Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/11141
Title: | Non-commutative desingularization of determinantal varieties I | Authors: | Buchweitz, Ragnar-Olaf Leuschke, Graham J. VAN DEN BERGH, Michel |
Issue Date: | 2010 | Publisher: | SPRINGER | Source: | INVENTIONES MATHEMATICAE, 182(1). p. 47-115 | Abstract: | We show that determinantal varieties defined by maximal minors of a generic matrix have a non-commutative desingularization, in that we construct a maximal Cohen-Macaulay module over such a variety whose endomorphism ring is Cohen-Macaulay and has finite global dimension. In the case of the determinant of a square matrix, this gives a non-commutative crepant resolution. | Notes: | [Leuschke, Graham J.] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA. [Buchweitz, Ragnar-Olaf] Univ Toronto Scarborough, Dept Math & Comp Sci, Toronto, ON M1C 1A4, Canada. [Van den Bergh, Michel] Univ Hasselt, Dept WNI, B-3590 Diepenbeek, Belgium. ragnar@utsc.utoronto.ca; gjleusch@math.syr.edu; michel.vandenbergh@uhasselt.be | Document URI: | http://hdl.handle.net/1942/11141 | ISSN: | 0020-9910 | e-ISSN: | 1432-1297 | DOI: | 10.1007/s00222-010-0258-7 | ISI #: | 000280648000002 | Category: | A1 | Type: | Journal Contribution | Validations: | ecoom 2011 |
Appears in Collections: | Research publications |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.