Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/109
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJANSSEN, Paul-
dc.contributor.authorSerfling, Robert-
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2004-08-26T09:52:33Z-
dc.date.available2004-08-26T09:52:33Z-
dc.date.issued1987-
dc.identifier.citationJournal of Statistical Planning and Inference, 16, p. 63-74-
dc.identifier.urihttp://hdl.handle.net/1942/109-
dc.description.abstractLet Xn1 ≤ cdots, three dots, centered ≤ Xnn be an ordered sample of size n. We establish asymptotic normality of U-statistics based on the trimmed sample Xn,[αn]+1≤ cdots, three dots, centered ≤ Xn,n − [βn] where 0<α, β<1/2. This theorem and its multi-sample generalization are illustrated by various statistics of importance for robust estimation of location, dispersion, etc. This unifies the flexibility of the class of U-statistics and the classical principle of rejection of outliners.-
dc.language.isoen-
dc.subjectMathematical Statistics-
dc.subjectNon and semiparametric methods-
dc.titleAsymptotic normality for U-statistics based on trimmed samples-
dc.typeJournal Contribution-
dc.identifier.epage74-
dc.identifier.spage63-
dc.identifier.volume16-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0378-3758(87)90056-5-
item.fulltextNo Fulltext-
item.fullcitationJANSSEN, Paul; Serfling, Robert & VERAVERBEKE, Noel (1987) Asymptotic normality for U-statistics based on trimmed samples. In: Journal of Statistical Planning and Inference, 16, p. 63-74.-
item.accessRightsClosed Access-
item.contributorJANSSEN, Paul-
item.contributorSerfling, Robert-
item.contributorVERAVERBEKE, Noel-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

24
checked on Sep 30, 2025

WEB OF SCIENCETM
Citations

18
checked on Oct 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.