Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/38539
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFAES, Christel
dc.contributor.advisorDEVLEESSCHAUWER, Brecht
dc.contributor.authorVan Den Neucker, Sophie
dc.date.accessioned2022-09-26T08:21:14Z-
dc.date.available2022-09-26T08:21:14Z-
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/1942/38539-
dc.format.mimetypeApplication/pdf
dc.languageen
dc.publishertUL
dc.titleSpatiotemporal Gaussian process regression to estimate the global burden of disease
dc.typeTheses and Dissertations
local.bibliographicCitation.jcatT2
dc.description.notesMaster of Statistics and Data Science-Quantitative Epidemiology
local.type.specifiedMaster thesis
item.fullcitationVan Den Neucker, Sophie (2022) Spatiotemporal Gaussian process regression to estimate the global burden of disease.-
item.contributorVan Den Neucker, Sophie-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
Appears in Collections:Master theses
Files in This Item:
File Description SizeFormat 
38b417f4-b54c-4a24-851d-fde8b64fab38.pdf16.01 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.