Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/12226
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDELVAUX, Lydia-
dc.contributor.authorVan Daele, A.-
dc.contributor.authorWang, S. H.-
dc.date.accessioned2011-10-11T12:40:58Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2011-10-11T12:40:58Z-
dc.date.issued2011-
dc.identifier.citationJOURNAL OF ALGEBRA, 343 (1). p. 11-36-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/1942/12226-
dc.description.abstractIn this paper, we generalize Majid's bicrossproduct construction. We start with a pair (A, B) of two regular multiplier Hopf algebras. We assume that B is a right A-module algebra and that A is a left B-comodule coalgebra. The right action of A on B gives rise to the smash product A # B. The left coaction of B on A gives a possible coproduct Delta(#) on A # B. We discuss in detail the necessary compatibility conditions between the action and the coaction for Delta(#) to be a proper coproduct on A # B. The result is again a regular multiplier Hopf algebra. Majid's construction is obtained when we have Hopf algebras. We also look at the dual case, constructed from a pair (C, D) of regular multiplier Hopf algebras where now C is a left D-module algebra while D is a right C-comodule coalgebra. We show that indeed, these two constructions are dual to each other in the sense that a natural pairing of A with C and of B with D yields a duality between A # B and the smash product C # D. We show that the bicrossproduct of an algebraic quantum group is again an algebraic quantum group (i.e. a regular multiplier Hopf algebra with integrals). The *-algebra case is also considered. Some special cases are treated and they are related with other constructions available in the literature. The basic example, coming from a (not necessarily finite) group G with two subgroups H and K such that G = KH and H boolean AND K = (e) (where e is the identity of G) is used to illustrate our theory. More examples will be considered in forthcoming papers on the subject. 2011 (C) Elsevier Inc. All rights reserved.-
dc.description.sponsorshipThis work was partially supported by the FNS of CHINA (10871042). The third author also thanks the K.U. Leuven for the research fellowships he received in 2006 and 2009.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subject.otherMultiplier Hopf algebras; Bicrossproducts-
dc.subject.otherMultiplier Hopf algebras; Bicrossproducts-
dc.titleBicrossproducts of multiplier Hopf algebras-
dc.typeJournal Contribution-
dc.identifier.epage36-
dc.identifier.issue1-
dc.identifier.spage11-
dc.identifier.volume343-
local.format.pages26-
local.bibliographicCitation.jcatA1-
dc.description.notes[Van Daele, A] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium [Delvaux, L] Hasselt Univ, Dept Math, B-3590 Diepenbeek, Belgium [Wang, SH] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China Lydia.Delvaux@uhasselt.be; Alfons.VanDaele@wis.kuleuven.be; shuanhwang@seu.edu.cn-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.jalgebra.2011.06.029-
dc.identifier.isi000294143900002-
item.fulltextWith Fulltext-
item.contributorDELVAUX, Lydia-
item.contributorVan Daele, A.-
item.contributorWang, S. H.-
item.fullcitationDELVAUX, Lydia; Van Daele, A. & Wang, S. H. (2011) Bicrossproducts of multiplier Hopf algebras. In: JOURNAL OF ALGEBRA, 343 (1). p. 11-36.-
item.accessRightsRestricted Access-
item.validationecoom 2012-
crisitem.journal.issn0021-8693-
crisitem.journal.eissn1090-266X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
delvaux 1.pdf
  Restricted Access
Published version257.89 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.