Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGILLIS, Joris-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.date.accessioned2012-01-18T10:16:38Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2012-01-18T10:16:38Z-
dc.date.issued2012-
dc.identifier.citationHorimoto, Katsuhisa; Nakatsui, Masahiko; Popov, Nicolaj (Ed.). Proceedings of Algebraic and Numeric Biology 2010, Springer-Verlag, p.18-37.-
dc.identifier.isbn978-3-642-28066-5-
dc.identifier.urihttp://hdl.handle.net/1942/13016-
dc.description.abstractOur goal is to better understand, at a theoretical level, the database aspects of DNA computing. Thereto, we introduce a formally defined data model of so-called sticker DNA complexes, suitable for the representation and manipulation of structured data in DNA. We also define DNAQL, a restricted programming language over sticker DNA complexes. DNAQL stands to general DNA computing as the standard relational algebra for relational databases stands to general-purpose con- ventional computing. The number of operations performed during the execution of a DNAQL program, on any input, is only polynomial in the dimension of the data, i.e., the number of bits needed to represent a single data entry. Moreover, each operation can be implemented in DNA using a constant number of laboratory steps. We prove that the relational algebra can be simulated in DNAQL.-
dc.language.isoen-
dc.publisherSpringer-Verlag-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.subject.otherDNA Computing; Formal Model; Relational Algebra-
dc.subject.otherDNA Computing, theoretical computer science, hybridization, graphs-
dc.titleA Formal Model for Databases in DNA-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsHorimoto, Katsuhisa-
local.bibliographicCitation.authorsNakatsui, Masahiko-
local.bibliographicCitation.authorsPopov, Nicolaj-
local.bibliographicCitation.conferencedateJuly 31-August 2, 2010-
local.bibliographicCitation.conferencenameAlgebraic and Numeric Biology-
local.bibliographicCitation.conferenceplaceHagenberg - Austria-
dc.identifier.epage37-
dc.identifier.spage18-
local.bibliographicCitation.jcatC1-
dc.relation.referencesAbiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995) Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 226, 1021–1024 (1994) CrossRef Amos, M.: Theoretical and Experimental DNA Computation. Springer, Heidelberg (2005) Arita, M., Hagiya, M., Suyama, A.: Joining and rotating data with molecules. In: Proceedings 1997 IEEE International Conference on Evolutionary Computation, pp. 243–248 (1997) Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discrete Applied Mathematics 71, 79–94 (1996) CrossRef Cardelli, L.: Strand algebras for DNA computing. In: Deaton and Suyama [9], pp. 12–24 Chen, J., Deaton, R.J., Wang, Y.-Z.: A DNA-based memory with in vitro learning and associative recall. Natural Computing 4(2), 83–101 (2005) CrossRef Condon, A.E., Corn, R.M., Marathe, A.: On combinatorial DNA word design. Journal of Computational Biology 8(3), 201–220 (2001) CrossRef Deaton, R., Suyama, A. (eds.): DNA 15. LNCS, vol. 5877. Springer, Heidelberg (2009) Diatchenko, L., Lau, Y.F., et al.: Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences 93(12), 6025–6030 (1996) CrossRef Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences 101(43), 15275–15278 (2004) CrossRef Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999) Liu, Q., Wang, L., et al.: DNA computing on surfaces. Nature 403, 175–179 (1999) Lyngsø, R.B.: Complexity of Pseudoknot Prediction in Simple Models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004) CrossRef Majumder, U., Reif, J.H.: Design of a biomolecular device that executes process algebra. In: Deaton and Suyama [9], pp. 97–105 Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer, Heidelberg (1998) Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill (2002) Reif, J.H.: Parallel biomolecular computation: models and simulations. Algorithmica 25(2-3), 142–175 (1999) CrossRef Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental Construction of Very Large Scale DNA Databases with Associative Search Capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002) CrossRef Rozenberg, G., Spaink, H.: DNA computing by blocking. Theoretical Computer Science 292, 653–665 (2003) CrossRef Sager, J., Stefanovic, D.: Designing Nucleotide Sequences for Computation: A Survey of Constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 275–289. Springer, Heidelberg (2006) CrossRef Sakamoto, K., et al.: State transitions by molecules. Biosystems 52, 81–91 (1999) CrossRef Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 315(5805), 1585–1588 (2006) CrossRef Shortreed, M.R., et al.: A thermodynamic approach to designing structure-free combinatorial DNA word sets. Nucleic Acids Research 33(15), 4965–4977 (2005) CrossRef Van den Bussche, J., Van Gucht, D., Vansummeren, S.: A crash course in database queries. In: Proceedings 26th ACM Symposium on Principles of Database Systems, pp. 143–154. ACM Press (2007) Yamamoto, M., Kita, Y., Kashiwamura, S., Kameda, A., Ohuchi, A.: Development of DNA Relational Database and Data Manipulation Experiments. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 418–427. Springer, Heidelberg (2006) CrossRef-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr6479-
dc.bibliographicCitation.oldjcatC2-
dc.identifier.doi10.1007/978-3-642-28067-2_2-
local.bibliographicCitation.btitleProceedings of Algebraic and Numeric Biology 2010-
item.fulltextWith Fulltext-
item.contributorGILLIS, Joris-
item.contributorVAN DEN BUSSCHE, Jan-
item.fullcitationGILLIS, Joris & VAN DEN BUSSCHE, Jan (2012) A Formal Model for Databases in DNA. In: Horimoto, Katsuhisa; Nakatsui, Masahiko; Popov, Nicolaj (Ed.). Proceedings of Algebraic and Numeric Biology 2010, Springer-Verlag, p.18-37..-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
hagenberg.pdfNon Peer-reviewed author version510.2 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.