Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/10725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOYEN, Peter-
dc.contributor.authorNEVEN, Frank-
dc.contributor.authorVAN DYCK, Dries-
dc.contributor.authorvan Dijk, Aalt D.J.-
dc.contributor.authorVan Ham, Roeland C.J.H.-
dc.date.accessioned2010-03-16T13:43:52Z-
dc.date.available2010-03-16T13:43:52Z-
dc.date.issued2009-
dc.identifier.citationProceedings of the 9th IEEE International Conference on Data Mining (ICDM 2009). p. 716-721.-
dc.identifier.isbn978-1-4244-5242-2-
dc.identifier.issn1550-4786-
dc.identifier.urihttp://hdl.handle.net/1942/10725-
dc.description.abstractCorrelated motif mining (CMM) is the problem to find overrepresented pairs of patterns, called motif pairs, in interacting protein sequences. Algorithmic solutions for CMM thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that CMM is an NP-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the method SLIDER which uses local search with a neigborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that SLIDER outperforms existing motif-driven CMM methods and scales to large protein-protein interaction networks.-
dc.description.sponsorshipResearch funded by a Ph.D grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by the BioRange programme (SP 2.3.1) of the Netherlands Bioinformatics Centre (NBIC), which is supported through the Netherlands Genomics Initiative (NGI).-
dc.language.isoen-
dc.publisherIEEE Computer Society-
dc.subject.othercorrelated motifs; PPI networks; local search-
dc.titleSLIDER: Mining correlated motifs in protein-protein interaction networks-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencename9th IEEE International Conference on Data Mining (ICDM 2009)-
local.bibliographicCitation.conferenceplaceIEEE Computer Society-
dc.identifier.epage721-
dc.identifier.spage716-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC1-
dc.identifier.isi000287216600076-
dc.identifier.urlhttp://doi.ieeecomputersociety.org/10.1109/ICDM.2009.92-
dc.identifier.urlhttp://hdl.handle.net/1942/9865-
local.bibliographicCitation.btitleProceedings of the 9th IEEE International Conference on Data Mining (ICDM 2009)-
item.fulltextWith Fulltext-
item.contributorBOYEN, Peter-
item.contributorNEVEN, Frank-
item.contributorVAN DYCK, Dries-
item.contributorvan Dijk, Aalt D.J.-
item.contributorVan Ham, Roeland C.J.H.-
item.fullcitationBOYEN, Peter; NEVEN, Frank; VAN DYCK, Dries; van Dijk, Aalt D.J. & Van Ham, Roeland C.J.H. (2009) SLIDER: Mining correlated motifs in protein-protein interaction networks. In: Proceedings of the 9th IEEE International Conference on Data Mining (ICDM 2009). p. 716-721..-
item.accessRightsOpen Access-
item.validationecoom 2012-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
icdm09-cameraready.pdfPeer-reviewed author version211.16 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.