Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/12307
Title: Transmutation theory of a coquasitriangular weak Hopf algebra
Authors: Liu, Guohua
Chen, Quanguo
ZHU, Haixing 
Issue Date: 2011
Publisher: HIGHER EDUCATION PRESS
Source: FRONTIERS OF MATHEMATICS IN CHINA, 6 (5). p. 855-869
Abstract: Let H be a coquasitriangular quantum groupoid. In this paper, using a suitable idempotent element e in H, we prove that eH is a braided group (or a braided Hopf algebra in the category of right H-comodules), which generalizes Majid's transmutation theory from a coquasitriangular Hopf algebra to a coquasitriangular weak Hopf algebra.
Notes: [Zhu, HX] Univ Hasselt, Dept Math, B-3590 Diepenbeek, Belgium. [Chen, QG] Yili Normal Coll, Inst Appl Math, Dept Math, Yili 835000, Peoples R China. [Liu, GH] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China. zhuhaixing@163.com
Keywords: Quantum groupoid; weak Hopf algebra; braided group; braided Hopf algebra;Quantum groupoid; weak Hopf algebra; braided group; braided Hopf algebra
Document URI: http://hdl.handle.net/1942/12307
ISSN: 1673-3452
e-ISSN: 1673-3576
DOI: 10.1007/s11464-011-0149-2
ISI #: 000295165300004
Category: A1
Type: Journal Contribution
Validations: ecoom 2012
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

1
checked on Sep 7, 2020

WEB OF SCIENCETM
Citations

1
checked on May 21, 2022

Page view(s)

50
checked on May 19, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.