Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37036
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-03-28T12:16:18Z-
dc.date.available2022-03-28T12:16:18Z-
dc.date.issued2021-
dc.date.submitted2022-03-21T15:32:33Z-
dc.identifier.citationZenodo. 10.5281/zenodo.4973492 https://zenodo.org/record/4973492-
dc.identifier.urihttp://hdl.handle.net/1942/37036-
dc.description.abstractThis data set contains prediction of ten dipole localisation algorithms computed using a simulated artificial lateral line (potential flow).-
dc.description.sponsorshipSensors for LArge scale HydrodynaMic Imaging of ocean floor. European Commission. awardNumber:635568. https://doi.org/10.13039/501100000780-
dc.language.isoen-
dc.publisherZenodo-
dc.subject.classificationAnalysis of algorithms and complexity-
dc.subject.classificationVisual data analysis-
dc.subject.classificationGeneral topology-
dc.subject.otherhydrodynamic imaging; dipole localisation; artificial lateral line; neural networks-
dc.titleDipole localisation predictions data set-
dc.typeDataset-
local.bibliographicCitation.jcatDS-
dc.description.version2.0-
dc.rights.licenseCreative Commons Attribution 4.0 International (CC-BY-4.0)-
dc.identifier.doi10.5281/zenodo.4973492-
dc.identifier.urlhttps://zenodo.org/record/4973492-
local.provider.typedatacite-
local.contributor.datacreatorBOT, Jelmer-
local.contributor.datacreatorWOLFS, Davy-
local.contributor.datacreatorvan Netten, S.M.-
local.contributor.datacuratorBOT, Jelmer-
local.contributor.rightsholderBOT, Jelmer-
local.format.extent448.6 Mb-
local.format.mimetypeComma-separated values (CSV)-
local.contributororcid.datacreator0000-0001-5495-4502-
local.contributororcid.datacreator0000-0002-8024-5352-
local.contributororcid.datacreator0000-0001-8855-8022-
local.publication.doi10.3390/s21134558-
dc.rights.accessOpen Access-
item.fulltextNo Fulltext-
item.contributorBOT, Jelmer-
item.contributorWOLFS, Davy-
item.contributorvan Netten, S.M.-
item.fullcitationBOT, Jelmer; WOLFS, Davy & van Netten, S.M. (2021) Dipole localisation predictions data set. Zenodo. 10.5281/zenodo.4973492 https://zenodo.org/record/4973492.-
item.accessRightsClosed Access-
crisitem.license.codeCC-BY-4.0-
crisitem.license.nameCreative Commons Attribution 4.0 International (CC-BY-4.0)-
crisitem.discipline.code01020801-
crisitem.discipline.code01020505-
crisitem.discipline.code01010504-
crisitem.discipline.nameAnalysis of algorithms and complexity-
crisitem.discipline.nameVisual data analysis-
crisitem.discipline.nameGeneral topology-
crisitem.discipline.pathNatural sciences > Information and computing sciences > Theoretical computer science > Analysis of algorithms and complexity-
crisitem.discipline.pathNatural sciences > Information and computing sciences > Information systems > Visual data analysis-
crisitem.discipline.pathNatural sciences > Mathematical sciences > Geometry > General topology-
crisitem.discipline.pathandcodeNatural sciences > Information and computing sciences > Theoretical computer science > Analysis of algorithms and complexity (01020801)-
crisitem.discipline.pathandcodeNatural sciences > Information and computing sciences > Information systems > Visual data analysis (01020505)-
crisitem.discipline.pathandcodeNatural sciences > Mathematical sciences > Geometry > General topology (01010504)-
Appears in Collections:Datasets
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.