Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1358
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLowen, Wendy-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-04-13T07:41:26Z-
dc.date.available2007-04-13T07:41:26Z-
dc.date.issued2006-
dc.identifier.citationTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 358(12). p. 5441-5485-
dc.identifier.issn0002-9947-
dc.identifier.urihttp://hdl.handle.net/1942/1358-
dc.description.abstractIn this paper we develop the basic infinitesimal deformation theory of abelian categories. This theory yields a natural generalization of the wellknown deformation theory of algebras developed by Gerstenhaber. As part of our deformation theory we define a notion of flatness for abelian categories. We show that various basic properties are preserved under flat deformations and we construct several equivalences between deformation problems.-
dc.format.extent403238 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherAmerican Mathematical Society-
dc.subject.otherDeformation theory; Abelian categories-
dc.titleDeformation theory of abelian categories-
dc.typeJournal Contribution-
dc.identifier.epage5485-
dc.identifier.issue12-
dc.identifier.spage5441-
dc.identifier.volume358-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1090/S0002-9947-06-03871-2-
dc.identifier.isi000242401400010-
item.validationecoom 2007-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.fullcitationLowen, Wendy & VAN DEN BERGH, Michel (2006) Deformation theory of abelian categories. In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 358(12). p. 5441-5485.-
item.contributorLowen, Wendy-
item.contributorVAN DEN BERGH, Michel-
crisitem.journal.issn0002-9947-
crisitem.journal.eissn1088-6850-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
def_ab_cat.pdfPublished version393.79 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

62
checked on Oct 5, 2025

WEB OF SCIENCETM
Citations

63
checked on Oct 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.