Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/12830
Full metadata record
DC FieldValueLanguage
dc.contributor.authorANCUTI, Codruta-
dc.contributor.authorANCUTI, Cosmin-
dc.contributor.authorBEKAERT, Philippe-
dc.date.accessioned2011-12-16T14:52:50Z-
dc.date.available2011-12-16T14:52:50Z-
dc.date.issued2011-
dc.identifier.citation2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 257-264-
dc.identifier.isbn978-1-4577-0394-2-
dc.identifier.issn1063-6919-
dc.identifier.urihttp://hdl.handle.net/1942/12830-
dc.description.abstractThis paper introduces an effective decolorization algorithm that preserves the appearance of the original color image. Guided by the original saliency, the method blends the luminance and the chrominance information in order to conserve the initial color disparity while enhancing the chromatic contrast. As a result, our straightforward fusing strategy generates a new spatial distribution that discriminates better the illuminated areas and color features. Since we do not employ quantization or a per-pixel optimization (computationally expensive), the algorithm has a linear runtime, and depending on the image resolution it could be used in real-time applications. Extensive experiments and a comprehensive evaluation against existing state-of-the-art methods demonstrate the potential of our grayscale operator. Furthermore, since the method accurately preserves the finest details while enhancing the chromatic contrast, the utility and versatility of our operator have been proved for several other challenging applications such as video decolorization, detail enhancement, single image dehazing and segmentation under different illuminants.-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesIEEE Conference on Computer Vision and Pattern Recognition-
dc.titleEnhancing by Saliency-guided Decolorization-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateJune 21-23 2010-
local.bibliographicCitation.conferencenameIEEE Computer Vision and Pattern Recognition IEEE CVPR)-
local.bibliographicCitation.conferenceplaceColorado Springs, USA,-
dc.identifier.epage264-
dc.identifier.spage257-
local.format.pages8-
local.bibliographicCitation.jcatC1-
dc.description.notes[Ancuti, CO; Ancuti, C; Bekaert, P] Hasselt Univ tUL IBBT, Expertise Ctr Digital Media, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC1-
dc.identifier.doi10.1109/CVPR.2011.5995414-
dc.identifier.isi000295615800034-
local.bibliographicCitation.btitle2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)-
item.fulltextWith Fulltext-
item.validationecoom 2012-
item.fullcitationANCUTI, Codruta; ANCUTI, Cosmin & BEKAERT, Philippe (2011) Enhancing by Saliency-guided Decolorization. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 257-264.-
item.accessRightsClosed Access-
item.contributorANCUTI, Codruta-
item.contributorANCUTI, Cosmin-
item.contributorBEKAERT, Philippe-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Color2Gray_CVPR.pdf4.09 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

69
checked on Aug 25, 2025

WEB OF SCIENCETM
Citations

48
checked on Aug 25, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.