Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/10937
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCONINGS, Bert-
dc.contributor.authorBERTHO, Sabine-
dc.contributor.authorVANDEWAL, Koen-
dc.contributor.authorSenes, Alessia-
dc.contributor.authorD'HAEN, Jan-
dc.contributor.authorMANCA, Jean-
dc.contributor.authorJanssen, Rene A. J.-
dc.date.accessioned2010-05-21T13:54:05Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2010-05-21T13:54:05Z-
dc.date.issued2010-
dc.identifier.citationAPPLIED PHYSICS LETTERS, 96 (16)-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/1942/10937-
dc.description.abstractIn organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of the acceptor material and a corresponding decrease in the short circuit current. A model based on the kinetics of Ostwald ripening is proposed to describe the thermally accelerated degradation of the short circuit current of solar cells with poly(2-methoxy-5-(3', 7'-dimethyloctyloxy)-1,4-phenylenevinylene (MDMO-PPV) as donor and (6,6)-phenyl C-61-butyric acid methyl ester (PCBM) as acceptor. The activation energy for the degradation is determined by an Arrhenius model, allowing to perform shelf life prediction. (C) 2010 American Institute of Physics. [doi:10.1063/1.3391669]-
dc.description.sponsorshipWe acknowledge the institute for the promotion of science and technology in Flanders (IWT Vlaanderen) for funding via the IWT-SBO project Polyspec, the Fund for Scientific Research, Flanders (Belgium) (F.W.O.) in the framework of project G.0252.04 and the Special Research Fund (B.O.F.).-
dc.language.isoen-
dc.publisherAMER INST PHYSICS-
dc.titleModeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells-
dc.typeJournal Contribution-
dc.identifier.issue16-
dc.identifier.volume96-
local.format.pages3-
local.bibliographicCitation.jcatA1-
dc.description.notes[Conings, Bert; Bertho, Sabine; Vandewal, Koen; D'Haen, Jan; Manca, Jean] Hasselt Univ, IMEC IMOMEC, Vzw, Inst Mat Res, B-3590 Diepenbeek, Belgium. [Senes, Alessia] Konarka Austria GmbH, A-4040 Linz, Austria. [Janssen, Rene A. J.] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands. bert.conings@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1063/1.3391669-
dc.identifier.isi000277020600056-
item.validationecoom 2011-
item.contributorCONINGS, Bert-
item.contributorBERTHO, Sabine-
item.contributorVANDEWAL, Koen-
item.contributorSenes, Alessia-
item.contributorD'HAEN, Jan-
item.contributorMANCA, Jean-
item.contributorJanssen, Rene A. J.-
item.fullcitationCONINGS, Bert; BERTHO, Sabine; VANDEWAL, Koen; Senes, Alessia; D'HAEN, Jan; MANCA, Jean & Janssen, Rene A. J. (2010) Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells. In: APPLIED PHYSICS LETTERS, 96 (16).-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn0003-6951-
crisitem.journal.eissn1077-3118-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.