Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13453
Title: Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis
Authors: Swinnen, Steve
Schaerlaekens, Kristien
Pais, Thiago
CLAESEN, Jurgen 
Hubmann, Georg
Yang, Yudi
Demeke, Mekonnen
Foulquié-Moreno, Maria R.
Goovaerts, Annelies
Souveryns, Kris
CLEMENT, Lieven 
Dumortier, Françoise
Thevelein, Johan M.
Issue Date: 2012
Source: GENOME RESEARCH, 22(5), p. 975-984
Abstract: High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural and industrial yeast strains is unknown. We have applied pooled-segregant whole-genome sequence analysis to map all Quantitative Trait Loci (QTL) determining high ethanol tolerance. We crossed a highly ethanol tolerant segregant of a Brazilian bioethanol production strain with a laboratory strain with moderate ethanol tolerance. Out of 5974 segregants, we pooled 136 segregants tolerant to at least 16% ethanol and 31 segregants tolerant to at least 17%. Scoring of SNPs using whole-genome sequence analysis of DNA from the two pools and parents revealed three major loci and additional minor loci. The latter were more pronounced or only present in the 17% pool compared to the 16% pool. In the locus with the strongest linkage, we identified three closely located genes affecting ethanol tolerance: MKT1, SWS2 and APJ1, with SWS2 being a negative allele located in between two positive alleles. SWS2 and APJ1 probably contained significant polymorphisms only outside the ORF and lower expression of APJ1 may be linked to higher ethanol tolerance. This work has identified the first causative genes involved in high ethanol tolerance of yeast. It also reveals the strong potential of pooled-segregant sequence analysis using relatively small numbers of selected segregants for identifying QTL on a genome-wide scale.
Document URI: http://hdl.handle.net/1942/13453
ISSN: 1088-9051
e-ISSN: 1549-5469
DOI: 10.1101/gr.131698.111
ISI #: 000303369600016
Category: A1
Type: Journal Contribution
Validations: ecoom 2013
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Swinnen et al Genome Res 2012.pdf1.1 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

115
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

137
checked on Apr 14, 2024

Page view(s)

52
checked on Sep 6, 2022

Download(s)

102
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.