Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13172
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGRIETEN, Lars-
dc.contributor.authorJANSSENS, Stoffel-
dc.contributor.authorETHIRAJAN, Anitha-
dc.contributor.authorVANDEN BON, Natalie-
dc.contributor.authorAMELOOT, Marcel-
dc.contributor.authorMICHIELS, Luc-
dc.contributor.authorHAENEN, Ken-
dc.contributor.authorWAGNER, Patrick-
dc.date.accessioned2012-02-22T14:55:13Z-
dc.date.available2012-02-22T14:55:13Z-
dc.date.issued2011-
dc.identifier.citationPHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 208(9), p. 2093-2098-
dc.identifier.issn1862-6300-
dc.identifier.urihttp://hdl.handle.net/1942/13172-
dc.description.abstractThe study of protein adsorption on solid surfaces is interesting for theoretical and practical bio-analytical sensing applications. In this work we combine electrochemical impedance spectroscopy, enzyme linked immunosorbent assay, and fluorescence microscopy with thin boron doped nanocrystalline diamond films to address and study the adsorption behavior of globular proteins (antibodies) on hydrophobic and hydrophilic diamond surfaces. A powerful combination of time resolved impedance spectroscopy and data modeling with equivalent circuits allow a detailed insight in the protein behavior at an interface. It is found that hydrogenated diamond is greatly favorable for impedimetric read-out but causes slight conformational loss of the protein structure and therefore also its biological activity. The oxidized surface allows faster adsorption and a high biological activity but results in smaller impedimetric response-
dc.description.sponsorshipIn this work we gratefully acknowledge the support of Jan DHaen for the SEM recordings and Johnny Baccus for the technical support. Also the agency for Innovation by Science andtechnlogy (IWT).The researchwas performedinthe framework of the IAP VI program Quantum Effects in Clusters and Nanowires, the Scientific Research Community WOG WO.035.04N Hybrid Systems at Nanometer Scale, the Fund for Scientific Research (FWO) projects G.082909 Synthetic diamond films as platform material for novel DNA sensors with electronic detection principles and G.0068.07 Growth, characterization and simulation of nanocrystalline and ultrananocrystalline PE-CVD diamond films, and the Methusalem project NANO Antwerp-Hasselt.-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.rights2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.subject.otherimpedance spectroscopy-
dc.subject.othernanocrystalline diamond-
dc.subject.otherprotein adsorption-
dc.titleReal-time study of protein adsorption on thin nanocrystalline diamond-
dc.typeJournal Contribution-
dc.identifier.epage2098-
dc.identifier.issue9-
dc.identifier.spage2093-
dc.identifier.volume208-
local.bibliographicCitation.jcatA1-
local.publisher.placePOSTFACH 101161, 69451 WEINHEIM, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1002/pssa.201100122-
dc.identifier.isi000295433600016-
local.uhasselt.internationalno-
item.validationecoom 2012-
item.accessRightsRestricted Access-
item.fullcitationGRIETEN, Lars; JANSSENS, Stoffel; ETHIRAJAN, Anitha; VANDEN BON, Natalie; AMELOOT, Marcel; MICHIELS, Luc; HAENEN, Ken & WAGNER, Patrick (2011) Real-time study of protein adsorption on thin nanocrystalline diamond. In: PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 208(9), p. 2093-2098.-
item.fulltextWith Fulltext-
item.contributorGRIETEN, Lars-
item.contributorJANSSENS, Stoffel-
item.contributorETHIRAJAN, Anitha-
item.contributorVANDEN BON, Natalie-
item.contributorAMELOOT, Marcel-
item.contributorMICHIELS, Luc-
item.contributorHAENEN, Ken-
item.contributorWAGNER, Patrick-
crisitem.journal.issn1862-6300-
crisitem.journal.eissn1862-6319-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Real time study of protein adsorption.pdf
  Restricted Access
Published version473.51 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

13
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

14
checked on May 9, 2024

Page view(s)

76
checked on Sep 7, 2022

Download(s)

60
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.