4 to the fit of model C1, which was very close to model C3, in Figure 3 (on
the right). The models assuming age-dependent proportionality estimate an initially
higher force of infection and a steeper decrease from the age of ten, after which the
force of infection is reduced by a factor two, compared to the constant proportionality
model. While the latter model predicts total immunity for VZV at older ages, the age-
dependent proportionality models estimate a fraction of seropositives which is below
one at all times.
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Figure 4: Estimated prevalence (upper curve) and force of infection (lower curve) for the discrete
model M3 (left) and the continuous model M7 (right).

5.3 Model selection and multi-model inference

Table 4 presents all candidate models for the proportionality factor q we have collected
up till now, among which the constant proportionality model C3, the discrete age-
dependent proportionality models M1, M2 and M3, and the continuous age-dependent
proportionality models M6, M7 and M8. Further for each model, the number of param-
eters K, the AIC-value, the AIC difference ∆k, the Akaike weight wk and the evidence
ratio (ER) are displayed.

Model M3 with an assortative component γ1 and a background component γ2 is
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the ‘best’ model for q according to the AIC-criterion. However, model selection un-
certainty is likely to be high since the selected best model has an Akaike weight of
only 0.293 (Burnham and Anderson, 2002). The evidence ratios for M3 versus M1 and
M2 are both 1.1, which means there is weak support for the best model. If many
independent samples could be drawn, the three discrete age-dependent models would
probably compete each other for the ‘best’ model position. The continuous models M6

and M7 have evidence ratios around 3.5, indicating that these models also contribute
some information. Models C3 and M8 have the largest AIC difference ∆k, a very small
Akaike weight (≤ 0.005) and very large evidence ratios (84.9 and 61.9 respectively),
which means there is little support for these two models.

Since there is no single model in the candidate set that is clearly superior to the
others and since the estimate for the basic reproduction number R0 varies noticeably
over the candidate models, we are not inclined to base prediction only on M3. Apply-
ing the concepts of model averaging, as described in Burnham and Anderson (2002),
a weighted estimate of R0 is calculated, based on the model estimates and the corre-
sponding Akaike weights:

R̂0 =
7∑

k=1

wk(R̂0)k = 6.07.

With the bootstrap procedure, we obtain a 95% percentile confidence interval for this

model averaged estimate R̂0, namely [4.4, 351.6]. Again, there is a large upper limit
induced by the same issues reported in Section 5.2.

5.4 Sensitivity analysis

In order to assess the lack-of-data-problem, we simulate serological data for the age
range [40, 80) using a constant prevalence π = 0.983, which is estimated from a thin
plate regression spline model for the original serological data. Sample sizes for one-
year age groups are chosen according to the Belgian population distribution in 2003
(FOD Economie Afdeling Statistiek, 2006) and the total size of serological data now
amounts to n = 3856. The seven candidate models for the proportionality factor q are
now applied to the ‘complete’ serological data set.

The results are presented in Table 5 and are, overall, quite similar to the results
obtained before (Table 4). The 95% percentile confidence intervals for R0 (B = 599
bootstrap samples converged out of 700), however, are narrower since the simulated data
for the age range [40, 80) are ‘forcing’ the proportionality factor q to follow a natural
pace. This is illustrated for model M7 in Figure 5, where the estimated function q(a)
is depicted for 100 randomly chosen bootstrap samples. Particularly, right confidence
interval limits for R0 are smaller, whereas for most models the R0 estimate seems to
have decreased just a little bit.

Model selection uncertainty is illustrated quite nicely here, since four models, M7,
M3, M2 and M1, have Akaike weights close to 0.24 and these models also had the most

support for the original data set (Table 4). The model averaged estimate R̂0 now equals
5.64 and the 95% bootstrap-based percentile confidence interval is [4.7, 7.5].
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Table 5: Candidate models for the proportionality factor applied to the serological data set augmented
with simulated data, together with ML-estimates for the transmission parameters and R0,
95% bootstrap-based percentile confidence intervals, and several measures related to model
selection.

Model Parameter 95% CI R̂0 95% CI for R0 K AIC ∆k wk ER

C3 q̂ 0.159 [0.126, 0.195] 7.98 [6.60, 10.19] 1 1618.747 70.774 ≪ 0.0001 ≫ 103

M1 γ̂1 0.189 [0.137, 0.250] 4.20 [3.88, 5.74] 2 1548.714 0.741 0.201 1.4
γ̂2 0.052 [0.021, 0.095]

M2 γ̂1 0.186 [0.136, 0.247] 4.74 [4.36, 6.07] 2 1548.627 0.654 0.210 1.4
γ̂2 0.052 [0.020, 0.091]

M3 γ̂1 0.189 [0.137, 0.250] 8.28 [6.43, 11.52] 2 1548.344 0.371 0.242 1.2
γ̂2 0.044 [0.016, 0.082]

M6 γ̂0 -1.561 [-1.934, -1.120] 4.96 [4.47, 6.54] 2 1551.321 3.348 0.055 5.3
γ̂1 -0.035 [-0.067, -0.014]

M7 γ̂0 -1.793 [-2.247, -1.079] 5.22 [4.60, 7.51] 3 1547.973 0 0.292 1.0
γ̂1 0.030 [-0.074, 0.126]
γ̂2 -0.002 [-0.006, 0.001]

M8 γ̂0 -1.458 [-2.061, -0.844] 2.69 [2.08, 12.97] 2 1610.113 62.140 ≪ 0.0001 ≫ 103

γ̂1 -0.103 [-0.254, 0.016]

6 Concluding remarks

In this paper, an overview of different estimation methods for infectious disease param-
eters from data on social contacts and serological status, was given. The theoretical
framework included a compartmental MSIR-model, taking into account the presence of
maternal antibodies, and the mass action principle, as presented by Anderson and May
(1991). An important assumption made was the one of endemic equilibrium, which
means that infection dynamics are in a steady state. The serological data set we
used was collected over 17 months, averaging over potential epidemic cycles of VZV
in Belgium during that period. In Section 3, we have illustrated the traditional, basic
approach of imposing mixing patterns on the WAIFW-matrix to estimate transmission
parameters from serological data. In contrast, the novel approach of using social con-
tact data to estimate infectious disease parameters, avoids the choice of a parametric
model for the entire WAIFW-matrix.

The idea is fairly simple: transmission rates for infections that are transmitted from
person to person in a non-sexual way, such as VZV, are assumed to be proportional to
rates of making conversational and/or physical contact, which can be estimated from
contact surveys. Although more time consuming, the bivariate smoothing approach as
proposed in Section 4, was better able to capture important features of human contact-
ing behavior, compared to the maximum likelihood estimation method of Wallinga et al.
(2006). However, when a non-parametric bootstrap approach was applied to take into
account sampling variability, convergence problems arose, probably due to the large
number of zeros in combination with the log-link. Therefore, a mixture of Poisson dis-
tributions or a zero-inflated negative binomial distribution could be more appropriate.
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Figure 5: q(a) estimates for model M7, shown for 100 randomly chosen bootstrap samples from the
original serological data (left) and from this data augmented with simulated data for [40, 80)
(right).

Further, in Section 4, we dealt with a couple of challenges posed by Halloran (2006).
The social contact survey contained useful additional information on the contact itself,
which allowed us to target very specific types of contact with high transmission po-
tential for VZV. Furthermore, a non-parametric bootstrap approach was proposed to
improve statistical inference.

The constant proportionality assumption was relaxed in Section 5 and we have
shown that an improvement of fit could be obtained by disentangling the transmission
rates into a product of two age-specific variables: the age-specific contact rate and
an age-specific proportionality factor. The latter may reflect, for instance, differences
in characteristics related to susceptibility and infectiousness or discrepancies between
the social contact proxies measured in the contact survey and the true contact rates
underlying infectious disease transmission. We would like to emphasize that there
probably exist other models for q(a, a′) than the ones considered in Section 5, which fit
the data even better. Our choice of a set of plausible candidate models was directed
by parsimony on the one hand, limiting the total number of parameters to three, and
prior knowledge on the other hand, considering loglinear models. Furthermore, we
restricted analyses to close contacts lasting longer than 15 minutes, which means that
close contacts of short duration and non-close contacts are assumed not to contribute
to transmission of VZV.

It is important to note that different assumptions concerning the underlying type of
contact as well as different parametric models for q(a, a′), are likely to entail different
estimates of R0, however, they may still induce a similar fit to the serological data.
In order to deal with this problem of model selection uncertainty we have turned to
multi-model inference in Section 5.3. In Figure 6, estimates of R0 are presented for the
main estimation methods considered in this paper: the traditional method of imposing
mixing patterns to the WAIFW-matrix (W4) and the method of using data on social
contacts, assuming constant proportionality (the saturated model SA, C1 and C3) and
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age-dependent proportionality (M1, M2 and M3). There is a pronounced variability in
the estimates of R0, which is partially captured by the model averaged estimate MA,
calculated from Table 4.
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Figure 6: R0 estimates for mixing pattern W4, applied to the serological data in Section 3.3, and
for the following models using social contact data: the saturated model (SA) as proposed
by Wallinga et al. (2006), applied in Section 4.2.3 assuming constant proportionality, and
further bivariate smoothing models: constant proportionality models C1 and C3 considering
all and close contacts longer than 15 minutes, respectively (Section 4.3.1) and discrete age-
dependent proportionality models M1, M2 and M3 (Section 5.1). The model averaged
estimates for R0 calculated from Table 4 (MA), based on the original serological data, and

from Table 5 (gMA), based on the serological data set augmented with simulated data, are
displayed, as well as 95% bootstrap-based percentile confidence interval limits for the latter:
[gMAL, gMAR].

When estimating q(a, a′), we were actually faced with three problems of indetermi-
nacy. First, there is lack of serological information for individuals aged 40 and older,
second, prevalence of VZV rapidly stagnates, leading to an indeterminate force of infec-
tion and third, serological surveys do not provide information related to infectiousness.
Models which only expressed age differences in q for infectious individuals, such as the
discrete model M5 (Section 5.1) and the continuous models M8 and M9 (Section 5.2),
either did not lead to convergence or induced unrealistically large bootstrap estimates
for q at older ages.

A sensitivity analysis in Section 5.4 showed that lack of serological data had a big
impact on confidence intervals for R0. We simulated data for the age range [40, 80),

giving rise to a model averaged estimate M̃A as displayed in Figure 6 with corresponding
confidence interval limits [M̃AL, M̃AR]. The latter problems of indeterminacy might be
controlled by combining information on the same infection over different countries or
on different airborne infections, assuming there is a relation between the country- or
disease-specific q(a, a′), respectively. This strategy already appeared beneficial when
estimating R0 directly from seroprevalence data, without using social contact data
(Farrington et al., 2001).

Further, the impact of intervention strategies such as school closures, might be in-
vestigated by incorporating transmission parameters, estimated from data on social
contacts and serological status, in an age-time-dynamical setting. Finally, it is impor-
tant to note that the models rely on the assumptions of type I mortality and type I
maternal antibodies in order to facilitate calculations. Consequently, model improve-
ments could be made through a more realistic approach of demographical dynamics.
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