Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/10388
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArmour, Aaron-
dc.contributor.authorChen, Hui-Xiang-
dc.contributor.authorZHANG, Yinhuo-
dc.date.accessioned2010-02-03T20:23:19Z-
dc.date.available2010-02-03T20:23:19Z-
dc.date.issued2009-
dc.identifier.citationCOMMUNICATIONS IN ALGEBRA, 37(10). p. 3697-3728-
dc.identifier.issn0092-7872-
dc.identifier.urihttp://hdl.handle.net/1942/10388-
dc.description.abstractLet k be an algebraically closed field. The algebraic and geometric classification of finite dimensional algebras over k with ch(k) not equal 2 was initiated by Gabriel in [6], where a complete list of nonisomorphic 4-dimensional k-algebras was given and the number of irreducible components of the variety Alg(4) was discovered to be 5. The classification of 5-dimensional k-algebras was done by Mazzola in [10]. The number of irreducible components of the variety Alg(5) is 10. With the dimension n increasing, the algebraic and geometric classification of n-dimensional k-algebras becomes more and more difficult. However, a lower and a upper bound for the number of irreducible components of Alg(n) can be given (see [11]). In this article, we classify 4-dimensional Z(2)-graded (or super) algebras with a nontrivial grading over any field k with ch(k) not equal 2, up to isomorphism. A complete list of nonisomorphic Z(2)-graded algebras over an algebraically closed field k with ch(k) not equal 2 is obtained. The main result in this article is twofold. On one hand, it completes the classification of 4-dimensional Yetter-Drinfeld module algebras over Sweedler's 4-dimensional Hopf algebra H-4 initiated in [3]. On the other hand, it establishes the basis for the geometric classification of 4-dimensional super algebras. In approaching the geometric classification of n-dimensional Z(2)-graded algebras, we define a new variety, Salg(n), which possesses many different properties to Alg(4).-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.subject.otherGraded algebra-
dc.titleClassification of 4-dimensional graded algebras-
dc.typeJournal Contribution-
dc.identifier.epage3728-
dc.identifier.issue10-
dc.identifier.spage3697-
dc.identifier.volume37-
local.format.pages32-
local.bibliographicCitation.jcatA1-
dc.description.notes[Zhang, Yinhuo] Univ Hasselt, Dept Math Phys & Informat, B-3590 Diepenbeek, Belgium. [Armour, Aaron] Victoria Univ Wellington, Sch Math Stat & Comp Sci, Wellington, New Zealand. [Chen, Hui-Xiang] Yangzhou Univ, Dept Math, Yangzhou, Peoples R China.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1080/00927870802467304-
dc.identifier.isi000273643000023-
item.contributorArmour, Aaron-
item.contributorChen, Hui-Xiang-
item.contributorZHANG, Yinhuo-
item.validationecoom 2011-
item.accessRightsClosed Access-
item.fullcitationArmour, Aaron; Chen, Hui-Xiang & ZHANG, Yinhuo (2009) Classification of 4-dimensional graded algebras. In: COMMUNICATIONS IN ALGEBRA, 37(10). p. 3697-3728.-
item.fulltextNo Fulltext-
crisitem.journal.issn0092-7872-
crisitem.journal.eissn1532-4125-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.