Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11035
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZHU, Qi-
dc.contributor.authorVALKENBORG, Dirk-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.date.accessioned2010-08-03T08:55:44Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2010-08-03T08:55:44Z-
dc.date.issued2010-
dc.identifier.citationJOURNAL OF PROTEOME RESEARCH, 9(5). p. 2669-2677-
dc.identifier.issn1535-3893-
dc.identifier.urihttp://hdl.handle.net/1942/11035-
dc.description.abstractThe enzymatic O-18-labeling is a useful technique for reducing the influence of the between-spectrum variability on the results of mass-spectrometry experiments. A limitation of the technique is the possibility of an incomplete labeling, which may result in biased estimates of the relative peptide abundance. We propose a Markov-chain-based regression model with heterogeneous residual variance, which corrects for the possible bias. Our method does not require extra experimental steps, as proposed in the approaches proposed previously in the literature. On the other hand, it includes some of the alternative approaches as a special case. Moreover, our modeling approach offers additional advantages over the previously developed methods, including the possibility of the analysis of multiple technical replicates for samples from different biological conditions, with an assessment of the between-spectra and biological variability.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subject.otherO-18-labeling; labeling efficiency; MALDI-TOF; Markov model; heteroscedastic regression; relative abundance estimation-
dc.titleMarkov-Chain-Based Heteroscedastic Regression Model for the Analysis of High-Resolution Enzymatically O-18-Labeled Mass Spectra-
dc.typeJournal Contribution-
dc.identifier.epage2677-
dc.identifier.issue5-
dc.identifier.spage2669-
dc.identifier.volume9-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notes[Zhu, Qi; Burzykowski, Tomasz] Hasselt Univ, I BioStat, Diepenbeek, Belgium. [Valkenborg, Dirk] Vlaamse Instelling Technol Onderzoek, B-2400 Mol, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1021/pr100169a-
dc.identifier.isi000277353200055-
item.fulltextWith Fulltext-
item.contributorZHU, Qi-
item.contributorVALKENBORG, Dirk-
item.contributorBURZYKOWSKI, Tomasz-
item.fullcitationZHU, Qi; VALKENBORG, Dirk & BURZYKOWSKI, Tomasz (2010) Markov-Chain-Based Heteroscedastic Regression Model for the Analysis of High-Resolution Enzymatically O-18-Labeled Mass Spectra. In: JOURNAL OF PROTEOME RESEARCH, 9(5). p. 2669-2677.-
item.accessRightsClosed Access-
item.validationecoom 2011-
crisitem.journal.issn1535-3893-
crisitem.journal.eissn1535-3907-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Markov chain-based.pdf
  Restricted Access
635.16 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.