Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13258
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHeintz, Joos-
dc.contributor.authorKUIJPERS, Bart-
dc.contributor.authorRojas Paredes, Andrés-
dc.date.accessioned2012-02-29T08:49:56Z-
dc.date.available2012-02-29T08:49:56Z-
dc.date.issued2012-
dc.identifier.urihttp://hdl.handle.net/1942/13258-
dc.description.abstractThe representation of polynomials by arithmetic circuits evaluating them is an alternative data structure which allowed considerable progress in polynomial equation solving in the last fifteen years. We present a circuit based computation model which captures all known symbolic elimination algorithms in effective algebraic geometry and show the intrinsically exponential complexity character of elimination in this complexity model.-
dc.language.isoen-
dc.titleOn the intrinsic complexity of elimination problems in effective Algebraic Geometry-
dc.typePreprint-
local.format.pages36-
local.bibliographicCitation.jcatO-
local.type.specifiedPreprint-
dc.identifier.urlhttp://arxiv.org/abs/1201.4344-
item.fulltextWith Fulltext-
item.contributorHeintz, Joos-
item.contributorKUIJPERS, Bart-
item.contributorRojas Paredes, Andrés-
item.fullcitationHeintz, Joos; KUIJPERS, Bart & Rojas Paredes, Andrés (2012) On the intrinsic complexity of elimination problems in effective Algebraic Geometry.-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ams.pdfNon Peer-reviewed author version463.36 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.