Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11873
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZHU, Qi-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.date.accessioned2011-04-14T14:10:35Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2011-04-14T14:10:35Z-
dc.date.issued2011-
dc.identifier.citationJOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 22(3). p. 499-507-
dc.identifier.issn1044-0305-
dc.identifier.urihttp://hdl.handle.net/1942/11873-
dc.description.abstractTo reduce the influence of the between-spectra variability on the results of peptide quantification, one can consider the O-18-labeling approach. Ideally, with such labeling technique, a mass shift of 4 Da of the isotopic distributions of peptides from the labeled sample is induced, which allows one to distinguish the two samples and to quantify the relative abundance of the peptides. It is worth noting, however, that the presence of small quantities of O-16 and O-17 atoms during the labeling step can cause incomplete labeling. In practice, ignoring incomplete labeling may result in the biased estimation of the relative abundance of the peptide in the compared samples. A Markov model was developed to address this issue (Zhu, Valkenborg, Burzykowski. J. Proteome Res. 9, 2669-2677, 2010). The model assumed that the peak intensities were normally distributed with heteroscedasticity using a power-of-the-mean variance funtion. Such a dependence has been observed in practice. Alternatively, we formulate the model within the Bayesian framework. This opens the possibility to further extend the model by the inclusion of random effects that can be used to capture the biological/technical variability of the peptide abundance. The operational characteristics of the model were investigated by applications to real-life mass-spectrometry data sets and a simulation study.-
dc.language.isoen-
dc.publisherSPRINGER-
dc.subject.otherBiological/technical variability; Differential equations; Incomplete labelling; Isotopic distribution; MALDI-TOF MS; Markov chain; Mean-power-variance function; Peptides-
dc.titleA Bayesian Markov-Chain-Based Heteroscedastic Regression Model for the Analysis of O-18-Labeled Mass Spectra-
dc.typeJournal Contribution-
dc.identifier.epage507-
dc.identifier.issue3-
dc.identifier.spage499-
dc.identifier.volume22-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notes[Zhu, Qi] Katholieke Univ Leuven, Dept Elect Engn, ESAT SCD, B-3001 Leuven, Belgium. [Burzykowski, Tomasz] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat, Hasselt, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/s13361-010-0056-x-
dc.identifier.isi000288561400010-
item.fulltextNo Fulltext-
item.contributorZHU, Qi-
item.contributorBURZYKOWSKI, Tomasz-
item.accessRightsClosed Access-
item.fullcitationZHU, Qi & BURZYKOWSKI, Tomasz (2011) A Bayesian Markov-Chain-Based Heteroscedastic Regression Model for the Analysis of O-18-Labeled Mass Spectra. In: JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 22(3). p. 499-507.-
item.validationecoom 2012-
crisitem.journal.issn1044-0305-
crisitem.journal.eissn1879-1123-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Apr 22, 2024

Page view(s)

80
checked on May 30, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.