Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/40522
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-06-29T08:24:49Z-
dc.date.available2023-06-29T08:24:49Z-
dc.date.issued2017-
dc.date.submitted2023-06-29T07:10:41Z-
dc.identifier.citationZenodo. 10.5281/zenodo.583965 https://zenodo.org/record/583965-
dc.identifier.urihttp://hdl.handle.net/1942/40522-
dc.description.abstractThis dataset contains all raw signals (complex float I/Q samples) used in the LoRa fingerprinting experiments of the paper entitled "Physical-Layer Fingerprinting of LoRa devices using Supervised and Zero-Shot Learning". There are 4 databases included: lora1msps, lora2msps, lora5msps, and lora10msps. Each document in the databases is a symbol extracted from a 4-byte random payload LoRa frame, transmitted by a RN2483 radio and received by a USRP B210 sampling at a rate corresponding to the database name. A total of 22 different transmitters were used. For more information, please consult the paper. The document structure is as follows: _id: Unique MongoDB document ID chirp: Base 64 encoded binary float complex I/Q data field: Symbol location inside a LoRa frame tag: Name of the device that sent the frame date: Time and date of reception fn: Frame number rand: Random number for sorting How to import Extract the tar archive. Inside the directory, run the following command to import the lora2msps database: mongorestore --gzip -d lora2msps ./lora2msps This process can be repeated for each dataset. Alternatively, all datasets can be imported automatically by executing: mongorestore --gzip . How to use After the data has been imported, an experiment can be run by simply providing the corresponding config file to tf_train (see https://github.com/rpp0/lora-phy-fingerprinting), e.g.: ./tf_train.py train conf/experiment_lora2msps_mlp.conf-
dc.description.sponsorshipPh.D. grant of the Research Foundation Flanders (FWO)-
dc.description.sponsorshipResearch Council KU Leuven C16/15/058-
dc.description.sponsorshipFlemish Government through the imec Distributed Trust program (Netsec project)-
dc.description.sponsorshipFlemish Government through ICON project Diskman-
dc.language.isoen-
dc.publisherZenodo-
dc.subject.classificationComputer system security-
dc.subject.otherLoRa-
dc.subject.otherPHY-layer-
dc.subject.otherFingerprinting-
dc.titlePhysical-Layer Fingerprinting Of Lora Devices Using Supervised And Zero-Shot Learning-
dc.typeDataset-
local.bibliographicCitation.jcatDS-
dc.description.version1.0-
dc.rights.licenseCreative Commons Attribution 4.0 International (CC-BY-4.0)-
dc.identifier.doi10.5281/zenodo.583965-
dc.identifier.urlhttps://zenodo.org/record/583965-
dc.description.other e authors would like to thank the anonymous reviewers for their helpful comments, and Enrique Argones, Bram Bonne, Rafael Galvez ´ and Balazs Nemeth for their support. is work was supported in part by a Ph.D. grant of the Research Foundation Flanders (FWO), the Research Council KU Leuven C16/15/058, the Flemish Government through the imec Distributed Trust program, in particular the Netsec project, and through ICON project Diskman.-
local.provider.typedatacite-
local.uhasselt.internationalno-
local.contributor.datacreatorROBYNS, Pieter-
local.contributor.datacreatorMarin, Eduard-
local.contributor.datacreatorLAMOTTE, Wim-
local.contributor.datacreatorQUAX, Peter-
local.contributor.datacreatorSingelée, Dave-
local.contributor.datacreatorPreneel, Bart-
local.contributor.datacuratorRobyns, Pieter-
local.contributor.rightsholderROBYNS, Pieter-
local.format.extent26.5 Gb-
local.format.mimetypetar-
local.contributororcid.datacreator0000-0003-3306-8637-
local.contributororcid.datacreator0000-0002-5002-0187-
local.contributororcid.datacreator0000-0003-1888-6383-
local.contributororcid.datacreator0000-0003-4811-0578-
local.contributororcid.datacreator0000-0001-9084-698X-
local.contributororcid.datacreator0000-0003-2005-9651-
local.contributororcid.datacurator0000-0003-3306-8637-
local.contributororcid.rightsholder0000-0003-3306-8637-
local.publication.doi10.1145/3098243.3098267-
local.contributingorg.datacreatorHasselt University-
local.contributingorg.datacreatorKU Leuven-
local.contributingorg.datacuratorHasselt University-
local.contributingorg.rightsholderHasselt University-
dc.rights.accessOpen Access-
item.contributorROBYNS, Pieter-
item.contributorMarin, Eduard-
item.contributorLAMOTTE, Wim-
item.contributorQUAX, Peter-
item.contributorSingelée, Dave-
item.contributorPreneel, Bart-
item.contributorRobyns, Pieter-
item.fullcitationROBYNS, Pieter; Marin, Eduard; LAMOTTE, Wim; QUAX, Peter; Singelée, Dave & Preneel, Bart (2017) Physical-Layer Fingerprinting Of Lora Devices Using Supervised And Zero-Shot Learning. Zenodo. 10.5281/zenodo.583965 https://zenodo.org/record/583965.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.license.codeCC-BY-4.0-
crisitem.license.nameCreative Commons Attribution 4.0 International (CC-BY-4.0)-
crisitem.discipline.code01020203-
crisitem.discipline.nameComputer system security -
crisitem.discipline.pathNatural sciences > Information and computing sciences > Computer architecture and networks > Computer system security -
crisitem.discipline.pathandcodeNatural sciences > Information and computing sciences > Computer architecture and networks > Computer system security (01020203)-
Appears in Collections:Datasets
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.