Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRISKIN, Alexander-
dc.contributor.authorDE DOBBELAERE, Christopher-
dc.contributor.authorSHAN, Lianchen-
dc.contributor.authorBOYEN, Hans-Gerd-
dc.contributor.authorD'HAEN, Jan-
dc.contributor.authorHARDY, An-
dc.contributor.authorVAN BAEL, Marlies-
dc.identifier.citationJOURNAL OF PHYSICAL CHEMISTRY C, 116 (19), p. 10743-10752-
dc.description.abstractWe have applied soft lithography for the indirect patterning of micellar poly(styrene-b-2-vinyl pyridine) diblock copolymers loaded with gold chloric acid with a pattern width below a micrometer. A combination of physical and chemical heterogeneities on the substrate induced a selective deposition of the micelles in between the relief structures without the need for additional liftoff or annealing steps. Micelle size, dip coating speed, and height of the relief pattern were identified as important parameters to achieve a successful selective deposition. Finally, a single layer of patterned gold nanoparticles was formed inside the micropattern using an oxygen plasma treatment.-
dc.description.sponsorshipIWT Vlaanderen (SBO-METACEL); Methusalem (Program "NANO"); FWO Vlaanderen G034609N-
dc.publisherAMER CHEMICAL SOC-
dc.rights© 2012 American Chemical Society.-
dc.subject.othercarbon nanotubes; metallic nanodots; block-copolymers; soft lithography; ordered arrays; cvd synthesis; resonance; growth; resist; films-
dc.titleDewetting of Patterned Silicon Substrates Leading to a Selective Deposition of Micellar-Based Nanoparticles-
dc.typeJournal Contribution-
dc.description.notes[Riskin, A.; De Dobbelaere, C.; Shan, L.; Boyen, H. G.; D'Haen, J.; Hardy, A.; van Bael, M. K.] Hasselt Univ, Inst Mat Res, B-3590 Diepenbeek, Belgium. [Shan, L.; Boyen, H. G.; D'Haen, J.; van Bael, M. K.] Imec Vzw Div IMOMEC, B-3590 Diepenbeek, Belgium.-
dc.relation.references(1) Shiju, N. R.; Guliants, V. V. Appl. Catal. A: Gen. 2009, 356, 1−17. (2) Fang, W. H.; Chen, J. S.; Zhang, Q. H.; Deng, W. P.; Wang, Y. Chem.Eur. J. 2011, 17, 1247−1256. (3) Mikami, Y.; Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Chem.Eur. J. 2011, 17, 1768−1772. (4) Waggoner, P. S.; Tan, C. P.; Craighead, H. G. Sens. Actuators B, 2010, 150, 550−555. (5) Li, X.; Jiang, L.; Zhan, Q. Q.; Qian, J.; He, S. L. Colloids Surf., A 2009, 332, 172−179. (6) Kang, S.-G.; Cho, K.-K.; Kim, K.-W.; Cho, G.-B. J. Alloys Compd. 2008, 269−273. (7) Li, Y.; Liu, J. Chem. Mater. 2001, 13, 1008−1014. (8) Angelucci, R.; Rizzoli, R.; Vinciguerra, V.; Bevilacqua, M. F.; Guerri, S.; Corticelli, F.; Passini, M. Phys. E (Amsterdam) 2007, 37, 11−15. (9) Engel-Herbert, R.; Pforte, H.; Hesjedal, T. Mater. Lett. 2007, 61, 2589−2593. (10) Lee, K. H.; Cho, J. M.; Sigmund, W. Appl. Phys. Lett. 2003, 82, 448−450. (11) Yung Kuo, C.; Gau, C.; Tong Dai, B. Sol. Energy Mater Sol. Cells 2011, 95, 154−157. (12) Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. Nature 2006, 440, 69−71. (13) Zhang, S. P. Z. S. P.; Bao, K.; Halas, N. J.; Xu, H. X.; Nordlander, P. Nano Lett. 2011, 11, 1657−1663. (14) Halas, N. J. Nano Lett. 2010, 10, 3816−3822.(15) Fan, J. A.; Bao, K.; Wu, C. H.; Bao, J. M.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Shvets, G.; Nordlander, P.; Capasso, F. Nano Lett. 2010, 10, 4680−4685. (16) Luk’yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T. Nat. Mater. 2010, 9, 707− 715. (17) Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P. ACS Nano 2008, 2, 707−718. (18) Sánchez-Iglesias, A.; Aldeanueva-Potel, P.; Ni, W.; Pérez-Juste, J.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Mbenkum, B. N.; Liz- Marzán, L. M. Nano Today 2010, 5, 21−27. (19) Boyen, H.-G.; Kästle, G.; Zürn, K.; Herzog, T.; Weigl, F.; Ziemann, P.; Mayer, O.; Jerome, C.; Möller, M.; Spatz, J. P. Adv. Funct. Mater. 2003, 13, 359−364. (20) Kästle, G.; Boyen, H.-G.; Weigl, F.; Lengl, G.; Herzog, T.; Ziemann, P.; Riethmüller, S.; Mayer, O.; Hartmann, C.; Spatz, J. P. Adv. Funct. Mater. 2003, 13, 853−861. (21) Pal, E.; Oszko, A.; Mela, P.; Möller, M.; Dekany, I. Colloids Surf., A 2008, 331, 213−219. (22) Bansmann, J.; Kielbassa, S.; Hoster, H.; Weigl, F.; Boyen, H. G.; Wiedwald, U.; Ziemann, P.; Behm, R. J. Langmuir 2007, 23, 10150− 10155. (23) Spatz, J. P.; Mössmer, S.; Hartmann, C.; Möller, M.; Herzog, T.; Krieger, M.; Boyen, H.-G.; Ziemann, P.; Kabius, B. Langmuir 2000, 16, 407−415. (24) Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Adv. Mater. 2003, 15, 1599−1602. (25) Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657−3659. (26) Cheng, J. Y.; Mayes, A. M.; Ross, C. A. Nat. Mater. 2004, 3, 823−828. (27) Glass, R.; Arnold, M.; Blümmel, J.; Küller, A.; Möller, M.; Spatz, J. P. Adv. Funct. Mater. 2003, 13, 569−575. (28) Glass, R.; Möller, M.; Spatz, J. P. Nanotechnology 2003, 14, 1153−1160. (29) Spatz, J. P.; Chan, V. Z. H.; Mossmer, S.; Kamm, F. M.; Plettl, A.; Ziemann, P.; Moller, M. Adv. Mater. 2002, 14, 1827−1832. (30) Xia, Y.; Whitesides, G. M. Annu. Rev. Mater. Sci. 1998, 28, 153− 184.(31) Cong, Y.; Fu, J.; Zhang, Z. X.; Cheng, Z. Y.; Xing, R. B.; Li, J.; Han, Y. C. J. Appl. Polym. Sci. 2006, 100, 2737−2743. (32) Yun, S. H.; Sohn, B. H.; Jung, J. C.; Zin, W. C.; Ree, M.; Park, J. W. Nanotechnology 2006, 17, 450−454. (33) Meenakshi, V.; Babayan, Y.; Odom, T. W. J. Chem. Educ. 2007, 84, 1795−1797. (34) Rollet, F.; Morlat-Therias, S.; Gardette, J. L. Polym. Degrad. Stab. 2009, 94, 877−885. (35) Guo, L. J. Adv. Mater. 2007, 19, 495−513. (36) Gobel, O. F.; Blank, D. H. A.; ten Elshof, J. E. ACS Appl. Mater. Interfaces 2010, 2, 536−543. (37) Kashkoush, I.; Matthews, R.; Novak, R.; Brause, E.; Carrillo, F.; Rajaram, B. Science and Technology of Semiconductor Surface Preparation; Materials Research Society: Warrendale, U.S., 1997. (38) De Gendt, S.; Snee, P.; Cornelissen, I.; Lux, M.; Vos, R.; Mertens, P. W.; Knotter, D. M.; Meuris, M. M.; Heyns, M. Solid State Phenom. 1999, 65−6, 165−168. (39) Thiele, U.; Vancea, I.; Archer, A. J.; Robbins, M. J.; Frastia, L.; Stannard, A.; Pauliac-Vaujour, E.; Martin, C. P.; Blunt, M. O.; Moriarty, P. J. J. Phys.: Condens. Matter 2009, 21, 1−13. (40) Xue, L.; Han, Y. Prog. Polym. Sci. 2011, 36, 269−293. (41) Bertrand, E.; Blake, T. D.; De Coninck, J. Colloids Surf., A 2010, 369, 141−147. (42) Bornside, D. E.; Macosko, C. W.; Scriven, L. E. J. Imaging Technol. 1987, 13, 122−130. (43) Meyerhofer, D. J. Appl. Phys. 1978, 49, 3993−3997. (44) Brinker, C. J.; Hurd, A. J. J. Phys. III 1994, 4, 1231−1242. (45) Wilson, S. D. R. J. Eng. Math. 1982, 16, 209−221.(46) Weigl, F.; Fricker, S.; Boyen, H.-G.; Dietrich, C.; Koslowski, B.; Plettl, A.; Pursche, O.; Ziemann, P.; Walther, P.; Hartmann, C. Diamond Relat. Mater. 2006, 15, 1689−1694.-
item.fullcitationRISKIN, Alexander; DE DOBBELAERE, Christopher; SHAN, Lianchen; BOYEN, Hans-Gerd; D'HAEN, Jan; HARDY, An & VAN BAEL, Marlies (2012) Dewetting of Patterned Silicon Substrates Leading to a Selective Deposition of Micellar-Based Nanoparticles. In: JOURNAL OF PHYSICAL CHEMISTRY C, 116 (19), p. 10743-10752.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.validationecoom 2013-
item.contributorRISKIN, Alexander-
item.contributorSHAN, Lianchen-
item.contributorBOYEN, Hans-Gerd-
item.contributorHARDY, An-
item.contributorDE DOBBELAERE, Christopher-
item.contributorVAN BAEL, Marlies-
item.contributorD'HAEN, Jan-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Dewetting of patterned sillicon substrates.pdf
  Restricted Access
Published version6.33 MBAdobe PDFView/Open    Request a copy
Show simple item record


checked on Sep 3, 2020


checked on Jul 7, 2022

Page view(s)

checked on Jul 6, 2022


checked on Jul 6, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.