Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGILLIS, Joris-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.date.accessioned2012-01-18T10:16:38Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2012-01-18T10:16:38Z-
dc.date.issued2012-
dc.identifier.citationHorimoto, Katsuhisa; Nakatsui, Masahiko; Popov, Nicolaj (Ed.). Proceedings of Algebraic and Numeric Biology 2010, Springer-Verlag, p.18-37.-
dc.identifier.isbn978-3-642-28066-5-
dc.identifier.urihttp://hdl.handle.net/1942/13016-
dc.description.abstractOur goal is to better understand, at a theoretical level, the database aspects of DNA computing. Thereto, we introduce a formally defined data model of so-called sticker DNA complexes, suitable for the representation and manipulation of structured data in DNA. We also define DNAQL, a restricted programming language over sticker DNA complexes. DNAQL stands to general DNA computing as the standard relational algebra for relational databases stands to general-purpose con- ventional computing. The number of operations performed during the execution of a DNAQL program, on any input, is only polynomial in the dimension of the data, i.e., the number of bits needed to represent a single data entry. Moreover, each operation can be implemented in DNA using a constant number of laboratory steps. We prove that the relational algebra can be simulated in DNAQL.-
dc.language.isoen-
dc.publisherSpringer-Verlag-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.subject.otherDNA Computing; Formal Model; Relational Algebra-
dc.subject.otherDNA Computing, theoretical computer science, hybridization, graphs-
dc.titleA Formal Model for Databases in DNA-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsHorimoto, Katsuhisa-
local.bibliographicCitation.authorsNakatsui, Masahiko-
local.bibliographicCitation.authorsPopov, Nicolaj-
local.bibliographicCitation.conferencedateJuly 31-August 2, 2010-
local.bibliographicCitation.conferencenameAlgebraic and Numeric Biology-
local.bibliographicCitation.conferenceplaceHagenberg - Austria-
dc.identifier.epage37-
dc.identifier.spage18-
local.bibliographicCitation.jcatC1-
dc.relation.referencesAbiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995) Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 226, 1021–1024 (1994) CrossRef Amos, M.: Theoretical and Experimental DNA Computation. Springer, Heidelberg (2005) Arita, M., Hagiya, M., Suyama, A.: Joining and rotating data with molecules. In: Proceedings 1997 IEEE International Conference on Evolutionary Computation, pp. 243–248 (1997) Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discrete Applied Mathematics 71, 79–94 (1996) CrossRef Cardelli, L.: Strand algebras for DNA computing. In: Deaton and Suyama [9], pp. 12–24 Chen, J., Deaton, R.J., Wang, Y.-Z.: A DNA-based memory with in vitro learning and associative recall. Natural Computing 4(2), 83–101 (2005) CrossRef Condon, A.E., Corn, R.M., Marathe, A.: On combinatorial DNA word design. Journal of Computational Biology 8(3), 201–220 (2001) CrossRef Deaton, R., Suyama, A. (eds.): DNA 15. LNCS, vol. 5877. Springer, Heidelberg (2009) Diatchenko, L., Lau, Y.F., et al.: Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences 93(12), 6025–6030 (1996) CrossRef Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences 101(43), 15275–15278 (2004) CrossRef Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999) Liu, Q., Wang, L., et al.: DNA computing on surfaces. Nature 403, 175–179 (1999) Lyngsø, R.B.: Complexity of Pseudoknot Prediction in Simple Models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004) CrossRef Majumder, U., Reif, J.H.: Design of a biomolecular device that executes process algebra. In: Deaton and Suyama [9], pp. 97–105 Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer, Heidelberg (1998) Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill (2002) Reif, J.H.: Parallel biomolecular computation: models and simulations. Algorithmica 25(2-3), 142–175 (1999) CrossRef Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental Construction of Very Large Scale DNA Databases with Associative Search Capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002) CrossRef Rozenberg, G., Spaink, H.: DNA computing by blocking. Theoretical Computer Science 292, 653–665 (2003) CrossRef Sager, J., Stefanovic, D.: Designing Nucleotide Sequences for Computation: A Survey of Constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 275–289. Springer, Heidelberg (2006) CrossRef Sakamoto, K., et al.: State transitions by molecules. Biosystems 52, 81–91 (1999) CrossRef Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 315(5805), 1585–1588 (2006) CrossRef Shortreed, M.R., et al.: A thermodynamic approach to designing structure-free combinatorial DNA word sets. Nucleic Acids Research 33(15), 4965–4977 (2005) CrossRef Van den Bussche, J., Van Gucht, D., Vansummeren, S.: A crash course in database queries. In: Proceedings 26th ACM Symposium on Principles of Database Systems, pp. 143–154. ACM Press (2007) Yamamoto, M., Kita, Y., Kashiwamura, S., Kameda, A., Ohuchi, A.: Development of DNA Relational Database and Data Manipulation Experiments. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 418–427. Springer, Heidelberg (2006) CrossRef-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr6479-
dc.bibliographicCitation.oldjcatC2-
dc.identifier.doi10.1007/978-3-642-28067-2_2-
local.bibliographicCitation.btitleProceedings of Algebraic and Numeric Biology 2010-
item.fullcitationGILLIS, Joris & VAN DEN BUSSCHE, Jan (2012) A Formal Model for Databases in DNA. In: Horimoto, Katsuhisa; Nakatsui, Masahiko; Popov, Nicolaj (Ed.). Proceedings of Algebraic and Numeric Biology 2010, Springer-Verlag, p.18-37..-
item.accessRightsOpen Access-
item.contributorGILLIS, Joris-
item.contributorVAN DEN BUSSCHE, Jan-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
hagenberg.pdfNon Peer-reviewed author version510.2 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

4
checked on Sep 3, 2020

Page view(s)

56
checked on Sep 5, 2022

Download(s)

106
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.