Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13715
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaker, Stuart G.-
dc.contributor.authorSargent, Daniel J.-
dc.contributor.authorBUYSE, Marc-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.date.accessioned2012-06-06T07:30:57Z-
dc.date.available2012-06-06T07:30:57Z-
dc.date.issued2012-
dc.identifier.citationBIOMETRICS, 68 (1), p. 248-257-
dc.identifier.issn0006-341X-
dc.identifier.urihttp://hdl.handle.net/1942/13715-
dc.description.abstractUsing multiple historical trials with surrogate and true endpoints, we consider various models to predict the effect of treatment on a true endpoint in a target trial in which only a surrogate endpoint is observed. This predicted result is computed using (1) a prediction model (mixture, linear, or principal stratification) estimated from historical trials and the surrogate endpoint of the target trial and (2) a random extrapolation error estimated from successively leaving out each trial among the historical trials. The method applies to either binary outcomes or survival to a particular time that is computed from censored survival data. We compute a 95% confidence interval for the predicted result and validate its coverage using simulation. To summarize the additional uncertainty from using a predicted instead of true result for the estimated treatment effect, we compute its multiplier of standard error. Software is available for download.-
dc.description.sponsorshipThis work was supported by the National Cancer Institute. The authors are grateful to the MAGIC (Meta-Analysis Group in Cancer) and ACCENT (Adjuvant Colon Cancer Endpoints) collaborators, listed in Burzykowski et al. (2008), for providing the data. The authors thank the reviewers for helpful comments.-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL-
dc.subject.otherPrincipal stratification; Randomized trials; Reproducibility-
dc.subject.otherBiology; Mathematical & Computational Biology; Statistics & Probability; Principal Stratification; Randomized trials; Reproducibility-
dc.titlePredicting Treatment Effect from Surrogate Endpoints and Historical Trials: An Extrapolation Involving Probabilities of a Binary Outcome or Survival to a Specific Time-
dc.typeJournal Contribution-
dc.identifier.epage257-
dc.identifier.issue1-
dc.identifier.spage248-
dc.identifier.volume68-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notes[Baker, Stuart G.] NCI, Bethesda, MD 20892 USA. [Sargent, Daniel J.] Mayo Clin, Rochester, MN 55905 USA. [Buyse, Marc] IDDI, B-1340 Louvain, Belgium. [Burzykowski, Tomasz] Hasselt Univ, B-3590 Diepenbeek, Belgium. sb16i@nih.gov-
local.publisher.placeMALDEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1111/j.1541-0420.2011.01646.x-
dc.identifier.isi000301924400035-
item.contributorBaker, Stuart G.-
item.contributorSargent, Daniel J.-
item.contributorBUYSE, Marc-
item.contributorBURZYKOWSKI, Tomasz-
item.accessRightsRestricted Access-
item.fullcitationBaker, Stuart G.; Sargent, Daniel J.; BUYSE, Marc & BURZYKOWSKI, Tomasz (2012) Predicting Treatment Effect from Surrogate Endpoints and Historical Trials: An Extrapolation Involving Probabilities of a Binary Outcome or Survival to a Specific Time. In: BIOMETRICS, 68 (1), p. 248-257.-
item.validationecoom 2013-
item.fulltextWith Fulltext-
crisitem.journal.issn0006-341X-
crisitem.journal.eissn1541-0420-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
predicting treatment effect.pdf
  Restricted Access
Published version593.8 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.