Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/12117
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTILAHUN ESHETE, Abel-
dc.contributor.authorLIN, Dan-
dc.contributor.authorSHKEDY, Ziv-
dc.contributor.authorGEYS, Helena-
dc.contributor.authorALONSO ABAD, Ariel-
dc.contributor.authorPeeters, Pieter-
dc.contributor.authorTalloen, Willem-
dc.contributor.authorDrinkenburg, Wilhelmus-
dc.contributor.authorGoehlmann, Hinrich-
dc.contributor.authorGorden, Evian-
dc.contributor.authorBIJNENS, Luc-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2011-08-17T12:44:06Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2011-08-17T12:44:06Z-
dc.date.issued2010-
dc.identifier.citationSTATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2(3). p. 419-434-
dc.identifier.issn1946-6315-
dc.identifier.urihttp://hdl.handle.net/1942/12117-
dc.description.abstractRecently, preclinical microarray experiments have become increasingly common laboratory tools to investigate the activity of thousands of genes simultaneously and their response to a certain treatment (Amaratunga and Cabrera 2004). In some experiments, in addition to the gene expressions, other responses are also available. In such situations, the primary question of interest is to identify whether or not the gene expressions can serve as biomarkers for the responses. In addition to gene expressions, metabolites are potential biomarkers for some responses as well. In the present study, we focus on the identification of genomic biomarkers, based on gene and metabolite expression for depression. One measure of the level of depression is the Hamilton Depression Scale (HDS or HAMD) which is a test measuring the severity of depressive symptoms in individuals. The data for this study are a result of a clinical trial in which both HAMD and gene/metabolites expression were measured. We use three modeling approaches commonly used in the surrogate marker validation theory to select and evaluate a set of genes and metabolites as possible biomarkers for depression, as measured by the HAMD score. In addition to gene and metabolite specific biomarkers, we use supervised principal components analysis and supervised partial least squares regression technique to construct a joint biomarker that uses information from all genes/metabolites in the array.-
dc.description.sponsorshipThe authors gratefully acknowledge support from IAP research Network P6/03 of the Belgian Government (Belgian Science Policy).-
dc.language.isoen-
dc.publisherAMER STATISTICAL ASSOC-
dc.rights(c) American Statistical Association Statistics in Biopharmaceutical Research-
dc.subject.otherGenes; HAMD score; Joint modeling; Metabolites; Microarray experiments; Partial least squares; Supervised principal component analysis-
dc.subject.othergenes; HAMD score; joint modeling; metabolites; microarray experiments; partial least squares; supervised principal component analysis-
dc.titleGenomic Biomarkers for Depression: Feature-Specific and Joint Biomarkers-
dc.typeJournal Contribution-
dc.identifier.epage434-
dc.identifier.issue3-
dc.identifier.spage419-
dc.identifier.volume2-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notes[Tilahun, A; Lin, D; Shkedy, Z; Alonso, A; Molenberghs, G] Univ Hasselt, I BioStat, Diepenbeek, Belgium [Tilahun, A] Harvard Univ, Sch Publ Hlth, Dept Biostat, Ctr Biostat Aids Res, Cambridge, MA 02138 USA [Geys, H; Peeters, P; Talloen, W; Drinkenburg, W; Gohlmann, H; Bijnens, L] Johnson & Johnson Pharmaceut Res & Dev, Beerse, Belgium [Gorden, E] Brain Resource Co, Ultimo, NSW 2007, Australia [Molenberghs, G] Katholieke Univ Leuven, I BioStat, Louvain, Belgium-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1198/sbr.2009.08091-
dc.identifier.isi000292680500013-
item.validationecoom 2012-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationTILAHUN ESHETE, Abel; LIN, Dan; SHKEDY, Ziv; GEYS, Helena; ALONSO ABAD, Ariel; Peeters, Pieter; Talloen, Willem; Drinkenburg, Wilhelmus; Goehlmann, Hinrich; Gorden, Evian; BIJNENS, Luc & MOLENBERGHS, Geert (2010) Genomic Biomarkers for Depression: Feature-Specific and Joint Biomarkers. In: STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2(3). p. 419-434.-
item.contributorALONSO ABAD, Ariel-
item.contributorTalloen, Willem-
item.contributorTILAHUN ESHETE, Abel-
item.contributorPeeters, Pieter-
item.contributorMOLENBERGHS, Geert-
item.contributorGEYS, Helena-
item.contributorLIN, Dan-
item.contributorSHKEDY, Ziv-
item.contributorDrinkenburg, Wilhelmus-
item.contributorBIJNENS, Luc-
item.contributorGorden, Evian-
item.contributorGoehlmann, Hinrich-
crisitem.journal.issn1946-6315-
crisitem.journal.eissn1946-6315-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
biomarker8[1].pdfPeer-reviewed author version1.33 MBAdobe PDFView/Open
tilahun2010.pdf
  Restricted Access
Published version216.59 kBAdobe PDFView/Open    Request a copy
Show simple item record

WEB OF SCIENCETM
Citations

3
checked on Jun 29, 2022

Page view(s)

64
checked on May 19, 2022

Download(s)

150
checked on May 19, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.