Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13496
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Roy, Karen-
dc.contributor.authorCLEMENT, Lieven-
dc.contributor.authorTHAS, Olivier-
dc.contributor.authorWang, Yingying-
dc.contributor.authorBoon, Nico-
dc.date.accessioned2012-03-29T13:33:49Z-
dc.date.available2012-03-29T13:33:49Z-
dc.date.issued2012-
dc.identifier.citationWATER RESEARCH, 46 (3), p. 907-919-
dc.identifier.issn0043-1354-
dc.identifier.urihttp://hdl.handle.net/1942/13496-
dc.description.abstractCharacterizing the microbial community of water is important in different domains, ranging from food and beverage production to wastewater treatment. Conventional methods, such as heterotrophic plate count, selective plating and molecular techniques, are time consuming and labor intensive. A flow cytometry based approach was developed for a fast and objective comparison of microbial communities based on the distribution of cellular features from single cells within these communities. The method consists of two main parts, firstly the generation of fingerprint data by flow cytometry and secondly a novel statistical pipeline for the analysis of flow cytometric data. The combined method was shown to be useful for the discrimination and classification of different brands of drinking water. It was also successfully applied to detect changes in microbial community composition of drinking water caused by changing environmental factors. Generally, the method can be used as a fast fingerprinting method of microbial communities in aquatic samples and as a tool to detect shifts within these communities. (C) 2011 Elsevier Ltd. All rights reserved.-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subject.otherFlow cytometry; Statistical pipeline; Microbial community fingerprinting-
dc.subject.otherEnvironmental Engineering; Environmental Sciences; Water Resources-
dc.titleFlow cytometry for fast microbial community fingerprinting-
dc.typeJournal Contribution-
dc.identifier.epage919-
dc.identifier.issue3-
dc.identifier.spage907-
dc.identifier.volume46-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notes[De Roy, Karen; Wang, Yingying; Boon, Nico] Univ Ghent, Fac Biosci Engn, Lab Microbial Ecol & Technol LabMET, B-9000 Ghent, Belgium. [Clement, Lieven; Thas, Olivier] Univ Ghent, Dept Math Modelling Stat & Bioinformat, B-9000 Ghent, Belgium. [Wang, Yingying] Nankai Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Pollut Proc & Environm Criteria, Tianjin 300071, Peoples R China. [Clement, Lieven] Katholieke Univ Leuven, B-3000 Louvain, Belgium. [Clement, Lieven] Univ Hasselt, B-3590 Diepenbeek, Belgium.-
local.publisher.placeOXFORD-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.watres.2011.11.076-
dc.identifier.isi000299713200034-
item.validationecoom 2013-
item.fulltextWith Fulltext-
item.contributorTHAS, Olivier-
item.contributorCLEMENT, Lieven-
item.contributorDe Roy, Karen-
item.contributorBoon, Nico-
item.contributorWang, Yingying-
item.fullcitationDe Roy, Karen; CLEMENT, Lieven; THAS, Olivier; Wang, Yingying & Boon, Nico (2012) Flow cytometry for fast microbial community fingerprinting. In: WATER RESEARCH, 46 (3), p. 907-919.-
item.accessRightsRestricted Access-
crisitem.journal.issn0043-1354-
crisitem.journal.eissn1879-2448-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
deroy1.pdf
  Restricted Access
article1.49 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

81
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

90
checked on Jun 29, 2022

Page view(s)

54
checked on Jun 29, 2022

Download(s)

42
checked on Jun 29, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.