Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11992
Title: BIFURCATIONS OF MULTIPLE RELAXATION OSCILLATIONS IN POLYNOMIAL LIENARD EQUATIONS
Authors: DE MAESSCHALCK, Peter 
DUMORTIER, Freddy 
Issue Date: 2011
Publisher: AMER MATHEMATICAL SOC
Source: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 139(6). p. 2073-2085
Abstract: In this paper, we prove the presence of limit cycles of given multiplicity, together with a complete unfolding, in families of (singularly perturbed) polynomial Lienard equations. The obtained limit cycles are relaxation oscillations. Both classical Lienard equations and generalized Lienard equations are treated.
Notes: P. De Maesschalck - Affiliation: Hasselt University, Campus Diepenbeek, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium Email: peter.demaesschalck@uhasselt.be / F. Dumortier - Affiliation: Hasselt University, Campus Diepenbeek, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium Email: freddy.dumortier@uhasselt.be
Keywords: Slow-fast system; singular perturbations; limit cycles; relaxation oscillation; polynomial Lienard equations; elementary catastrophy;slow-fast system; singular perturbations; limit cycles; relaxation oscillation; polynomial Lienard equations; elementary catastrophy
Document URI: http://hdl.handle.net/1942/11992
ISSN: 0002-9939
e-ISSN: 1088-6826
DOI: 10.1090/S0002-9939-2010-10610-X
ISI #: 000290642200020
Rights: © XXXX American Mathematical Society.
Category: A1
Type: Journal Contribution
Validations: ecoom 2012
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
polymultiplelc.pdf
  Restricted Access
312.68 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

10
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

12
checked on May 21, 2022

Page view(s)

100
checked on May 20, 2022

Download(s)

94
checked on May 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.