Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13013
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLuts, Jan-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorVan Huffel, Sabine-
dc.contributor.authorSuykens, Johan A. K.-
dc.date.accessioned2012-01-18T09:48:46Z-
dc.date.available2012-01-18T09:48:46Z-
dc.date.issued2012-
dc.identifier.citationCOMPUTATIONAL STATISTICS & DATA ANALYSIS, 56 (3), p. 611-628-
dc.identifier.issn0167-9473-
dc.identifier.urihttp://hdl.handle.net/1942/13013-
dc.description.abstractA mixed effects least squares support vector machine (LS-SVM) classifier is introduced to extend the standard LS-SVM classifier for handling longitudinal data. The mixed effects LS-SVM model contains a random intercept and allows to classify highly unbalanced data, in the sense that there is an unequal number of observations for each case at non-fixed time points. The methodology consists of a regression modeling and a classification step based on the obtained regression estimates. Regression and classification of new cases are performed in a straightforward manner by solving a linear system. It is demonstrated that the methodology can be generalized to deal with multi-class problems and can be extended to incorporate multiple random effects. The technique is illustrated on simulated data sets and real-life problems concerning human growth. (C) 2011 Elsevier B.V. All rights reserved.-
dc.description.sponsorshipThe authors would like to thank Laura K. Bachrach and Gareth M. James for making the spinal bone mineral density data available. Jan Luts is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO-Vlaanderen). The research is supported by the Research Council KUL: GOA-AMBioRICS, GOA-MaNet, several Ph.D./postdoc & fellow grants, Centers-of-excellence Optimization in Engineering (OPTEC), IDO 05/010 EEG-fMRI; Flemish Government: FWO: Ph.D./postdoc grants, projects, G.0341.07 (Data fusion), G.0302.07 (Support vector machines and kernel methods), research communities (ICCoS, ANMMM); IWT: Ph.D. Grants; the Belgian Federal Government: IUAP P6/04 (Dynamical systems, control and optimization, 2007-2011); EU: FAST (contract no. FP6-019279-2).-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.rights© 2011 Elsevier B.V. All rights reserved.-
dc.subject.otherClassification; Longitudinal data; Least squares; Support vector machine; Kernel method; Mixed model-
dc.subject.othercomputer science; interdisciplinary applications; statistics & probability; classification; longitudinal data; least squares; support vector machine; kernel method; mixed model-
dc.titleA mixed effects least squares support vector machine model for classification of longitudinal data-
dc.typeJournal Contribution-
dc.identifier.epage628-
dc.identifier.issue3-
dc.identifier.spage611-
dc.identifier.volume56-
local.format.pages18-
local.bibliographicCitation.jcatA1-
dc.description.notes[Luts, Jan; Van Huffel, Sabine; Suykens, Johan A. K.] Katholieke Univ Leuven, Dept Elect Engn ESAT, Res Div SCD, B-3001 Louvain, Belgium. [Luts, Jan; Van Huffel, Sabine; Suykens, Johan A. K.] IBBT KU Leuven Future Hlth Dept, Louvain, Belgium. [Molenberghs, Geert] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium. [Molenberghs, Geert; Verbeke, Geert] Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium. jan.luts@esat.kuleuven.be-
local.publisher.placeAMSTERDAM-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.csda.2011.09.008-
dc.identifier.isi000298122600014-
dc.identifier.urlftp://ftp.esat.kuleuven.ac.be/sista/jluts/reports/mixedEffectsLSSVM.pdf-
item.validationecoom 2013-
item.contributorLuts, Jan-
item.contributorMOLENBERGHS, Geert-
item.contributorVERBEKE, Geert-
item.contributorVan Huffel, Sabine-
item.contributorSuykens, Johan A. K.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationLuts, Jan; MOLENBERGHS, Geert; VERBEKE, Geert; Van Huffel, Sabine & Suykens, Johan A. K. (2012) A mixed effects least squares support vector machine model for classification of longitudinal data. In: COMPUTATIONAL STATISTICS & DATA ANALYSIS, 56 (3), p. 611-628.-
crisitem.journal.issn0167-9473-
crisitem.journal.eissn1872-7352-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
luts1.pdf
  Restricted Access
Published version1.8 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.