Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/11400
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | VERBEKE, Geert | - |
dc.date.accessioned | 2010-12-31T15:29:18Z | - |
dc.date.available | NO_RESTRICTION | - |
dc.date.available | 2010-12-31T15:29:18Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 141 (2). p. 861-868 | - |
dc.identifier.issn | 0378-3758 | - |
dc.identifier.uri | http://hdl.handle.net/1942/11400 | - |
dc.description.abstract | It is shown that the commonly used Weibull-Gamma frailty model has a finite number of finite moments only and that its marginal distribution generalizes the log-logistic distribution. In some cases there is not even a finite variance, and there are cases without a single finite moment. Upon transformation to the entire real line, generalized logistic and generalized Cauchy distributions are introduced and their connection with the previous ones established, as well as with the extreme-value distribution. Apart from intrinsic and classroom value, the family can be of use when formulating non-informative priors in Bayesian data analysis. Also, gauging the amount of finite moments is important when checking regularity conditions in the Weibull-Gamma model. Our findings are illustrated using data from survival in cancer patients. (c) 2010 Elsevier B.B. All rights reserved. | - |
dc.description.sponsorship | The authors gratefully acknowledge the financial support from the IAP Research Network P6/03 of the Belgian Government (Belgian Science Policy). | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.rights | (c) 2010 Elsevier B.V. All rights reserved | - |
dc.subject.other | Cauchy distribution; Exponential frailty; Gamma frailty; Weibull model | - |
dc.subject.other | cauchy distribution; exponential frailty; gamma frailty; Weibull model | - |
dc.title | On the Weibull-Gamma frailty model, its infinite moments, and its connection to generalized log-logistic, logistic, Cauchy, and extreme-value distributions | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 868 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 861 | - |
dc.identifier.volume | 141 | - |
local.format.pages | 8 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Molenberghs, Geert; Verbeke, Geert] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat, B-3590 Diepenbeek, Belgium. [Molenberghs, Geert; Verbeke, Geert] Katholieke Univ Leuven, Interuniv Inst Biostat & Stat Bioinformat, B-3000 Leuven, Belgium. geert.molenberghs@uhasselt.be | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1016/j.jspi.2010.08.008 | - |
dc.identifier.isi | 000284386500025 | - |
dc.identifier.url | http://scinet.dost.gov.ph/union/ShowSearchResult.php?s=2&f=&p=&x=&page=&sid=1&id=On+the+Weibull-Gamma+frailty+model%2C+its+infinite+moments%2C+and+its+connection+to+generalized+log-logistic%2C+logistic%2C+Cauchy%2C+and+extreme-value+distributions&Mtype=NONPRINTS | - |
item.validation | ecoom 2011 | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | VERBEKE, Geert | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
item.fullcitation | MOLENBERGHS, Geert & VERBEKE, Geert (2011) On the Weibull-Gamma frailty model, its infinite moments, and its connection to generalized log-logistic, logistic, Cauchy, and extreme-value distributions. In: JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 141 (2). p. 861-868. | - |
crisitem.journal.issn | 0378-3758 | - |
crisitem.journal.eissn | 1873-1171 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
verbeke 2.pdf Restricted Access | Published version | 579.98 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.