Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbegaz, Fentaw-
dc.contributor.authorGijbels, Irène-
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2012-07-25T09:58:06Z-
dc.date.available2012-07-25T09:58:06Z-
dc.date.issued2012-
dc.identifier.citationJOURNAL OF MULTIVARIATE ANALYSIS, 110, p. 43-73-
dc.identifier.issn0047-259X-
dc.identifier.urihttp://hdl.handle.net/1942/13844-
dc.description.abstractThe manner in which two random variables influence one another often depends on covariates. A way to model this dependence is via a conditional copula function. This paper contributes to the study of semiparametric estimation of conditional copulas by starting from a parametric copula function in which the parameter varies with a covariate, and leaving the marginals unspecified. Consequently, the unknown parts in the model are the parameter function and the unknown marginals. The authors use a local pseudo-likelihood with nonparametrically estimated marginals approximating the unknown parameter function locally by a polynomial. Under this general setting, they prove the consistency of the estimators of the parameter function as well as its derivatives : they also establish asymptotic normality. Furthermore, they derive an expression for the theoretical optimal bandwidth and discuss practical bandwidth selection via a simulation study and a real-data case.-
dc.language.isoen-
dc.publisherELSEVIER INC-
dc.subject.otherAsymptotic normality; Conditional copula; Consistency; Local polynomial fitting; Semiparametric estimation-
dc.subject.otherStatistics & Probability; Asymptotic normality; Conditional copula; Consistency; Local polynomial fitting; Semiparametric estimation-
dc.titleSemiparametric estimation of conditional copulas-
dc.typeJournal Contribution-
dc.identifier.epage73-
dc.identifier.spage43-
dc.identifier.volume110-
local.format.pages31-
local.bibliographicCitation.jcatA1-
dc.description.notes[Abegaz, Fentaw; Gijbels, Irene] Katholieke Univ Leuven, Dept Math, Louvain, Belgium. [Abegaz, Fentaw; Gijbels, Irene] Katholieke Univ Leuven, Leuven Stat Res Ctr LStat, Louvain, Belgium. [Abegaz, Fentaw] Univ Addis Ababa, Addis Ababa, Ethiopia. [Veraverbeke, Noel] Univ Hasselt, Ctr Stat, Hasselt, Belgium. irene.gijbels@wis.kuleuven.be-
local.publisher.placeSAN DIEGO-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.jmva.2012.04.001-
dc.identifier.isi000305817500005-
item.fulltextWith Fulltext-
item.fullcitationAbegaz, Fentaw; Gijbels, Irène & VERAVERBEKE, Noel (2012) Semiparametric estimation of conditional copulas. In: JOURNAL OF MULTIVARIATE ANALYSIS, 110, p. 43-73.-
item.validationecoom 2013-
item.accessRightsRestricted Access-
item.contributorAbegaz, Fentaw-
item.contributorGijbels, Irène-
item.contributorVERAVERBEKE, Noel-
crisitem.journal.issn0047-259X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
abegaz 1.pdf
  Restricted Access
Published version621.25 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

45
checked on Oct 6, 2025

WEB OF SCIENCETM
Citations

45
checked on Oct 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.