Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/10974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHochreiter, Sepp-
dc.contributor.authorBodenhofer, Ulrich-
dc.contributor.authorHeusel, Martin-
dc.contributor.authorMayr, Andreas-
dc.contributor.authorMitterecker, Andreas-
dc.contributor.authorKASIM, Adetayo-
dc.contributor.authorKHAMIAKOVA, Tatsiana-
dc.contributor.authorVAN SANDEN, Suzy-
dc.contributor.authorLIN, Dan-
dc.contributor.authorTalloen, Willem-
dc.contributor.authorBIJNENS, Luc-
dc.contributor.authorGohlmann, Hinrich W. H.-
dc.contributor.authorSHKEDY, Ziv-
dc.contributor.authorClevert, Djork-Arne-
dc.date.accessioned2010-07-01T13:45:24Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2010-07-01T13:45:24Z-
dc.date.issued2010-
dc.identifier.citationBIOINFORMATICS, 26 (12). p. 1520-1527-
dc.identifier.issn1367-4803-
dc.identifier.urihttp://hdl.handle.net/1942/10974-
dc.description.abstractMotivation: Biclustering of transcriptomic data groups genes and samples simultaneously. It is emerging as a standard tool for extracting knowledge from gene expression measurements. We propose a novel generative approach for biclustering called 'FABIA: Factor Analysis for Bicluster Acquisition'. FABIA is based on a multiplicative model, which accounts for linear dependencies between gene expression and conditions, and also captures heavy-tailed distributions as observed in real-world transcriptomic data. The generative framework allows to utilize well-founded model selection methods and to apply Bayesian techniques. Results: On 100 simulated datasets with known true, artificially implanted biclusters, FABIA clearly outperformed all 11 competitors. On these datasets, FABIA was able to separate spurious biclusters from true biclusters by ranking biclusters according to their information content. FABIA was tested on three microarray datasets with known subclusters, where it was two times the best and once the second best method among the compared biclustering approaches.-
dc.description.sponsorshipFunding: Janssen Pharmaceutica N.V. and Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT project 80536).-
dc.language.isoen-
dc.publisherOXFORD UNIV PRESS-
dc.titleFABIA: factor analysis for bicluster acquisition-
dc.typeJournal Contribution-
dc.identifier.epage1527-
dc.identifier.issue12-
dc.identifier.spage1520-
dc.identifier.volume26-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notes[Hochreiter, Sepp; Bodenhofer, Ulrich; Heusel, Martin; Mayr, Andreas; Mitterecker, Andreas; Clevert, Djork-Arne] Johannes Kepler Univ Linz, Inst Bioinformat, A-4040 Linz, Austria. [Kasim, Adetayo; Khamiakova, Tatsiana; Van Sanden, Suzy; Lin, Dan; Shkedy, Ziv] Hasselt Univ, Inst Biostat & Stat Bioinformat, Hasselt, Belgium. [Talloen, Willem; Bijnens, Luc; Gohlmann, Hinrich W. H.] Johnson & Johnson Pharmaceut Res & Dev, Div Janssen Pharmaceut, Beerse, Belgium. [Clevert, Djork-Arne] Charite, Dept Nephrol & Internal Intens Care, Berlin, Germany. hochreit@bioinf.jku.at-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1093/bioinformatics/btq227-
dc.identifier.isi000278689000058-
item.validationecoom 2011-
item.fulltextNo Fulltext-
item.contributorHochreiter, Sepp-
item.contributorBodenhofer, Ulrich-
item.contributorHeusel, Martin-
item.contributorMayr, Andreas-
item.contributorMitterecker, Andreas-
item.contributorKASIM, Adetayo-
item.contributorKHAMIAKOVA, Tatsiana-
item.contributorVAN SANDEN, Suzy-
item.contributorLIN, Dan-
item.contributorTalloen, Willem-
item.contributorBIJNENS, Luc-
item.contributorGohlmann, Hinrich W. H.-
item.contributorSHKEDY, Ziv-
item.contributorClevert, Djork-Arne-
item.fullcitationHochreiter, Sepp; Bodenhofer, Ulrich; Heusel, Martin; Mayr, Andreas; Mitterecker, Andreas; KASIM, Adetayo; KHAMIAKOVA, Tatsiana; VAN SANDEN, Suzy; LIN, Dan; Talloen, Willem; BIJNENS, Luc; Gohlmann, Hinrich W. H.; SHKEDY, Ziv & Clevert, Djork-Arne (2010) FABIA: factor analysis for bicluster acquisition. In: BIOINFORMATICS, 26 (12). p. 1520-1527.-
item.accessRightsClosed Access-
crisitem.journal.issn1367-4803-
crisitem.journal.eissn1367-4811-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

249
checked on Sep 23, 2025

WEB OF SCIENCETM
Citations

232
checked on Sep 27, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.