Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/12878
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | FAES, Christel | - |
dc.contributor.author | Ormerod, J. T. | - |
dc.contributor.author | Wand, M. P. | - |
dc.date.accessioned | 2012-01-03T11:36:31Z | - |
dc.date.available | 2012-01-03T11:36:31Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 106(495), p. 959-971 | - |
dc.identifier.issn | 0162-1459 | - |
dc.identifier.uri | http://hdl.handle.net/1942/12878 | - |
dc.description.abstract | Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression models with missing data. Supplemental materials accompany the online version of this article. | - |
dc.description.sponsorship | The authors are grateful to the editor, associate editor and two referees for their feedback on earlier versions of this article. This research was partially supported by the Flemish Fund for Scientific Research, Interuniversity Attraction Poles (Belgian Science Policy) network number P6/03 and Australian Research Council Discovery Project DP0877055. | - |
dc.language.iso | en | - |
dc.publisher | AMER STATISTICAL ASSOC | - |
dc.subject.other | Directed acyclic graphs; Incomplete data; Mean field approximation; Penalized splines; Variational approximation | - |
dc.subject.other | Statistics & Probability, semiparametric regression; modelling framework; graphical models; priors; approximations; distributions; binary | - |
dc.title | Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 971 | - |
dc.identifier.issue | 495 | - |
dc.identifier.spage | 959 | - |
dc.identifier.volume | 106 | - |
local.format.pages | 13 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Faes, C (reprint author), Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat, BE-3590 Diepenbeek, Belgium. [Ormerod, J. T.] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia. [Wand, M. P.] Univ Technol Sydney, Sch Math Sci, Sydney, NSW 2007, Australia. matt.wand@uts.edu.au | - |
local.publisher.place | ALEXANDRIA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1198/jasa.2011.tm10301 | - |
dc.identifier.isi | 000296224200024 | - |
item.validation | ecoom 2012 | - |
item.contributor | FAES, Christel | - |
item.contributor | Ormerod, J. T. | - |
item.contributor | Wand, M. P. | - |
item.fullcitation | FAES, Christel; Ormerod, J. T. & Wand, M. P. (2011) Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data. In: JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 106(495), p. 959-971. | - |
item.fulltext | No Fulltext | - |
item.accessRights | Closed Access | - |
crisitem.journal.issn | 0162-1459 | - |
crisitem.journal.eissn | 1537-274X | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.