Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScain, Anne-Laure-
dc.contributor.authorLe Corronc, Herve-
dc.contributor.authorAllain, Anne-Emilie-
dc.contributor.authorMuller, Emilie-
dc.contributor.authorRIGO, Jean-Michel-
dc.contributor.authorMeyrand, Pierre-
dc.contributor.authorBranchereau, Pascal-
dc.contributor.authorLegendre, Pascal-
dc.identifier.citationJOURNAL OF NEUROSCIENCE, 30 (1). p. 390-403-
dc.description.abstractRhythmic electrical activity is a hallmark of the developing embryonic CNS and is required for proper development in addition to genetic programs. Neurotransmitter release contributes to the genesis of this activity. In the mouse spinal cord, this rhythmic activity occurs after embryonic day 11.5 (E11.5) as waves spreading along the entire cord. At E12.5, blocking glycine receptors alters the propagation of the rhythmic activity, but the cellular source of the glycine receptor agonist, the release mechanisms, and its function remain obscure. At this early stage, the presence of synaptic activity even remains unexplored. Using isolated embryonic spinal cord preparations and whole-cell patch-clamp recordings of identified motoneurons, we find that the first synaptic activity develops at E12.5 and is mainly GABAergic. Using a multiple approach including direct measurement of neurotransmitter release (i.e., outside-out sniffer technique), we also show that, between E12.5 and E14.5, the main source of glycine in the embryonic spinal cord is radial cell progenitors, also known to be involved in neuronal migration. We then demonstrate that radial cells can release glycine during synaptogenesis. This spontaneous non-neuronal glycine release can also be evoked by mechanical stimuli and occurs through volume-sensitive chloride channels. Finally, we find that basal glycine release upregulates the propagating spontaneous rhythmic activity by depolarizing immature neurons and by increasing membrane potential fluctuations. Our data raise the question of a new role of radial cells as secretory cells involved in the modulation of the spontaneous electrical activity of embryonic neuronal networks.-
dc.description.sponsorshipThis work was supported by Association Francaise contre les Myopathies (France), Fondation pour la Recherche sur le Cerveau (France), and Conseil Regional d'Aquitaine Grant 20040301202A. A.-L. S. was supported by Fondation pour la Recherche MEdicale (France). We thank Drs. Joseph O'Neill and Alain Marty for critical reading of this manuscript.-
dc.titleGlycine Release from Radial Cells Modulates the Spontaneous Activity and Its Propagation during Early Spinal Cord Development-
dc.typeJournal Contribution-
dc.description.notes[Legendre, Pascal] Univ Paris 06, INSERM, U952, CNRS,UMR 7224, F-75005 Paris, France. [Scain, Anne-Laure; Le Corronc, Herve; Muller, Emilie; Legendre, Pascal] Univ Paris 06, CNRS, UMR 7102, F-75005 Paris, France. [Allain, Anne-Emilie; Meyrand, Pierre; Branchereau, Pascal] Univ Bordeaux, CNRS, Ctr Neurosci Integrat & Cognit, UMR 5228, F-33405 Talence, France. [Rigo, Jean-Michel] Hasselt Univ, Biomed Res Inst Med Basic Sci, B-3590 Diepenbeek, Belgium.;
item.validationecoom 2011-
item.fulltextNo Fulltext-
item.contributorScain, Anne-Laure-
item.contributorLe Corronc, Herve-
item.contributorBranchereau, Pascal-
item.contributorMuller, Emilie-
item.contributorAllain, Anne-Emilie-
item.contributorRIGO, Jean-Michel-
item.contributorLegendre, Pascal-
item.contributorMeyrand, Pierre-
item.fullcitationScain, Anne-Laure; Le Corronc, Herve; Allain, Anne-Emilie; Muller, Emilie; RIGO, Jean-Michel; Meyrand, Pierre; Branchereau, Pascal & Legendre, Pascal (2010) Glycine Release from Radial Cells Modulates the Spontaneous Activity and Its Propagation during Early Spinal Cord Development. In: JOURNAL OF NEUROSCIENCE, 30 (1). p. 390-403.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.