Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13931
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIVANOVA, Krassimira-
dc.contributor.authorMITOV, Iliya-
dc.contributor.authorStanchev, Peter-
dc.contributor.authorDobreva, Milena-
dc.contributor.authorVANHOOF, Koen-
dc.contributor.authorDEPAIRE, Benoit-
dc.date.accessioned2012-09-03T13:46:56Z-
dc.date.available2012-09-03T13:46:56Z-
dc.date.issued2011-
dc.identifier.citationPavlov, Radoslav; Stanchev, Peter (Ed.). Proceedings of the 1st International Conference on Digital Preservation and Presentation of Cultural Heritage, p. 117-126-
dc.identifier.issn1314-4006-
dc.identifier.urihttp://hdl.handle.net/1942/13931-
dc.description.abstractResource discovery is one of the key services in digitised cultural heritage collections. It requires intelligent mining in heterogeneous digital content as well as capabilities in large scale performance; this explains the recent advances in classification methods. Associative classifiers are convenient data mining tools used in the field of cultural heritage, by applying their possibilities to taking into account the specific combinations of the attribute values. Usually, the associative classifiers prioritize the support over the confidence. The proposed classifier PGN questions this common approach and focuses on confidence first by retaining only 100% confidence rules. The classification tasks in the field of cultural heritage usually deal with data sets with many class labels. This variety is caused by the richness of accumulated culture during the centuries. Comparisons of classifier PGN with other classifiers, such as OneR, JRip and J48, show the competitiveness of PGN in recognizing multi-class datasets on collections of masterpieces from different West and East European Fine Art authors and movement.-
dc.language.isoen-
dc.publisherInstitute of Mathematics and Informatics – BAS-
dc.subject.otherdata mining; associative classifier; metadata extraction; cultural heritage-
dc.titleApplying Associative Classifier PGN for Digitised Cultural Heritage Resource Discovery-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsPavlov, Radoslav-
local.bibliographicCitation.authorsStanchev, Peter-
local.bibliographicCitation.conferencedate11 - 14 September 2011-
local.bibliographicCitation.conferencename1st International Conference on Digital Preservation and Presentation of Cultural Heritage-
local.bibliographicCitation.conferenceplaceVeliko Tarnovo, Bulgaria-
dc.identifier.epage126-
dc.identifier.spage117-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC2-
local.identifier.vabbc:vabb:340803-
local.bibliographicCitation.btitleProceedings of the 1st International Conference on Digital Preservation and Presentation of Cultural Heritage-
item.validationvabb 2014-
item.fullcitationIVANOVA, Krassimira; MITOV, Iliya; Stanchev, Peter; Dobreva, Milena; VANHOOF, Koen & DEPAIRE, Benoit (2011) Applying Associative Classifier PGN for Digitised Cultural Heritage Resource Discovery. In: Pavlov, Radoslav; Stanchev, Peter (Ed.). Proceedings of the 1st International Conference on Digital Preservation and Presentation of Cultural Heritage, p. 117-126.-
item.fulltextWith Fulltext-
item.contributorIVANOVA, Krassimira-
item.contributorMITOV, Iliya-
item.contributorStanchev, Peter-
item.contributorDobreva, Milena-
item.contributorVANHOOF, Koen-
item.contributorDEPAIRE, Benoit-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Applying associative classifier PGN for digitised cultural heritage resource discovery.pdf
  Restricted Access
591.52 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.