Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/40522
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-06-29T08:24:49Z | - |
dc.date.available | 2023-06-29T08:24:49Z | - |
dc.date.issued | 2017 | - |
dc.date.submitted | 2023-06-29T07:10:41Z | - |
dc.identifier.citation | Zenodo. 10.5281/zenodo.583965 https://zenodo.org/record/583965 | - |
dc.identifier.uri | http://hdl.handle.net/1942/40522 | - |
dc.description.abstract | This dataset contains all raw signals (complex float I/Q samples) used in the LoRa fingerprinting experiments of the paper entitled "Physical-Layer Fingerprinting of LoRa devices using Supervised and Zero-Shot Learning". There are 4 databases included: lora1msps, lora2msps, lora5msps, and lora10msps. Each document in the databases is a symbol extracted from a 4-byte random payload LoRa frame, transmitted by a RN2483 radio and received by a USRP B210 sampling at a rate corresponding to the database name. A total of 22 different transmitters were used. For more information, please consult the paper. The document structure is as follows: _id: Unique MongoDB document ID chirp: Base 64 encoded binary float complex I/Q data field: Symbol location inside a LoRa frame tag: Name of the device that sent the frame date: Time and date of reception fn: Frame number rand: Random number for sorting How to import Extract the tar archive. Inside the directory, run the following command to import the lora2msps database: mongorestore --gzip -d lora2msps ./lora2msps This process can be repeated for each dataset. Alternatively, all datasets can be imported automatically by executing: mongorestore --gzip . How to use After the data has been imported, an experiment can be run by simply providing the corresponding config file to tf_train (see https://github.com/rpp0/lora-phy-fingerprinting), e.g.: ./tf_train.py train conf/experiment_lora2msps_mlp.conf | - |
dc.description.sponsorship | Ph.D. grant of the Research Foundation Flanders (FWO) | - |
dc.description.sponsorship | Research Council KU Leuven C16/15/058 | - |
dc.description.sponsorship | Flemish Government through the imec Distributed Trust program (Netsec project) | - |
dc.description.sponsorship | Flemish Government through ICON project Diskman | - |
dc.language.iso | en | - |
dc.publisher | Zenodo | - |
dc.subject.classification | Computer system security | - |
dc.subject.other | LoRa | - |
dc.subject.other | PHY-layer | - |
dc.subject.other | Fingerprinting | - |
dc.title | Physical-Layer Fingerprinting Of Lora Devices Using Supervised And Zero-Shot Learning | - |
dc.type | Dataset | - |
local.bibliographicCitation.jcat | DS | - |
dc.description.version | 1.0 | - |
dc.rights.license | Creative Commons Attribution 4.0 International (CC-BY-4.0) | - |
dc.identifier.doi | 10.5281/zenodo.583965 | - |
dc.identifier.url | https://zenodo.org/record/583965 | - |
dc.description.other | e authors would like to thank the anonymous reviewers for their helpful comments, and Enrique Argones, Bram Bonne, Rafael Galvez ´ and Balazs Nemeth for their support. is work was supported in part by a Ph.D. grant of the Research Foundation Flanders (FWO), the Research Council KU Leuven C16/15/058, the Flemish Government through the imec Distributed Trust program, in particular the Netsec project, and through ICON project Diskman. | - |
local.provider.type | datacite | - |
local.uhasselt.international | no | - |
local.contributor.datacreator | ROBYNS, Pieter | - |
local.contributor.datacreator | Marin, Eduard | - |
local.contributor.datacreator | LAMOTTE, Wim | - |
local.contributor.datacreator | QUAX, Peter | - |
local.contributor.datacreator | Singelée, Dave | - |
local.contributor.datacreator | Preneel, Bart | - |
local.contributor.datacurator | Robyns, Pieter | - |
local.contributor.rightsholder | ROBYNS, Pieter | - |
local.format.extent | 26.5 Gb | - |
local.format.mimetype | tar | - |
local.contributororcid.datacreator | 0000-0003-3306-8637 | - |
local.contributororcid.datacreator | 0000-0002-5002-0187 | - |
local.contributororcid.datacreator | 0000-0003-1888-6383 | - |
local.contributororcid.datacreator | 0000-0003-4811-0578 | - |
local.contributororcid.datacreator | 0000-0001-9084-698X | - |
local.contributororcid.datacreator | 0000-0003-2005-9651 | - |
local.contributororcid.datacurator | 0000-0003-3306-8637 | - |
local.contributororcid.rightsholder | 0000-0003-3306-8637 | - |
local.publication.doi | 10.1145/3098243.3098267 | - |
local.contributingorg.datacreator | Hasselt University | - |
local.contributingorg.datacreator | KU Leuven | - |
local.contributingorg.datacurator | Hasselt University | - |
local.contributingorg.rightsholder | Hasselt University | - |
dc.rights.access | Open Access | - |
item.contributor | ROBYNS, Pieter | - |
item.contributor | Marin, Eduard | - |
item.contributor | LAMOTTE, Wim | - |
item.contributor | QUAX, Peter | - |
item.contributor | Singelée, Dave | - |
item.contributor | Preneel, Bart | - |
item.contributor | Robyns, Pieter | - |
item.fullcitation | ROBYNS, Pieter; Marin, Eduard; LAMOTTE, Wim; QUAX, Peter; Singelée, Dave & Preneel, Bart (2017) Physical-Layer Fingerprinting Of Lora Devices Using Supervised And Zero-Shot Learning. Zenodo. 10.5281/zenodo.583965 https://zenodo.org/record/583965. | - |
item.fulltext | No Fulltext | - |
item.accessRights | Closed Access | - |
crisitem.license.code | CC-BY-4.0 | - |
crisitem.license.name | Creative Commons Attribution 4.0 International (CC-BY-4.0) | - |
crisitem.discipline.code | 01020203 | - |
crisitem.discipline.name | Computer system security | - |
crisitem.discipline.path | Natural sciences > Information and computing sciences > Computer architecture and networks > Computer system security | - |
crisitem.discipline.pathandcode | Natural sciences > Information and computing sciences > Computer architecture and networks > Computer system security (01020203) | - |
Appears in Collections: | Datasets |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.