Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/10855
Title: CONSTRUCTING QUASITRIANGULAR MULTIPLIER HOPF ALGEBRAS BY TWISTED TENSOR COPRODUCTS
Authors: Wang, S. H.
Van Daele, A.
ZHANG, Yinhuo 
Issue Date: 2009
Publisher: TAYLOR & FRANCIS INC
Source: COMMUNICATIONS IN ALGEBRA, 37(9). p. 3171-3199
Abstract: Let A and B be multiplier Hopf algebras, and let R is an element of M(B circle times A) be an anti-copairing multiplier, i.e, the inverse of R is a skew-copairing multiplier in the sense of Delvaux [5]. Then one can construct a twisted tensor coproduct multiplier Hopf algebra A circle times(R) B. Using this, we establish the correspondence between the existence of quasitriangular structures in A circle times(R) B and the existence of such structures in the factors A and B. We illustrate our theory with a profusion of examples which cannot be obtained by using classical Hopf algebras. Also, we study the class of minimal quasitriangular multiplier Hopf algebras and show that every minimal quasitriangular Hopf algebra is a quotient of a Drinfel'd double for some algebraic quantum group.
Notes: [Wang, S. H.] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China. [Van Daele, A.] Katholieke Univ Leuven, Dept Math, Heverlee, Belgium. [Zhang, Y. H.] Victoria Univ Wellington, Sch Math Stat & Comp Sci, Wellington, New Zealand. [Zhang, Y. H.] LUC, Dept Math, Diepenbeek, Belgium.
Keywords: Algebraic quantum group; Drinfel'd double; Multiplier Hopf algebra; Quasitriangular structure; Skew-copairing multiplier
Document URI: http://hdl.handle.net/1942/10855
ISSN: 0092-7872
e-ISSN: 1532-4125
DOI: 10.1080/00927870902747894
ISI #: 000270582800014
Category: A1
Type: Journal Contribution
Validations: ecoom 2010
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

1
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

1
checked on May 28, 2022

Page view(s)

62
checked on May 27, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.