Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13629
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN SANDEN, Suzy-
dc.contributor.authorSHKEDY, Ziv-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.contributor.authorGohlmann, Hinrich W. H.-
dc.contributor.authorTALLOEN, Willem-
dc.contributor.authorBIJNENS, Luc-
dc.date.accessioned2012-05-02T09:33:18Z-
dc.date.available2012-05-02T09:33:18Z-
dc.date.issued2012-
dc.identifier.citationJOURNAL OF BIOPHARMACEUTICAL STATISTICS, 22 (1), p. 72-92-
dc.identifier.issn1054-3406-
dc.identifier.urihttp://hdl.handle.net/1942/13629-
dc.description.abstractIn this article, we discuss methods to select three different types of genes (treatment related, response related, or both) and investigate whether they can serve as biomarkers for a binary outcome variable. We consider an extension of the joint model introduced by Lin et al. (2010) and Tilahun et al. (2010) for a continuous response. As the model has certain drawbacks in a binary setting, we also present a way to use classical selection methods to identify subgroups of genes, which are treatment and/or response related. We evaluate their potential to serve as biomarkers by applying DLDA to predict the response level.-
dc.description.sponsorshipWe gratefully acknowledge support of the IAP research network P6/03 of the Belgian Government (Belgian Science Policy).-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.subject.otherPharmacology & Pharmacy; Statistics & Probability; Biomarkers; BW ratio; Categorical data; Joint Modeling; Microarrays-
dc.subject.otherBiomarkers; BW ratio; Categorical data; Joint modeling; Microarrays-
dc.titleGENOMIC BIOMARKERS FOR A BINARY CLINICAL OUTCOME IN EARLY DRUG DEVELOPMENT MICROARRAY EXPERIMENTS-
dc.typeJournal Contribution-
dc.identifier.epage92-
dc.identifier.issue1-
dc.identifier.spage72-
dc.identifier.volume22-
local.format.pages21-
local.bibliographicCitation.jcatA1-
dc.description.notes[Van Sanden, Suzy; Shkedy, Ziv; Burzykowski, Tomasz] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat, B-3590 Diepenbeek, Belgium. [Shkedy, Ziv; Burzykowski, Tomasz] Katholieke Univ Leuven, Louvain, Belgium. [Van Sanden, Suzy; Gohlmann, Hinrich W. H.; Talloen, Willem; Bijnens, Luc] Johnson & Johnson, PRD, Beerse, Belgium. svsande1@its.jnj.com-
local.publisher.placePHILADELPHIA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1080/10543406.2010.504906-
dc.identifier.isi000302064800006-
item.fulltextWith Fulltext-
item.validationecoom 2013-
item.contributorBURZYKOWSKI, Tomasz-
item.contributorGohlmann, Hinrich W. H.-
item.contributorTALLOEN, Willem-
item.contributorSHKEDY, Ziv-
item.contributorBIJNENS, Luc-
item.contributorVAN SANDEN, Suzy-
item.fullcitationVAN SANDEN, Suzy; SHKEDY, Ziv; BURZYKOWSKI, Tomasz; Gohlmann, Hinrich W. H.; TALLOEN, Willem & BIJNENS, Luc (2012) GENOMIC BIOMARKERS FOR A BINARY CLINICAL OUTCOME IN EARLY DRUG DEVELOPMENT MICROARRAY EXPERIMENTS. In: JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 22 (1), p. 72-92.-
item.accessRightsOpen Access-
crisitem.journal.issn1054-3406-
crisitem.journal.eissn1520-5711-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Biomarker article final version.pdfartikel612.24 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

1
checked on Jun 29, 2022

Page view(s)

66
checked on Jul 1, 2022

Download(s)

206
checked on Jul 1, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.