Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13715
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaker, Stuart G.-
dc.contributor.authorSargent, Daniel J.-
dc.contributor.authorBUYSE, Marc-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.date.accessioned2012-06-06T07:30:57Z-
dc.date.available2012-06-06T07:30:57Z-
dc.date.issued2012-
dc.identifier.citationBIOMETRICS, 68 (1), p. 248-257-
dc.identifier.issn0006-341X-
dc.identifier.urihttp://hdl.handle.net/1942/13715-
dc.description.abstractUsing multiple historical trials with surrogate and true endpoints, we consider various models to predict the effect of treatment on a true endpoint in a target trial in which only a surrogate endpoint is observed. This predicted result is computed using (1) a prediction model (mixture, linear, or principal stratification) estimated from historical trials and the surrogate endpoint of the target trial and (2) a random extrapolation error estimated from successively leaving out each trial among the historical trials. The method applies to either binary outcomes or survival to a particular time that is computed from censored survival data. We compute a 95% confidence interval for the predicted result and validate its coverage using simulation. To summarize the additional uncertainty from using a predicted instead of true result for the estimated treatment effect, we compute its multiplier of standard error. Software is available for download.-
dc.description.sponsorshipThis work was supported by the National Cancer Institute. The authors are grateful to the MAGIC (Meta-Analysis Group in Cancer) and ACCENT (Adjuvant Colon Cancer Endpoints) collaborators, listed in Burzykowski et al. (2008), for providing the data. The authors thank the reviewers for helpful comments.-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL-
dc.subject.otherPrincipal stratification; Randomized trials; Reproducibility-
dc.subject.otherBiology; Mathematical & Computational Biology; Statistics & Probability; Principal Stratification; Randomized trials; Reproducibility-
dc.titlePredicting Treatment Effect from Surrogate Endpoints and Historical Trials: An Extrapolation Involving Probabilities of a Binary Outcome or Survival to a Specific Time-
dc.typeJournal Contribution-
dc.identifier.epage257-
dc.identifier.issue1-
dc.identifier.spage248-
dc.identifier.volume68-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notes[Baker, Stuart G.] NCI, Bethesda, MD 20892 USA. [Sargent, Daniel J.] Mayo Clin, Rochester, MN 55905 USA. [Buyse, Marc] IDDI, B-1340 Louvain, Belgium. [Burzykowski, Tomasz] Hasselt Univ, B-3590 Diepenbeek, Belgium. sb16i@nih.gov-
local.publisher.placeMALDEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1111/j.1541-0420.2011.01646.x-
dc.identifier.isi000301924400035-
item.fullcitationBaker, Stuart G.; Sargent, Daniel J.; BUYSE, Marc & BURZYKOWSKI, Tomasz (2012) Predicting Treatment Effect from Surrogate Endpoints and Historical Trials: An Extrapolation Involving Probabilities of a Binary Outcome or Survival to a Specific Time. In: BIOMETRICS, 68 (1), p. 248-257.-
item.accessRightsRestricted Access-
item.validationecoom 2013-
item.fulltextWith Fulltext-
item.contributorBaker, Stuart G.-
item.contributorSargent, Daniel J.-
item.contributorBUYSE, Marc-
item.contributorBURZYKOWSKI, Tomasz-
crisitem.journal.issn0006-341X-
crisitem.journal.eissn1541-0420-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
predicting treatment effect.pdf
  Restricted Access
Published version593.8 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

15
checked on Aug 22, 2025

WEB OF SCIENCETM
Citations

15
checked on Aug 25, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.